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ABSTRACT 

Techniques applied to determine the value of derivatives have been recently 
exported in the field of investment valuation. This paper aims to provide some light to 
the use of a new technique in the investment valuation literature, aiming to take into 
account the value of flexibility. This technique, designed by Longstaff and Schwartz, 
combines Monte Carlo simulation and the Ordinary Least Squares in order to value 
American-style derivatives with different specifications. We show that this method can 
easily be incorporated to value capital budgeting projects in the framework of the real 
options theory and provides coherent results from an economic point of view. We do 
this by estimating the value of several cases of an investment project that incorporates 
an option to defer the initial investment or layout through time. We estimate these 
values by using the Ox programming language.  

 
Key words: Least Squares Monte Carlo, defer option, geometric Brownian 

motion, investment project. 
 
 

RESUMEN 

Algunas técnicas aplicadas para determinar el valor de derivados han sido 
recientemente exportadas en el campo de la valoración de inversiones. Este trabajo tiene 
como objetivo clarificar el uso de una nueva técnica dentro de la literatura de valoración 
de inversiones, teniendo en cuenta el valor de flexibilidad. Esta técnica, diseñada por 
Longstaff y Schwartz, combina la simulación de Monte Carlo y los Mínimos Cuadrados 
Ordinarios con el objetivo de valorar derivados de tipo americano con distintas 
especificaciones. En este trabajo demostramos que este método puede ser fácilmente 
incorporado para valorar proyectos de inversión en el marco de la teoría de opciones 
reales y muestra resultados coherentes desde el punto de vista económico. Lo hacemos 
estimando el valor de distintos casos de un proyecto de inversión que incorpora una 
opción de posponer la inversión inicial en el tiempo. Estimamos estos valores usando el 
lenguaje de programación Ox. 

 
Palabras clave: Least Squares Monte Carlo, opción de espera, movimiento 

geométrico Browniano, proyecto de inversión. 
 



1 Introduction

There are many methods available in the literature to price derivatives. The most
famous of them is the analytical expression developed by Black, Merton and Scholes
(see Black and Scholes (1973) and Merton (1973)). Unfortunately, the Black-Scholes
model is only suitable for pricing European-style options.

In the case of pricing options with American features, it is very difficult to
find analytical solutions, and it is necessary to use numerical methods. Numerical
methods like the Binomial method suggested by Cox, Ross and Rubinstein (1979)
or finite difference methods can be used to price American options. However, these
methods are not feasible when increasing the number of stochastic factors that the
option could incorporate.

An alternative to price options with complex features like multiple stochastic
processes, is the use of Monte Carlo simulation introduced to value options by Boyle
(1977). The Monte Carlo approach consists in simulating trajectories for the un-
derlying asset. However, this technique is normally used for pricing European-style
options.

Recently, a new approach to price American-style options has been developed.
The Least Squares Monte Carlo algorithm created by Longstaff and Schwartz (2001)
approximates the value of the option by assuming that it can be exercised in a subset
of times t = 1, 2 . . . T . This method combines the simulation techniques with least
squares regression to determine the convenience to exercise or not the option in
each discretization by backward induction. The Least Squares Monte Carlo method
provides a stopping rule for the exercise of the option. Through this stopping rule,
by discounting and averaging, the price of the option is found.

On the other hand, the real options theory provides an alternative to price
capital budgeting projects by considering those from a dynamic point of view. The
firm that estimates the value of a project today with the purpose to decide whether
it is worth to undertake it or not, has the possibility to take decisions throughout the
life of the project. Those decisions can be labeled as options that the firm possesses
in the project. This flexibility increases the value of the project and can modify
the decision to undertake it or not. Those options can incorporate a high number
of stochastic factors, and it is worth to point that methods used to value financial
derivatives can be easily imported to value real options.

A project can incorporate many kinds of options, and even options that depend
on other options. This work deals mainly with the option to defer an irreversible
investment through time. An example of this is as follows: suppose a firm that is
considering to build a plant. To take a decision, the firm calculates the discounted
expected benefits and the necessary costs to build this plant, undertaking this project
if the discounted expected benefits are greater than the costs. The firm incurs the
irreversible cost of building it once the decision is taken. However, the opportunity
to defer those costs allows to postpone them to the future, creating an additional
value and making an incentive in accepting the decision to build the plant. The

admin

admin

admin
3



additional value can change radically the decision concerning the profitability of
projects.

This work aims to estimate the value of capital budgeting projects by applying
the Least Squares Monte Carlo algorithm. In this paper, we show that the Least
Squares Monte Carlo method can easily be incorporated to value capital budgeting
projects in the framework of the real options theory. In fact, we estimate the value of
several projects that incorporate an option to defer the initial investment or layout
through time.

This work is divided as follows. In Section 2 we explain some aspects about the
real options theory, making special emphasis in the option to defer investment. In
Section 3 we estimate the value of projects for different specifications incorporating
the flexibility of a defer option. In Section 4 we analyze the implications of pro-
gramming the valuations performed in Ox, a programming language similar to C
and C++. Finally, we conclude in Section 5.

2 Real options framework.

Traditionally, the value of a project or an investment undertaken by a firm is deter-
mined by the Net Present Value, which is equal to the sum of the expected future
cash flows CFt generated by the project at time t, discounted at the discount rate
r applicable to the project, minus the required initial investment or outlay I. The
expression of the Net Present Value (NPV) is the following:

NPV =
∑

t

CFt

(1 + r)t
− I. (1)

The cash flows of a project are generally expected cash flows, and what is
more important, very often the initial decision taken when valuing a project can
be changed.

The NPV criterion is useful when valuing simple projects, as it does not capture
the evolution of a highly uncertain project, and the ways in which the firm can
influence in it. In this sense, trusting in this method as an indicator of decisions,
could lead to wrong actions. If the firm decides to reject a project based on a
negative NPV, a critical feature of the investment opportunity can be missed by
disregarding that throughout the life of the project the firm can have the right, but
not the obligation, to face the cost of the investment. Therefore, the traditional NPV
does not take into account the decision flexibility of complex projects by assuming
no active actions by the firm throughout the life of the project.

The theory of real options incorporates the value of flexibility into the project,
and allows firms to benefit from uncertainty, receiving additional profits out of it.

In this section, we focus mainly in the possibility to postpone investment deci-
sions, known in the real option literature as a defer option, option to postpone the
investment or option to wait. A short review of other kinds of real options is also
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presented. This section ends with the basic assumptions done when valuing real
options in continuous time.

2.1 The option to defer investment.

The possibility to postpone the starting of a project is known in the literature as an
option to defer investment or option to wait, as noted in Trigeorgis (1998) and Amran
and Kulatilaka (1999). This option is particularly valuable when high uncertainties
and long investment horizons are present like resource extraction industries and real
estate development. The option to postpone an investment is exercised if the value
that can be achieved by postponing the decision is larger than the value of immediate
exercise.

Incorporating the decision flexibility of postponing an investment when valuing
a project, the real options theory imports the notion of a call option borrowed from
securities markets. A call option is the right, but not the obligation, to buy an
underlying asset at a certain price (the exercise or strike price) and at a certain
date (date of expiration). This definition corresponds to an European-style option
in contrast to American-style option, which are options that can be exercised at any
time until the date of expiration. Obviously, in the case of an European call option,
it would be exercised only if the value of the underlying asset is above the strike
price on the expiration date.

We start in a discrete time framework to show the understanding of the concept
of the defer option. Let us see an example that reflects the value of flexibility in
the NPV criterion. Suppose a pharmaceutical firm that wants to analyze if the
development of a pharmaceutical product will be profitable. The success of the
product depends on the trials addressed to obtain the FDA approval, which needs a
capital outlay of 5 millions of euros. Past experience suggests a 25% probability of
success to the trials. Success is defined as obtaining the FDA approval with broad
market potencial. If those trials are successful, the value in one year from now
of expected cash-flows is estimated to be 45 millions. The trials are unsuccessful
with a 75% probability, which means that an approval with limited potential will
result leading to a value of 3 millions. Additionally, full-scale production requires
the construction of a new plant with an estimated cost of 12 millions.

Applying the NPV technique is quite straightforward. The firm has to pay today
5 millions for the trials and 12 millions for the construction of a new plant, and will
receive the probability weighted average of the payoffs in one year. Assuming that
the required rate of return of this project is 15%, the NPV calculation is as follows:

NPV = −17 +
0.25 ∗ 45 + 0.75 ∗ 3

1 + 0.15
= −5.26 millions.

According to the result, this project should be rejected, as the NPV is negative.
However, when calculating the NPV, the value of flexibility has been disregarded, as
the calculation assumes that the plant will be constructed today, before the outcome
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of the trial is known. Let us assume that the plant can be constructed in one year
from now for an investment of 13 millions of euros. As the trials begin today,
the outcome would be known before taking the decision of constructing the plant.
Obviously, it would be efficient to construct the plant if the trial is successful and
not to construct the plant if it is not successful, therefore avoiding the investment
of 12 millions.

Taking this new perspective into account, then the project will generate max(45-
13,0)=32 millions with a probability of success of 0.25 and max(3-13,0)=0 million
with a probability of no success of 0.75. Note that those cash-flows are similar to
the cash flows generated by an European option with a strike price of 13. The value
of the project today, modified to reflect the option to defer is as follows:

modified NPV = −5 +
0.25 ∗ 32 + 0.75 ∗ 0

1 + 0.15
= 1.95 millions.

For simplicity, we have assumed that the discount rate appropiate for the project
remains at 15%. However, incorporating this flexibility means a change of the risk
of the project, and therefore a change in the discount rate. The risk is now reduced
because capital investment in the future will be made only if favourable outcomes
occur.

Assuming a risk-free rate of 0.06, we can calculate the risk neutral probabilities,
apply them in the calculation of the NPV and solve this problem. The use of the
risk neutral probabilities result in a risk-free expected value.

0.25 ∗ 45 + 0.75 ∗ 3

1 + 0.15
=

p ∗ 45 + (1 − p) ∗ 3

1 + 0.06
.

The risky expected value is equal to the left part of the equality. Then we
equalize it to the cash-flows discounted by the risk-free rate. The probabilities of
those discounted cash-flows are the risk neutral probabilities. Thus, the probability
of the up state is 22.4% and the probability of the down state is 77.6%. Having
found those probabilities, we can use them jointly with the risk-free rate to give a
more correct value of the project, incorporating the flexibility of the defer option:

corrected NPV = −5 +
0.224 ∗ 32 + 0.776 ∗ 0

1 + 0.06
= 1.76 millions.

Note that there is a positive relationship between uncertainty and the value
of the option. This is because the option allows to capture the upper value while
eliminating the down value. In the example, if the value of success will be greater
and the value of no success lower, the cash-flow of success will be greater although
the cash-flow of no success will remain zero. That is how the project benefits from
uncertainty.

Incorporating to the calculations the value of flexibility, the decision changes
completely. When the option value is disregarded in calculating the NPV, we find
that some projects can be refused although it would be interesting to undertake
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them. Early investment implies the sacrifice of the value of the option to wait. The
NPV tool assumes early investment, not taking into account this value. Therefore,
the NPV increases when taking this value into consideration. In fact:

Corrected NPV = Standard NPV + Option Premium.

In continuous time, the real options approach incorporates the uncertainty from
the cash flows, as well as the possibility to postpone the starting of a project by
using stochastic processes describing its value, and then evaluating the option to
invest. Imagine the previous example, but instead of having two times, today and
tomorrow, the firm can postpone the outlay of the project at any time through a
certain period. This is the new context in which we value a defer option in this
work. The option to defer investment is now analogous to an American call option
on the expected value of the project, with an exercise price equal to the required
outlay.

Just as the owner of an American call option on a financial asset possess the
right, but not the obligation, to acquire the asset by paying the exercise price before
the maturity date and will exercise the option if it is in his interest, so will the holder
of an option on real assets.

As the following table illustrates, there exist a very close analogy between options
on a financial asset and options on a real asset.

Call option on stock Real option on project
Current value of stock Present value of expected cash flows
Exercise price Investment cost
Time to expiration Time until opportunity disappears
Stock uncertainty Project uncertainty
Riskless interest rate Riskless interest rate

Table 1: Comparison between a call option on a stock and a real option on a project. Source:
Trigeorgis (1998)

Thanks to this analogy, the techniques developed to value options on financial
assets can be easily imported to value options on real assets.

One of the most important formulas to price options on financial assets is the
one developed by Black and Scholes (1973) and Merton (1973). This is a very simple
and easy-to-use formula, but it is only useful to price European-style options. In
the case of American options, there exists some analytical expressions, but there are
no easily computable formulas currently available. Then, numerical methods are
usually required.

2.2 Different kinds of real options.

This paper is centered in the valuation of a option to defer investment. However, it
is valuable to make a general overview of the different kinds of option on assets, in
order to have a wider idea of the scope of the real option theory.
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The most common categories of encountered real options are the following:

• Option to alter operating scale. During the life of a project already un-
dertaken by a firm, if market conditions are more favorable than expected, the
firm can expand the scale of production or accelerate resource utilization. Con-
versely, if conditions are less favorable than expected, the firm can reduce the
scale of operations.

• Option to abandon. If market conditions decline severely, the firm can aban-
don operations permanently and sell the capital equipment and other assets on
the market.

• Option to switch inputs or outputs. When the prices or demand change,
the firm can change the output that it is producing in response of these changes.
Alternatively, the firm could change the inputs to produce the same outputs
when input prices fluctuate. This option arises normally in taking purchasing
decisions on the acquisition of technology or machinery that facilitates this
change.

• Growth options. This option is present when making an early investment,
which opens interrelated projects that bring future growth opportunities. Ex-
amples of those investments are present in R&D projects, a strategic acquisition
or an information network.

Jointly with the option to wait, those are the more common real options. Addi-
tionally, in the real-life projects we can find that a same project involves a collection
of the options analyzed. In this case, the combined value of those may differ from
the sum of their separate values due to interaction among those, because one op-
tion can depend on other(s). For example, it might be necessary to exercise a defer
option in a project in order to exercise an abandonment option in that project.

3 Valuing projects that involve a defer option.

In this section, we value capital budgeting projects that involves an option to wait.
Let us assume a certain firm who desires to value a project that possess an option
to defer an investment through time and can exercise it at any moment.

The discounted benefits of the project behave randomly following a geometric
Brownian motion path, following this expression:

dVt = rVtdt + σVtdWt.

Additionally, we assume that the layout follows also a geometric Brownian mo-
tion path given by:

dIt = r̃Itdt + σ̃ItdW̃t,
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obviously with the same form but with other parameters. The risk that affects the
value of the project is different from the risk that affects the layout. Thus, the risk
parameters must be different. We assume no correlation between both processes.

We fix r = 0.06 and r̃ = 0.04, which are the drift under the risk-neutral proba-
bility measure. We vary the values of σ and σ̃ when performing the simulation as
we indicate in the tables.

We simulate the value of the option to wait and the NPV using Ox. In each
simulation, we use a total of 100,000 paths and 60 discretizations.3 We denote the
paths by M and the total of time steps by T . Therefore, we fix T as 60.

We approximate the conditional expectation by the three weighted Laguerre
polynomials, generated by the following expression 4:

Ln(X) = exp(−X/2)
ex

n!

dn

dXn
(Xne−X). (2)

Thus, we perform 59 (T-1) regressions on the following polynomial at each time
step t < T :

E(Yt|Xt) = β0 + β1 exp(−Xt/2) + β2 exp(−Xt/2)(1 − Xt)

+β3 exp(−Xt/2)(1 − 2Xt + X2
t /2) + ut. (3)

In table 2 we show our results. We suppose a constant riskless interest rate equal
to 6%. For simplicity, we assume that the initial value of the project is equal to the
initial value of the layout at t = 0, which means that the NPV of the project without
considering flexibility is equal to zero. This assumption can be easily relaxed. We
change the risk parameter of the project and the initial value of the project and the
layout. The value of the estimated NPV increases as we increase the uncertainty of
the project, because it benefits from the increasing risk as explained in Section 2.1.
On average, the estimated NPV is a 90.813% bigger than the NPV of the project if
the company decides to undertake the project at t = T , as if it were an European
option. This percentage infers the value of flexibility of the project with respect to
the last exercise date on average.

The estimated NPV today is indicated in the table as pm. We see that all
calculated values are always positive as an effect to incorporate the option to wait.
As the NPV without the flexibility of waiting to invest is equal to zero, the values
of the option to wait are equal to the values reported on the table.

In table 3 we change the risk of the layout given by the parameter σ̃. We note
that the more risk the bigger is the estimated price. Thus, the project benefits
from the risk of the layout. The more it fluctuates, the more differences Vt − It are
created, so the ITM paths are bigger.

3Half of the simulations performed are antithetic as a way to reduce the variance of the estimator.
4All the different kinds of basis functions and its properties are described in Chapter 22 of Abramowitz and

Stegun (1970). For deeper details of these functions see Walter (1994)
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V=I σ pm peu

40 0.2 1.9014 0.1765
40 0.4 2.5872 0.2379

42 0.2 1.9987 0.1852
42 0.4 2.7196 0.2497

44 0.2 2.0963 0.1941
44 0.4 2.8628 0.2616

46 0.2 2.1951 0.2029
46 0.4 3.0053 0.2735

48 0.2 2.2926 0.2117
48 0.4 3.1416 0.28548

50 0.2 2.3900 0.2205
50 0.4 3.2792 0.2973

Table 2: This table represents the NPV of the project (pm), and its value if it were exercised at T
(peu) for different values of the initial value of the project represented by V , and the initial value
of the layout represented by I. We assume V = I. The riskless interest rate is equal to 6%. The
constant part of the layout process r̃ is fixed and equal to 0.04. The stochastic part of the layout
σ̃ is fixed and equal to 0.3. Thus, dI = 0.04Idt + 0.3IdW̃ . The risk of the value of the project is
represented by σ in the table.

Finally, in table 4 we relax the assumption of the initial value of the project
equal to the initial value of the layout V = I and report the values of the option
to wait for different combinations of V and I. The bigger is V with respect to
I, the bigger is the probability to generate positive net values for each path and
discretization. Note that in each case it is possible to calculate the value of the
option as the difference between the NPV incorporating flexibility, and the NPV
without flexibility. Those results are also shown in the table. We note that when
the NPV is negative, the value of flexibility is bigger. Economically it makes sense,
as with a positive NPV the probability of exercising now instead of waiting should
be bigger.

4 Comments about the performance of the computations.

All calculations performed to estimate the NPV of the different projects in Section
3 have been made in Ox5, a programming language similar to C and C++. We
highlight the main aspects of the computations performed in the appendix.

We have chosen Ox between other programs because it is fast and easy to use
in every platform. The computation for the projects involving the defer option
with stochastic layout takes around 10 minutes. Those have been performed in a

5For more information about Ox, visit www.oxmetrics.net
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V=I σ σ̃ pm peu

40 0.2 0.3 1.9014 0.1764
40 0.2 0.6 2.5872 0.2379
40 0.4 0.3 2.5872 0.2379
40 0.4 0.6 3.7506 0.3351

50 0.2 0.3 2.3900 0.2205
50 0.2 0.6 4.1595 0.3715
50 0.4 0.3 3.2792 0.2973
50 0.4 0.6 4.7054 0.4194

60 0.2 0.3 2.8728 0.2646
60 0.2 0.6 4.9895 0.4460
60 0.4 0.3 3.9391 0.3568
60 0.4 0.6 5.6365 0.5027

Table 3: This table represents the NPV of the project (pm), and its value if it were exercised at T
(peu) for different values of the initial value of the project represented by V , and the initial value
of the layout represented by I. We assume V = I. The riskless interest rate is equal to 6%. The
stochastic part of the value of the project σ and the stochastic part of the layout σ̃ are as indicated
in the table.

Silicon Graphics Fuel Workstation with a 500Mhz MIPS R 14000(IP35) processor
with RAM 512 Mb.

It worths to mention in this section about the random number generator in
Ox. The default random number generator is the Park & Miller random number
generator, which requires only one seed. Thus, when we simulate the standard
Normal distribution in order to simulate the geometric Brownian motion, we always
obtain the same values as output. To obtain different values, we have to change the
seed by the command ranseed().

In this work we have used a seed of 100,000 for the defer options valued for the
discouted benefits. Obviously, the seed used to generate the value of the project
must be different to the seed used to generate the layout in order to use different
values. The seed of the layout we consider in our valuations is the default one.

In table 5 we show the different NPV of the projects including the option to
wait, changing the seed of the discounted benefits:

As for the defer option with stochastic layout, we consider in the table above
V = K = 40, σ = 0.2 and σ̃ = 0.3. According to the results, both the price
of the American defer option and the European defer option does not fructuate
significantly, as the number of simulations have increased enough.

According to our estimations in Section 3, the application of the LSM method
never leads to negative estimations as it focuses in the ITM paths. Does it mean that
it is always profitable to undertake any project? Of course not. Projects that cannot
generate any cash-flows will never have a positive net value, but obviously negative.
Unfortunately, as the algorithm only focus in positive net values, we cannot estimate
how much negative this value is.
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V I pm opc
40 35 5.8619 0.8619
40 40 3.7506 3.7506
40 45 2.5607 7.5607

45 40 6.2613 1.2613
45 45 4.2777 4.2777
45 50 3.0024 8.0024

50 45 6.6905 1.6905
50 50 4.7054 4.7054
50 55 3.4489 8.4489

Table 4: This table represents the NPV of the project (pm), and the value of the option (opc) for
different values of the initial value of the project represented by V , and the initial value of the
layout represented by I. We let V be different to I. The riskless interest rate is equal to 6%. The
stochastic part of the value of the project σ is fixed and equal to 0.4. The stochastic part of the
layout σ̃ is fixed and equal to 0.6.

ranseed( ) LSM price. European price.
100,000 1.9014 0.1764
200,000 1.9035 0.1763
300,000 1.9116 0.1762
400,000 1.9062 0.1763
500,000 1.8987 0.1768
600,000 1.9040 0.1766
700,000 1.9095 0.1760
800,000 1.8946 0.1761
mean 1.9036 0.1763

std. deviation 0.0055 0.0002

Table 5: Different prices of the option considering several values of the seed.

When uncertainty is reduced and the initial value of the project is too small
compared to the initial layout, the probability of exercising the project is reduced
and the value of flexibility is near zero. But what happens when there is no value
of flexibility, or it is too reduced compared to the expected loses? In this case, the
program provides no value, as it is no possible to estimate the value of continuation
at some step. This is the case when we set, for instance, V0 = 45, I0 = 60, σ = 0.4
and σ̃ = 0.3, where the NPV without value of flexibility is V0 − I0 = −15 million of
euros, which is a big loss.
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5 Conclusions.

In this work, we analyze the Least Squares Monte Carlo algorithm and we apply it
in the context of the real options theory. In particular, we estimate the net value at
t = 0 of several cases of an investment project including a defer option or option to
wait that can be exercised at any time.

We demonstrate that the algorithm can be perfectly used to value the flexibility
embedded to those projects and estimate its Net Present Value. We note that
for projects in which the initial Net Present Value is more reduced, the value of
flexibility is bigger. Additionally, the projects with a higher volatility in the value
process and in the layout reflect increasing values of flexibility.
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A Computations for valuing projects with defer options.

We would like to highlight the main aspects of the program to value defer options in
Section 3. We calculate the values of the defer option with T = 60, which supposes to
perform 59 regressions, 59 comparisons, etc. Thus, a way to abbreviate the writing
of the program is crucial, because otherwise the extension would be too big.

After declaring the parameters and variables, the first step is to simulate the path
of the value of the project. For that, we construct the matrix of random numbers
from a normal distribution with dimension MxT , where M stands for the simulation
paths (8 in this case) and T stands for the discretizations (3 in the example). We
add a first column of zeros, which will be the initial value of the process. We apply
the antithetic technique when doing the simulations to reduce the variance of the
price. Thus, we construct the matrix ran with the first column full of zeros and
for the rest of the columns, the first M/2 rows composed by simulated values of a
standard normal distribution and the following (and last) M/2 rows composed by
the same values with opposite sign. Then we fill this matrix, substituting the zero
values with the simulated values generated by the matrix of random values:

antit= rann(M/2,T);

ran = 0 ~ (antit | -antit);

v = V ~ zeros(M,T);

for (j=0; j < T; ++j)

{

v[][j+1]= v[][j] .*exp((r - sig^2 / 2) *del + sig *

sqrt(del) .* ( ran[][j+1]) );

}

Note that to generate the values, we have used the for loop. The for loop consists
of three parts, an initialization part, a termination check, and an incrementation
part. So j starts at 0 until T − 1, incrementing his value by one unit.

Additionally, the outlay is stochastic, so it is also necessary to generate its values,
in a similar way as the values of the project:

for (j=0; j < T; ++j)

{

i[][j+1]= i[][j] .*exp((alf - isig^2 / 2) *del

+ isig * sqrt(del) .* ( ran[][j+1]) );

}
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We made the first regression and comparison at t = 59. We also draw the last
provisional columns of the matrix mc. The regression function is taken from the
Laguerre polynomial in formula (19).

eyx = b[0] + b[1]*exp(-xt[][t]./2) + b[2]*exp(-xt[][t]./2).*(1-xt[][t])

+ b[3]*exp(-xt[][t]./2).*(1 -2 .*xt[][t] + xt[][t].^2 ./2);

Before this initial step, to make the analysis from t = 58 to t = 1, we introduce a
for loop that fructuates t down to t = 1, and performs the operations of regressing,
comparing and designing the matrix mc automatically.

for(t=T-2; t>0; --t)

{

}

Inside of this loop, that we call root loop because it contains other loops, we
include all operations related to regress and compare the calculated value of contin-
uation with the value of immediate exercise.

A matrix h is designed as an intermediate tool to calculate the matrix yt of
discounted prices. We introduce another for loop inside of the previous loop to vary
the position of the column in matrix h. This matrix is composed by the discounted
elements from mc. Each row of matrix h has one element different to zero or all
elements different to zero, so we sum all rows and reduce it to the vector yth with
dimension 1xN . After calculating this, we filtrate the elements of this vector, placing
.NaN when the value of the project is not ITM at that time step t:

h = zeros(M,T);

for(j=T; j>t; --j){

h[][j-1] = mc[][j-1].>0 .? mc[][j-1]*exp(-(j-t)*r) .: 0;

}

decl yth =sumr(h);

yt = itm[][t].>0 .? yth .: .NaN;

In order to change the previous decisions taken at the previous comparisons, we
include another for loop inside of the root loop with the following expression:
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for(j = T-1; j> t-1; --j){

mc[][j] = mc[][t-1] .>0 .? 0 .: mc[][j];

}

After this, we discount the prices and calculate the LSM price.
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