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1 Introduction
There is a great ongoing controversy whether or not the business cycle has
recessions and expansions with differing lengths, a stylised fact that was
firstly suggested by Mitchell (1927), Keynes (1936) and Hicks (1950). This
phenomenon, known as cyclical frequency or steepness asymmetry, raises a
relevant econometric issue as it implies the time irreversibility of the series1.
All stationary Gaussian processes are time reversible (Weiss, 1975); there-
fore conventional linear Gaussian forecasting techniques are inappropriate to
capture the asymmetries of the business cycle. This has led to a broad set
of proposals that attempt to detect and measure the frequency asymmetry
from a quantitative perspective.

A first line of approach roots in the work by Brillinger and Rosenblatt
(1967) who show that a strictly stationary time series is time reversible if
and only if the imaginary parts of all the higher-order spectra are identically
zero. Hinich and Rothman (1998) exploit this characteristic and propose a
test based on the bispectrum. They find evidence of time irreversibility in the
industrial production index, the consumer price index and the unemployment
rate of various OECD countries. Lim et al. (2008), in a different context,
develop a test based on the next polyspectrum, the trispectrum, and report
time irreversibility patterns on financial returns of daily series of 48 stock
markets worldwide. Higher-order moments have also been used from a time-
domain point of view. In this sense, Ramsey and Rothman (1996) report
that the paired third-order generalized autocovariances of a broad set of US
macroeconomic series show evidence of asymmetry.

Other approaches focus on the first differences of the series. Neftci (1984)
uses the signs of the first differences as indicator sequences for periods of ex-
pansion and contraction. He derives a test for symmetry in terms of transition
probabilities assuming that the indicator sequences are generated by second-
order Markov processes and reports evidence of longer periods of expansion
in the US unemployment rate. Using this approach, Hamilton (1989) re-
ports the presence of asymmetric patterns in the US GDP. Rothman (2008)
confirms the existence of Neftci-type asymmetries in an updated US unem-
ployment rate series. Sichel (1993) uses the sample skewness of the first
difference and also reports asymmetries in the unemployment.

Different non-linear models have been proposed to capture a cyclical
asymmetric behaviour. Teräsvirta and Anderson (1992) fit smooth transition
autoregressive models to thirteen international production series. The dy-

1A series xt is time irreversible (or directional) if for every positive integer n, and every
t1, t2, . . . , tn ∈ R, the vectors {x(t1), x(t2), . . . , x(tn)} and {x(−t1), x(−t2), . . . , x(−tn)} do
not possess the same joint probability distributions (Brillinger and Rosenblatt, 1967)
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namics of these STAR models indicate a difference between low (recessionary)
regimes and upper (expansionary) regimes. Brännäs and De Gooijer (1994)
introduce an autoregressive-asymmetric moving average model that captures
asymmetry via a different specification of the MA polynomial for expansions
and recessions and derives a Wald test that rejects the null of symmetry
in the US real GNP growth rate. Rothman (1998) reports that the use of
non-linear time series models for the U.S. unemployment rate improves the
forecast performance. Crespo (2003) proposes an asymmetric cyclical un-
observed components (UC) model with a stochastic sine-cosine wave with a
regime-dependent frequency and develops a test for symmetry which reveals
asymmetries in the US rates of unemployment and industrial production.

By contrast, some papers fail to find evidence of cyclical asymmetries over
the business cycle. Using Neftci’s procedure, Falk (1986) and Westlund and
Ohlen (1991) report no sustainable signs of asymmetry in a large number of
international macroeconomic time series. More recently, Peiro (2004), using
conventional t and F techniques, tests for the equality of the distributions of
contractions and expansions in the quarterly industrial production indexes
of France, Germany and the United Kingdom and does not reject the null of
symmetry.

All the aforementioned works focus on the dynamics of series that alter-
nate decreasing and increasing stages without an overall sense of periodicity.
This approach is appropriate in Economics, where the oscillations of the ac-
tivity are prone to not possess a fixed period, and permits to treat each
macroeconomic series as a whole despite the variability in the length of the
consecutive waves. In this paper, nevertheless, the frequency asymmetry is
studied deterministically as behaviour confined within a pre-established pe-
riod that is split between both phases of expansion and contraction in an
unbalanced way and the second order moments of such behaviour are anal-
ysed. Second order moments, as even functions in time, are conventionally
regarded as containing no information about the time irreversible nature of
data and therefore on the frequency asymmetry. However, in this work it is
shown that the frequency asymmetry produces clearly distinct behaviour of
second order moments that can be observed in both the time domain and
the frequency domain.

The major contributions of the current work are threefold. Firstly, this
proposal provides a new way to perceive a frequency asymmetric behaviour
through the two most widely used graphical tools in time series analysis: the
correlogram and the periodogram, so assessment of asymmetry can be made
by simple visual inspection of one or both of these graphics. The second
main contribution is a new estimation procedure of the differing frequencies
of expansion and contraction. This approach, based on the Fourier represen-
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tation of frequency asymmetric cycles, implements a non-linear least squares
method to produce simultaneous estimates of the asymmetric frequencies,
the phase and the amplitude of a deterministic asymmetric cycle. Finally,
the expansion and contraction lengths in every wave of the US unemploy-
ment rate are estimated and further evidence of asymmetry in the business
cycle is reported. It is shown that the frequency asymmetry is a prominent
feature of most but not all the fluctuations of the business cycle.

The structure of the paper is as follows: Section 2 defines the determin-
istic frequency asymmetric cycle and characterizes its mean and variance.
Sections 3 and 4 derive respectively the Autocovariance Function and the
Periodogram of such a cycle and show how these statistics vary with the de-
gree of asymmetry. Section 5 introduces the Asymmetric Cyclical Regression
Model and proposes a non-linear least squares (NLLS) procedure of estima-
tion of its parameters and Section 6 studies the finite sample performance of
the procedure for a wide range of parameter values, sample lengths and vari-
ances of the error term. Two empirical applications are analysed in Section 7,
the first one focuses on the frequency asymmetries of the business cycle as
expressed in the seasonally adjusted US Unemployment Rate and the second
one explores the dynamics of the sunspot index. Finally, Section 8 concludes.
The proofs of the main propositions are relegated to the appendix.

2 The deterministic frequency asymmetric cy-
cle

Consider the following deterministic cycle completed in τ ≥ 3 observations

xt =


ρ cos [λ− (t+ ϕ)] if t ≤ a− − ϕ
−ρ cos [λ+ (t− a− + ϕ)] if a− − ϕ < t ≤ τ − ϕ
ρ cos [λ− (t− τ + ϕ)] if τ − ϕ < t ≤ τ

(1)

where t = 1, 2, . . . , τ , ρ is the amplitude, {λ−, λ+} ∈
[

π
τ−1 , π

]
are the fre-

quencies that determine respectively the velocity of contraction and the ve-
locity of expansion of the cycle, a− = π

λ−
is the half-period of contraction

and ϕ ∈ [0, τ) is the phase shift that settles the starting point of the cycle.
{τ, ϕ, a−} ∈ N is assumed with a small loss of generality2. When λ+ = λ−,

2The asymmetric cycle presented in (1) is a discretization of an equivalently defined
continuous function with t ∈ R+. Then, when {τ, ϕ, a−} ∈ N each half-period of the
cycle is evaluated at equispaced points fully covering the interval [−ρ, ρ] and the results
presented henceforth are exact in this case. They can be extended asymptotically as
τ →∞ and/or T →∞, where T is the length of a series containing k > 1 concatenations
of xt.
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Figure 1: Asymmetric cycle: ρ = 1, τ = 10, λ+ = π/3 and λ− = π/7.

(1) represents the standard symmetric cycle. If λ+ > λ− the cycle grows
more quickly than it decreases, taking place the opposite effect for λ+ < λ−

(thus, for example in unemployment series λ+ > λ− can be expected). The
restriction τ ≥ 3 is introduced just as a precondition for asymmetry.

Figure 1 shows two realizations of an asymmetric cycle with amplitude
ρ = 1, period τ = 10, λ+ = π/3 and λ− = π/7, zero phase in the first case
and ϕ = 3 in the second. In Figure 1(a) an asymmetric cosinoidal wave
that takes 7 steps to decrease and 3 to rise back can be observed. In this
cycle both half-periods occur consecutively and unbrokenly. On the contrary,
the cycle in Figure 1(b) starts at a midpoint of the contraction half-period
and then completes its three step expansion prior to decreasing back to the
starting point due to a phase shift of 3 lags.

Proposition 1 characterizes the mean and the variance of the deterministic
asymmetric cyclical sequence defined in (1). The following notation will be
frequently used henceforth: a+ = π

λ+ = τ+

2 and a− = π
λ−

= τ−

2 are the
half-periods of expansion and contraction of the cycle (the latter was already
defined), then let amin = min(a+, a−), amax = max(a+, a−), λmin = π

amax
=

min(λ+, λ−) and λmax = π
amin

= max(λ+, λ−).

Proposition 1: Let xt be as defined in (1). Then the mean and variance of
xt are:

• Mx = 0

• S2
x =


ρ2

2 if λmax 6= π

ρ2

2

(
1 + 1

τ

)
if λmax = π
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Proposition 1 shows that the mean of asymmetric cycles is constant for
all degrees of asymmetry and the variance is also constant except if the cycle
covers all its stage of expansion or of contraction in one single step, which
implies λmax = π.

3 Autocovariance function of frequency asym-
metric cycles

In the time domain, the cyclicity of a periodic sequence xt appears in second-
order moments as cosinoidal waves of equivalent period in the autocorrelation
function (ACF), defined as

r(k) = s(k)
s(0) , (2)

where s(k) are the autocovariances calculated as

s(k) = 1
N

N−k∑
t=1

(xt+k − x̄) (xt − x̄) .

Considering complete cycles with respect to every lag k, the autocovari-
ances of (1) can be defined as

s(k) = 1
τ

τ∑
t=1

xt+kxt (3)

where xi = xi−τ for i > τ .
Proposition 2 characterizes the autocovariance function of the determin-

istic asymmetric cycle xt.

Proposition 2: Let xt satisfy (1), then the autocovariance function of xt
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verifies

s (k) =



ρ2

τ

{
amax − k

2
cos (λmink) +

amin − k
2

cos (λmaxk)

−
cotλmax sin (λmaxk)

2
−

cotλmin sin (λmink)
2

+
sin (λmaxk) sinλmax − sin (λmink) sinλmin

cosλmin − cosλmax

}
if λ− 6= λ+, k ≤ amin and amin > 1

ρ2

τ

{
amax − k

2
cos (λmink)−

cotλmin sin (λmink)
2

− sin (λmink) tan
(
λmin

2

)
+ (1− k) (−1)k

}
if λ− 6= λ+ and k ≤ amin = 1

ρ2

τ

{
amax − k

2
cos (λmink)−

k − amin
2

cos [λmin (k − amin)]

−
cotλmin sin (λmink)

2
−

cotλmin sin [λmin (k − amin)]
2

+
2 sin

[
λmin

(
k − amin

2

)]
cos
(
aminλmin

2

)
sinλmin

cosλmax − cosλmin

}
if λ− 6= λ+ and amin < k ≤ τ

2

ρ2 cos (λasyk)
2

if λ− = λ+

(4)
where s (τ − k) = s (k), lτ ≤ k ≤ lτ + τ

2 and l = 0, 1, 2, . . .

In periodic symmetric series, the autocorrelation function is negative in
the vicinity of τ/2 and equals −1 if k = τ/2 as a consequence of the periodic
component passing maximally out of phase with its counterpart. If the series
is asymmetric this situation does no longer hold and so the serial dependence
at τ/2 decreases in absolute value as the degree of asymmetry increases, a
behaviour that is extensive to all autocovariances in the vicinity of τ/2.
The autocovariances located at multiples of the period, on the contrary,
remain invariant to asymmetry (except for λmax = π) as the series is still
periodic and they are consequently equal to the variance of the series. Then,
the autocorrelation at k = τ is always 1, independently of the degree of
asymmetry, whilst it generally decreases in absolute value at k 6= τ as the
degree of asymmetry increases. This produces the most visually identifiable
feature of frequency asymmetry in the ACF that corresponds to a wave with
less deep troughs than peaks are high, a characteristic that becomes more
outstanding as λmax → π. The frequency asymmetry of the series therefore
becomes amplitude asymmetry in the correlogram.

Figure 2 shows five realizations of two waves of cycles with the same
period τ = 10 and an increasing degree of asymmetry: {λ+ = λ− = π/5},
{λ+ = π/4, λ− = π/6}, {λ+ = π/3, λ− = π/7}, {λ+ = π/2, λ− = π/8} and
{λ+ = π , λ− = π/9}. They are accompanied by their respective correlo-
grams and periodograms (which will be analysed in the next section) calcu-
lated according to (2) with (3) and (5).

In Figure 2(a), the wave of the ACF holds troughs and peaks of equal
amplitude. In Figures 2(b) to 2(d) it can be seen how the increasing degree
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Figure 2: Cycles, correlograms and periodograms at increasing degrees of
asymmetry
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Figure 2: Cycles, correlograms and periodograms at increasing degrees of
asymmetry (Cont.)

of asymmetry decreases all the autocorrelations except the ones located at
multiple values of τ . This produces the visual effect of shrinking troughs and
constant peaks. Finally, Figure 2(e) shows that under complete frequency
asymmetry (λmax = π) the amplitude of the troughs is clearly shorter than
the amplitude of the peaks.

4 Periodogram of frequency asymmetric cy-
cles

The frequency domain settles a natural framework for the analysis of the
existence and characteristics of the cycles since they are revealed as sharp
peaks or poles in the periodogram of xt defined as

Ix (λj) =
∣∣∣∣∣ 1√

2πT

T∑
t=1

xte
−iλjt

∣∣∣∣∣
2

= 1
2πT

{ T∑
t=1

xt cos (λjt)
}2

+
{

T∑
t=1

xt sin (λjt)
}2 .

(5)

Proposition 3 explores how the asymmetric behaviour of a cycle affects its
periodogram. Firstly, Lemma 1 defines the Fourier frequencies of asymmetric
cycles as functions of the frequencies of expansion and contraction.

Lemma 1: Let xt satisfy (1), then the Fourier frequencies of xt are λj =
jλasy with j = 1, . . . , n, where n is the integer part of τ/2 and λasy is the
frequency corresponding the period of xt (λasy = 2π/τ) that verifies

λasy = 2λ+λ−

λ+ + λ−
. (6)
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Proof : By definition τ = a+ + a− = π/λ+ + π/λ− = 2π/λasy and solving
for λasy we get (6).

Proposition 3: Let xt satisfy (1). Then the periodogram of xt verifies

I (λj) =



ρ2

4λasy
if λ− = λ+ and j = 1

0 if λ− = λ+ and j > 1

ρ2

2πτ
if λ− 6= λ+ and j = j∗ = τ

2

ρ2

8
λmin

λmax (λ+ + λ−)
if λ− 6= λ+ and j = j∗ 6= τ

2

ρ2λasy

4π2

(cosλ− − cosλ+
)

cos
(
πj

2j∗

)
sinλj

(cosλj − cosλ−) (cosλj − cosλ+)

2

if λ− 6= λ+ and j 6= j∗

(7)

where j∗ = λ+ + λ−

2λmin
.

Proposition 3 shows that the periodogram ordinates of asymmetric cycles
are not zero at the multiples of λasy, whereas only λasy possesses spectral
power in the symmetric case.

However, two exceptions must be considered. The first one arises as

I(λj) = 0 at j = (2k − 1)j∗, for k ≥ 2, (8)

and establishes that for j∗ an integer the periodogram of xt is zero at odd
multiples of j∗ -3j∗, 5j∗, . . .- whereas it is some positive value at any other
frequency including j∗ and even multiples of j∗. As a result the periodogram
is alternating zero and positive values at frequencies that are multiples of
λmax, starting at 3λmax.

The second exception takes place at

I(π) = 0 except for λ+ 6= λ− and λmax = π, (9)

and states that the periodogram is always zero at λj = π, specifically due to
the sin (λj) term in the asymmetric case, except for j = j∗ = τ

2 .
Taking into account Parseval’s Theorem (see Priestley, 1981, Eq. 4.5.12),

Propositions 1 and 3 imply

Iλ+=λ− (λasy) ≤
n∑
j=1

Iλ+ 6=λ− (λj) ,

where Iλ+=λ− and Iλ+ 6=λ− are the periodograms of symmetric and asymmetric
cycles respectively and the inequality holds only if λmax = π. Then the
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variance of an asymmetric cycle distributes throughout all Fourier frequencies
-except if (8) or (9) hold. As a consequence, the periodogram value at λasy
decreases as the degree of asymmetry increases and reaches its minimum
when λmax = π. This can lead to low power in tests for deterministic cycles
that are based on the maximum of the periodogram, such as the widely used
g-test of Fisher (1929).

The periodograms depicted in Figure 2 exemplify how this graphic evolves
with the degree of asymmetry of the cycle. In Figure 2(a) the cyclical sym-
metry produces only one non-zero ordinate at λasy = π/5. The periodograms
in Figures 2(b) to 2(d) show how an increasing portion of the variability of
the series is distributed along the multiples of π/5 as the distance between
the asymmetric frequencies enlarges.

These figures also allow to appreciate that I(λj−1) > I(λj), a feature that
verifies for j < 3j∗, that is, the periodogram decreases monotonically up to
the first frequency where it could turn zero -as stated in (8)- which implies
at least the first four Fourier frequencies (j = 3j∗ ⇒ j > 3) if they are
defined. This characteristic becomes more evident as λmax → π, as in this
limit j = 3j∗ is never reached, and provides a visual criterion to distinguish
the frequency asymmetry from other periodic behaviour that can display
peaks of any size at these frequencies, which includes a seasonal pattern if
the period length corresponds to one year, or a symmetric cycle, that has
zero-ordinates except for λasy.

Finally, in the last cycle of complete asymmetry (Figure 2(e)) the peri-
odogram value at λasy reaches its minimum, as it has been said, whereas the
corresponding values at jλasy, j > 1, reach their maxima. The exception
posited in (9) is clearly perceived in the non-zero periodogram ordinate that
appears at λj = π in this last figure.

5 NLLS Estimation of λ+, λ−, ϕ and ρ

The discrete version of Fourier’s Theorem states that any discrete function
evaluated at finite points can be approximated up to any desired degree by a
finite sum of paired cosine and sine terms. In the simplest case, if the series
is actually a symmetric cycle, its Fourier representation is

xt = α cos (λt) + β sin (λt) (10)

where the parameters α and β characterize both the amplitude and the phase
of the cycle as ρ2 = α2 + β2 and ϕ = −arctan(β/α)

λ
respectively. The peri-

odogram ordinate at λ is then proportional to ρ2 and, as it has already been
pointed out, is zero in the rest of frequencies.
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The result in (7), on the contrary, shows that the periodogram of an
asymmetric cycle has non-zero ordinates at the multiples of the frequency of
the period (with the exceptions of (8) or (9) when applicable). Therefore the
Fourier representation of such cycles requires the sum of n pairs of cosine
and sine terms, as described in the next proposition.

Proposition 4: (Fourier series of frequency asymmetric cycles) Let
xt satisfy (1) with λ+ 6= λ−. Then the Fourier representation of xt is

xt =
n−1∑
j=1

αj cos (λjt) + βj sin (λjt) + αn (11)

where the Fourier coefficients αj and βj depend on the amplitude ρ, on the
phase ϕ and on the asymmetric frequencies λ+ and λ− and are defined as

αj = 2ρ
τ


amin cos (λmaxϕ)

2
if j = j∗(

cosλ− − cosλ+
)

sinλj cos
(
a−λj

2

)
sin
(
a−λj

2
− λjϕ

)
(cosλj − cosλ−) (cosλj − cosλ+)

if j 6= j∗,

and

βj = −2ρ
τ


amin sin (λmaxϕ)

2
if j = j∗(

cosλ− − cosλ+
)

sinλj cos
(
a−λj

2

)
cos
(
a−λj

2
− λjϕ

)
(cosλj − cosλ−) (cosλj − cosλ+)

if j 6= j∗.

and
αn =

{
ρ cos(πϕ)

τ
if λmax = π

0 otherwise.
If τ is odd the last term in (11) does not appear and the summation runs for
j = 1, . . . , n.

The proof is omitted as it is straightforward taking into account the
Fourier representation of a time series (see Harvey, 1993, page 60) and the
proof of Proposition 3.

Note that for a+ ∈ (1, τ − 1)−
{
τ
2

}
a simpler formula for (11) is

xt =
[ τ−1

2 ]∑
j=1

δj (t) , (12)

where [·] means ”the integer part of” and

δj (t) = 2ρ
τ


amin cos (λmaxϕ + λjt)

2
if j = j∗(

cosλ− − cosλ+
)

sinλj cos
(
a−λj

2

)
sin
[
λj

(
a−

2
− ϕ− t

)]
(cosλj − cosλ−) (cosλj − cosλ+)

if j 6= j∗.
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Eq. (12) corresponds to the Fourier series of a pure deterministic cycle as
defined in (1). This specification can be used to introduce the Asymmetric
Cyclical Regression Model (ACRM) defined as

yt = xt + εt (13)

where xt is as in (12) and εt is a iid(0, σ2
ε) process.

The Signal-to-Noise Ratio (SNR) of the ACRM is defined as

SNR = ρ2

2σ2
ε

. (14)

The estimation of the parameters ρ, ϕ and one of the asymmetric frequen-
cies λ+ or λ− (or equivalently one of the half-periods a+ or a−) of the ACRM
can be achieved by non-linear least squares (NLLS) under the assumption of
a known τ . Specifically, the NLLS estimator of Υ = {ρ, a+, ϕ} is defined as

Υ̂ = arg min
P,A+,Φ

T∑
t=1
{yt − xt}2 (15)

where xt is as defined in (12) with a− = τ − a+. A mean other than zero in
yt would not affect the results of this estimation strategy due to the orthog-
onality condition among all the regressors.

NLLS estimation strategies for the so-called harmonic retrieval (simul-
taneous estimation of the amplitude, the phase and also the frequency of a
sinusoidal signal) have been studied by Walker (1971, 1973, 2003) and Han-
nan (1973) in symmetric cycles. They obtain consistency and asymptotic
normality for a broad set of conditions on εt.

The asymptotic properties of (15) have yet to be established. For infer-
ential purposes in this work the following distribution, based on the usual
asymptotic properties of OLS procedures and the best linear approximation
of (12) around the parameters, will be used:

Υ̂ ∼ N

Υ, σ2
ε


∂x

(
Υ̂
)

∂Υ

′∂x
(
Υ̂
)

∂Υ



−1 (16)

where x (Υ) is a T × 1 vector containing the Fourier representation of the
series defined in (12) for t = 1, . . . , T .
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Figure 3: Asymmetric cycle with noise: λ+ = π/3, λ− = π/15.

6 Finite sample performance
In order to assess the finite sample performance of the NLLS estimation
method proposed in the previous section a number of different combinations
of period, amplitude, degree of asymmetry, phase and variance of the noise
term were explored.

Two different amplitudes ρ = 4, 1 and variances of the noise term σ2
ε =

1, 2.5 were used, so four different SNR result from their combination, in de-
creasing order, SNR = 8, 3.2, 0.5, 0.2. The first and the last cases constitute
examples of extremely high and extremely low SNR that allow to perceive
more clearly the effect of this magnitude over the performance of the esti-
mation procedure. The distribution of the noise is Gaussian N(0, σ2

ε) in all
cases. Figure 3 depicts four samples of three waves of cycles with τ = 18,
λ− = π/15 and λ+ = π/3 and the four different SNRs that exemplify the
differing degrees of distortion faced by the estimation procedure.
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Two different periods were used, τ = 18, 90, and three different sample
sizes T = 180, 900, 2700 for both periods so as a result each series contains
10, 50 or 150 waves of the cycle if τ = 18 and 2, 10 and 30 if τ = 90.

Different degrees of asymmetry and phases were imposed to the samples,
specifically a+ =

{
1, τ6 ,

τ
3 ,

τ
2 ,

2τ
3 ,

5τ
6 , τ − 1

}
and ϕ =

{
0, τ6 ,

τ
3 ,

τ
2 ,

2τ
3 ,

5τ
6

}
. The

cases a+ =
{

1, τ2 , τ − 1
}

are included as natural points of interest of our
parametric space although the described procedure is not strictly applicable
in these cases. No mean value was added.

1000 replications were generated in every combination of ρ, σ2
ε , τ , T , a+

and ϕ, summing up a total amount of 1008000 samples. The method was
implemented using the lsqnonlin routine in Matlab 7.10.0 (Mathworks). An
initial estimate of the amplitude parameter was calculated via the explained
variance of the Fixed Frequency Effects Regression model yt = ∑n

j=1 γj cos (λjt)+
κj sin (λjt) + εt. Then ρ̂0 = σŷ

√
2 where ŷt = ∑n

j=1 γ̂j cos (λjt) + κ̂j sin (λjt)
and γ̂j and κ̂j were estimated by OLS. The initial estimates of a+ and ϕ
were obtained from a prior exploration of (15) for a grid of values on the
parametric space A+ × Φ = [1, τ − 1]× [0, τ).

The following indicators for the estimation of a+ were calculated in the
1000 replications of every parametric combination. The corresponding ex-
pressions for ϕ and ρ are similarly defined:

¯̂a+ = 1
1000

1000∑
rep=1

â+
rep,

SEâ+ =

√√√√ 1
1000

1000∑
rep=1

[
â+
rep − ¯̂a+

]2
and

biasâ+ = ¯̂a+ − a+,

where SE accounts for Standard Error.
Tables 1 and 2 show the biases and SEs of estimation of the parameters

a+ and ϕ respectively. The statistics in these two first tables are presented
as a function of a+ and therefore are calculated over 6000 replications as no
dependence on the value of ϕ was appreciated in the estimations. To this
end the estimates of ϕ are expressed as deviations from the true parametric
value (ϕ̂ − ϕ). In the case of ρ (Table 3) no dependence on a+ was found
either and so the presented results correspond to 42000 replications.

Table 1 displays the biases and standard errors of estimation of a+. It can
be seen that the bias of estimation is very low even for the lowest SNR and
shortest sample length (ρ = 1, σ2

ε = 2.5, T = 180) as it reaches a maximum
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τ = 18 τ = 90
ρ = 1 ρ = 4 ρ = 1 ρ = 4

T a+ σ2
ε = 1 σ2

ε = 2.5 σ2
ε = 1 σ2

ε = 2.5 σ2
ε = 1 σ2

ε = 2.5 σ2
ε = 1 σ2

ε = 2.5

180 1 0.2361 0.7419 0.0058 0.0191 1.4933 4.4613 0.0380 0.1221
(0.7147) (1.9542) (0.0342) (0.0795) (4.1729) (10.9129) (0.1353) (0.4557)

τ
6

0.0166 0.4028 -0.0085 -0.0188 -0.0850 0.9372 -0.0187 0.0464
(1.4988) (2.8085) (0.3347) (0.5327) (8.1821) (14.9025) (1.5898) (2.6266)

τ
3

-0.0409 0.0792 0.0022 0.0106 -0.3438 -0.6625 0.0154 0.0828
(1.8823) (3.3438) (0.3971) (0.6281) (9.5462) (17.8230) (1.9970) (3.1980)

τ
2

-0.0109 0.0108 0.0033 0.0084 0.1915 -0.0534 -0.0032 -0.0190
(1.9413) (3.6432) (0.4175) (0.6700) (10.0287) (19.2486) (2.0980) (3.2728)

2τ
3

0.0275 -0.0462 -0.0001 -0.0074 0.4291 0.2463 -0.0047 0.0689
(1.8637) (3.3666) (0.3951) (0.6522) (9.4877) (18.4173) (1.9949) (3.2597)

5τ
6

-0.0260 -0.4181 0.0011 0.0071 0.3039 -1.6056 -0.0143 0.0765
(1.4652) (2.8331) (0.3458) (0.5429) (7.9595) (15.0444) (1.6058) (2.5876)

τ − 1 -0.2233 -0.7345 -0.0069 -0.0187 -3.0374 -7.1636 -0.0403 -0.2004
(0.6431) (1.9615) (0.0345) (0.0811) (5.2726) (12.7029) (0.1467) (0.7207)

900 1 0.0258 0.1007 0.0008 0.0028 0.1590 0.5523 0.0042 0.0141
(0.1036) (0.3241) (0.0121) (0.0208) (0.5770) (1.8160) (0.0168) (0.0523)

τ
6

-0.0218 0.0091 0.0014 -0.0014 -0.0223 -0.0857 -0.0017 -0.0055
(0.6064) (1.0139) (0.1481) (0.2349) (2.9834) (5.2293) (0.7035) (1.1151)

τ
3

-0.0077 0.0045 -0.0047 0.0039 -0.0169 0.0093 -0.0043 -0.0367
(0.7254) (1.2061) (0.1803) (0.2794) (3.6117) (6.0381) (0.8779) (1.3697)

τ
2

0.0083 0.0197 0.0014 -0.0075 0.0040 0.0507 0.0150 -0.0159
(0.7695) (1.2550) (0.1867) (0.3013) (3.8170) (6.4520) (0.9227) (1.4786)

2τ
3

0.0034 -0.0269 -0.0015 -0.0001 0.0505 0.0578 0.0063 0.0135
(0.7192) (1.2052) (0.1790) (0.2837) (3.6455) (6.1138) (0.8776) (1.3781)

5τ
6

0.0268 0.0120 -0.0009 0.0025 0.0425 0.1845 0.0224 0.0234
(0.6134) (1.0057) (0.1500) (0.2403) (2.9853) (5.3004) (0.6967) (1.1101)

τ − 1 -0.0249 -0.0912 -0.0011 -0.0031 -0.2903 -1.3271 -0.0037 -0.0153
(0.1028) (0.2973) (0.0122) (0.0213) (1.0066) (2.7754) (0.0164) (0.0603)

2700 1 0.0062 0.0216 0.0003 0.0008 0.0388 0.1223 0.0010 0.0034
(0.0341) (0.0898) (0.0068) (0.0111) (0.1484) (0.4530) (0.0064) (0.0136)

τ
6

-0.0010 -0.0034 0.0003 0.0016 -0.0487 0.0276 -0.0036 -0.0050
(0.3486) (0.5592) (0.0858) (0.1348) (1.6348) (2.7145) (0.3976) (0.6345)

τ
3

0.0058 0.0034 -0.0004 0.0017 -0.0241 -0.0498 -0.0018 0.0016
(0.4146) (0.6625) (0.1011) (0.1631) (2.0500) (3.2824) (0.5155) (0.8173)

τ
2

-0.0074 -0.0022 -0.0001 -0.0009 -0.0301 0.0012 -0.0019 -0.0019
(0.4441) (0.6955) (0.1078) (0.1701) (2.1809) (3.4651) (0.5420) (0.8549)

2τ
3

0.0074 0.0069 -0.0007 0.0001 -0.0069 -0.0697 0.0063 -0.0010
(0.4050) (0.6476) (0.1040) (0.1613) (2.0679) (3.2897) (0.5037) (0.8103)

5τ
6

0.0061 0.0203 -0.0012 0.0007 -0.0205 -0.0477 0.0019 0.0109
(0.3498) (0.5504) (0.0862) (0.1393) (1.6576) (2.7661) (0.3998) (0.6338)

τ − 1 -0.0066 -0.0192 -0.0002 -0.0009 -0.0496 -0.2344 -0.0010 -0.0031
(0.0354) (0.0816) (0.0069) (0.0113) (0.1683) (0.8114) (0.0071) (0.0141)

Table 1: Biases (Standard Errors) of â+
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τ = 18 τ = 90
ρ = 1 ρ = 4 ρ = 1 ρ = 4

T a+ σ2
ε = 1 σ2

ε = 2.5 σ2
ε = 1 σ2

ε = 2.5 σ2
ε = 1 σ2

ε = 2.5 σ2
ε = 1 σ2

ε = 2.5

180 1 -0.1216 -0.3542 -0.0033 -0.0105 -0.7385 -1.9807 -0.0195 -0.0624
(0.3834) (1.0334) (0.0389) (0.0679) (2.1769) (5.6903) (0.1058) (0.2674)

τ
6

-0.0061 -0.1891 0.0049 0.0088 0.0272 -0.3193 0.0098 -0.0285
(0.7900) (1.4824) (0.1768) (0.2821) (4.3256) (7.7935) (0.8440) (1.3914)

τ
3

0.0189 -0.0348 -0.0024 -0.0041 0.1718 0.3437 -0.0033 -0.0348
(0.9868) (1.7575) (0.2109) (0.3341) (5.0251) (9.3200) (1.0577) (1.6962)

τ
2

0.0106 -0.0224 0.0004 -0.0033 -0.0912 0.0750 0.0075 0.0111
(1.0240) (1.9118) (0.2226) (0.3573) (5.2586) (10.2004) (1.1088) (1.7416)

2τ
3

-0.0117 0.0282 0.0015 0.0047 -0.2101 -0.1555 -0.0021 -0.0322
(0.9743) (1.7691) (0.2098) (0.3424) (4.9596) (9.6431) (1.0617) (1.7200)

5τ
6

0.0155 0.1935 -0.0014 -0.0032 -0.1870 0.6235 0.0103 -0.0444
(0.7730) (1.4735) (0.1825) (0.2850) (4.2045) (7.8993) (0.8540) (1.3660)

τ − 1 0.1112 0.3423 0.0041 0.0086 1.3665 3.0569 -0.0066 0.0308
(0.3568) (1.0428) (0.0382) (0.0677) (2.8552) (6.6974) (0.1974) (0.4815)

900 1 -0.0124 -0.0533 -0.0005 -0.0015 -0.0787 -0.2737 -0.0029 -0.0073
(0.0809) (0.1890) (0.0166) (0.0260) (0.3204) (0.9604) (0.0354) (0.0604)

τ
6

0.0096 -0.0045 -0.0011 0.0008 0.0065 0.0711 -0.0009 0.0034
(0.3204) (0.5314) (0.0784) (0.1242) (1.5634) (2.7500) (0.3739) (0.5926)

τ
3

0.0041 0.0028 0.0027 -0.0008 0.0045 -0.0100 0.0034 0.0189
(0.3835) (0.6368) (0.0957) (0.1471) (1.9168) (3.1786) (0.4665) (0.7312)

τ
2

-0.0017 -0.0111 -0.0010 0.0048 0.0014 -0.0224 -0.0059 0.0058
(0.4087) (0.6623) (0.0994) (0.1601) (2.0265) (3.3976) (0.4892) (0.7875)

2τ
3

-0.0023 0.0175 0.0011 -0.0001 -0.0220 -0.0120 -0.0043 -0.0031
(0.3821) (0.6366) (0.0945) (0.1498) (1.9350) (3.2125) (0.4653) (0.7346)

5τ
6

-0.0138 -0.0047 0.0007 -0.0017 -0.0157 -0.0984 -0.0117 -0.0077
(0.3244) (0.5315) (0.0790) (0.1260) (1.5820) (2.7917) (0.3688) (0.5907)

τ − 1 0.0137 0.0452 0.0005 0.0017 0.0623 0.5320 0.0025 -0.0003
(0.0813) (0.1784) (0.0163) (0.0269) (0.6503) (1.6029) (0.0356) (0.1033)

2700 1 -0.0026 -0.0103 -0.0001 -0.0005 -0.0187 -0.0594 -0.0001 -0.0017
(0.0400) (0.0725) (0.0096) (0.0153) (0.1107) (0.2658) (0.0197) (0.0314)

τ
6

0.0021 0.0004 -0.0002 -0.0007 0.0273 -0.0222 0.0015 0.0034
(0.1845) (0.2947) (0.0455) (0.0712) (0.8646) (1.4442) (0.2113) (0.3366)

τ
3

-0.0019 -0.0024 0.0001 -0.0017 0.0212 0.0242 0.0013 -0.0045
(0.2195) (0.3526) (0.0540) (0.0866) (1.0903) (1.7440) (0.2709) (0.4352)

τ
2

0.0031 0.0026 -0.0001 0.0005 0.0146 0.0027 0.0001 -0.0030
(0.2366) (0.3694) (0.0573) (0.0899) (1.1508) (1.8328) (0.2859) (0.4557)

2τ
3

-0.0032 -0.0025 0.0001 -0.0000 0.0025 0.0441 -0.0028 -0.0010
(0.2159) (0.3453) (0.0552) (0.0852) (1.0980) (1.7374) (0.2683) (0.4312)

5τ
6

-0.0022 -0.0109 0.0004 -0.0007 0.0177 0.0218 -0.0011 -0.0056
(0.1847) (0.2899) (0.0458) (0.0736) (0.8782) (1.4581) (0.2117) (0.3371)

τ − 1 0.0037 0.0087 0.0002 0.0004 -0.0038 0.0470 0.0005 0.0019
(0.0394) (0.0696) (0.0095) (0.0152) (0.2040) (0.5483) (0.0199) (0.0341)

Table 2: Biases (Standard Errors) of ϕ̂
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τ = 18 τ = 90
ρ = 1 ρ = 4 ρ = 1 ρ = 4

T σ2
ε = 1 σ2

ε = 2.5 σ2
ε = 1 σ2

ε = 2.5 σ2
ε = 1 σ2

ε = 2.5 σ2
ε = 1 σ2

ε = 2.5

180 0.0096 0.0229 0.0016 0.0068 0.0110 0.0300 0.0037 0.0068
(0.1060) (0.1660) (0.1053) (0.1672) (0.1052) (0.1646) (0.1052) (0.1665)

900 0.0024 0.0053 0.0006 0.0011 0.0021 0.0054 0.0010 0.0015
(0.0470) (0.0744) (0.0472) (0.0746) (0.0472) (0.0744) (0.0472) (0.0745)

2700 0.0004 0.0016 0.0002 0.0005 0.0005 0.0022 0.0003 0.0001
(0.0273) (0.0431) (0.0272) (0.0430) (0.0271) (0.0431) (0.0273) (0.0430)

Table 3: Biases (Standard Errors) of ρ̂

value of around ±4% of the period length for τ = 18 and up to (5%,-7%)
for τ = 90. These maxima and minima occur at a+ = 1 and a+ = τ − 1
respectively implying a trend towards central (symmetrical) values that is
expectable with low SNR and T . Also the increment in bias for the larger
period obeys to the smaller number of waves within the same sample length
and disappears as T or SNR increase. For the rest of cases of sample lengths
and SNR the bias gets to almost zero (less than 0.5% of the period length).

Two aspects can be appreciated in the performance of biasϕ̂ (Table 2)
as compared with biasâ+ . Firstly, when a trend becomes apparent it does
in opposite direction and so it grows with the value of a+, which implies
a negative covariance between these two estimators. Secondly, the values
are around one half the biases of â+ in all situations, indicating a better
performance in the estimation of this parameter.

The standard errors in Tables 1 and 2 decrease along with σ2
ε and τ

and as the amplitude and the sample length increase. Specifically when
comparing the results across different SNR and T , the factor τσε

ρ
√
T

constitutes
a steady component of the standard errors of both â+ and ϕ̂ so from the
Monte Carlo analysis herein it can be drawn that these estimators seem to
behave consistently with a rate of convergence of T− 1

2 . The other main aspect
of the SEs is a clearly negative dependence on the degree of asymmetry.
Finally, focusing on the magnitudes, in the case of a+ and in the lowest SNR
and small sample length T = 180 the standard error reaches a maximum
value of 20% of the period length (21% for τ = 90) when a+ = τ

2 that
decreases down to 10%-11% (12%-14%) for a+ = 1 and a+ = τ − 1. In the
most favourable situation of ρ = 4, σ2

ε = 1 and T = 2700 these values have
decreased to 0.59% (0.60%) for a+ = τ

2 and 0.02%-0.03 (0.005%-0.007%) for
a+ = 1 and a+ = τ − 1. Regarding ϕ̂, the behaviour of the standard error is
completely parallel to what has just been described with the added fact that
the values of SEϕ̂ are one half the corresponding of SEâ+ , as happened to
the bias.
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Wave Peaks Troughs Months(τ)
1 Nov. 1948 Oct. 1949 57
2 Jul. 1953 May. 1954 49
3 Aug. 1957 Apr. 1958 32
4 Apr. 1960 Feb. 1961 116
5 Dec. 1969 Nov. 1970 47
6 Nov. 1973 Mar. 1975 74
7 Jan. 1980 Jul. 1980 18
8 Jul. 1981 Nov. 1982 108
9 Jul. 1990 Mar. 1991 128
10 Mar. 2001 Nov. 2001 80

Table 4: NBER Business Cycle Peaks and Troughs

Table 3 displays the results of estimation of the amplitude. A recurrent
positive bias (that goes to 0 as T increases) has been obtained which implies
an overestimation of this parameter for finite samples. This is attributable
to the chosen initial estimate ρ̂0 that relates to the explained variance of
an unrestricted τ -perioded model and therefore is expectably larger than the
true value of the amplitude of the asymmetric cycle. Finally, it can be clearly
appreciated that SEρ̂ ≈ σε

√
2
T

, showing that the estimator of the amplitude
of asymmetric cycles behaves asymptotically as in the symmetric case (Zhou
and Giannakis, 1995).

7 Empirical applications

7.1 The business cycle
In this section we will deal with a monthly version of the US seasonally
adjusted unemployment rate (UR) compiled by the Federal Reserve Bank
of St. Louis. With the purpose of isolating the asymmetric cyclical be-
haviour the sample was limited to complete periods of booms and recessions
so following the NBER Busyness Cycle reference dates (Table 4) the sam-
ple spans from November 1948 to November 2007 with a length of T = 709
months. The series, displayed in Figure 4(a), is characterized by a cycle that
evolves over a long-term pattern. The long-term component (Figure 4(b))
and the short-term (cyclical) component (Figure 4(c)) were separated using a
Hodrick-Prescott filter with smoothing parameter ϑ = 120000 (see Maravall
and del Rio, 2001).

Figure 5 depicts the correlogram and the periodogram of the extracted
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Figure 5: Periodogram and Correlogram of UR short-term component
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short-term component. No signs of cyclical asymmetry can be deduced from
these graphs due to the variability in the period of the consecutive fluctua-
tions. The series was then divided in trough-to-trough waves taking into ac-
count the dates of Table 4. The analysis of the correlogram and periodogram
of each wave (Figure 6) allows to search for individual cyclical asymmetric
patterns. Regarding this, the correlograms and periodograms of waves 1, 2,
3, 5, 6, 7 and 10 (Figures 6(a) to 6(c), 6(e) to 6(g) and 6(j)) show signs of
cyclical asymmetry. In these cases the ACF troughs are significantly shorter
than the peaks and there appears the corresponding decreasing shape in the
multiples of λasyi , i = 1, . . . , 10, on the periodograms. By contrast, the cor-
relograms and periodograms of waves 4, 8 and 9 (Figures 6(d), 6(h) and 6(i))
suggest the presence of patterns different to cyclical asymmetry, specifically
the periodogram ordinates at jλasyi , j > 1 indicate that in these series there
are predominant sub-cycles of period smaller than or equal to τi/2 that ac-
count for a larger portion of variance than the τi-perioded oscillation.

Both symmetric and asymmetric models were fitted to each wave of the
cyclical component. In this process the phase parameter ϕ was restricted
as ϕi = a−i (ϕi = τi/2 in the symmetric models) so the estimation fitted
trough-to-trough waves. The results are displayed in Table 53.

3The waves 4, 8 and 9 have been included in Table 5 for completeness although taking
into account the conclusions drawn from their ACFs and periodograms in Figure 6 their
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Wave â+ â− â+/τ ρ̂asy ρ̂sym σ̂a+ ˆSNR

1 8.8842∗∗1 48.1158 0.1559 1.2542 0.13154 1.06 2.3937
2 7.8106∗∗ 41.1894 0.1594 1.259 0.27878 0.685 5.0158
3 7.8726∗∗ 24.1274 0.246 1.2424 0.6363 0.712 4.1938
4 9.7∗∗ 106.3 0.0836 0.4648 0.10478 1.567 1.2989
5 11.4543∗∗ 35.5457 0.2437 1.0291 0.72644 0.627 7.8957
6 18.9566∗∗ 55.0434 0.2562 1.4338 0.89768 0.761 8.7143
7 6.0711∗ 11.9289 0.3373 0.441 0.36344 0.886 1.8396
8 6.5918∗∗ 101.4082 0.061 0.8622 -0.16104 1.4122 1.1165
9 9.2228∗∗ 118.7772 0.0721 0.5509 0.020513 1.2415 2.0525
10 11.7281∗∗ 68.2719 0.1466 0.492 0.14585 0.596 3.9356

1 ∗ and ∗∗ indicate rejection of H0 ≡ a+ = τ
2 against Ha ≡ a+ < τ

2 at the 1% and 0.1%
significance level respectively.

Table 5: UR Estimation Results

The results of Table 5 show that in no wave of the business cycle the
recession (in economic sense) lasted for longer than one third the length of
the fluctuation. The most common duration for this stage of the cycle lies
in the range of around 15% to 25% of the wave period (waves 1, 2, 3, 5, 6
and 10) and only the shortest fluctuation (wave 7, τ7 = 18) surpasses this
interval. There is also a clear difference in the two estimated amplitudes for
each wave and for example the symmetric restriction practically impedes in
waves 1 or 2 the estimation of this parameter.

The null hypothesis of symmetry H0 : a+
i = τi

2 against the alternative
Ha : a+

i <
τi
2 was tested in all these waves using the t-ratio

t̂i =
â+
i − τi

2
σ̂â+

i

, (17)

where σ̂â+
i

is calculated as in (16) for only the two parameters a+ and ρ and
where the parametric values were substituted by their corresponding estima-
tions σ̂2

εi
= RSS(â+

i ,ρ̂i)
τi−2 , â+

i and ρ̂i. Taking into account the conclusions drawn
from the Monte Carlo analysis we can, with sufficient confidence, approx-
imate the distribution of this t-ratio by a Gaussian standard distribution.
Following this approach, Table 5 shows that the hypothesis of symmetry is
rejected in all waves at the 0.1% or 1% significance level.

Regarding the long waves 4, 8 and 9, their periodograms in Figure 5
report the presence of 3, 2 and 2 predominant secondary fluctuations respec-
tively and for the analysis of these, the turning points between them must

results won’t be considered here. The analysis of the asymmetries of the subcycles of these
waves is presented in Table 6.
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Wave â+ â− â+/τ ρ̂asy ρ̂sym σ̂a+ ˆSNR

4.1 12.9056 14.0944 0.4780 0.8008 0.7983 0.4536 11.7389
4.2 11.1939∗∗ 35.8061 0.2382 0.2752 0.2219 1.3490 1.6805
4.3 8.3398∗∗ 33.6602 0.1986 0.3115 0.1716 0.9380 2.7259
8.1 15.9460∗∗ 22.0540 0.4196 1.3620 1.3092 0.4291 18.0179
8.2 12.8285∗∗ 57.1715 0.1833 0.4049 0.1883 1.1551 2.8158
9.1 21.5121∗∗ 32.4879 0.3984 0.6021 0.5676 0.7746 7.7322
9.2 10.4482∗∗ 63.5518 0.1412 0.3208 0.1641 1.0187 3.1017

1 ∗∗ indicate rejection of H0 ≡ a+ = τ
2 against Ha ≡ a+ < τ

2 at the 0.1% significance level
respectively.

Table 6: Estimation Results of UR secondary fluctuations in the waves 4, 8
and 9

be determined. In order to do so, a number of moving average filters with
different weighting schemes and different window lengths (upto 11) were used
and the turning points were selected as the points where most filtered series
showed a change in slope. Specifically, in wave 4 the first secondary fluc-
tuation was found to last until July 1962 with a length of 27 observations,
the second one from this point to June 1966 with 47 observations and then
the last one has a length of 42 observations. In wave 8, the turning point
takes place in September 1984 and the two subfluctuations last 38 and 70
observations respectively. Finally, the turning point between the two sub-
fluctuations of wave 9 is located in January 1995 and the length of the wave
is distributed as 54 months for the first subfluctuation and 74 for the second
one. The results of the estimation of the half-periods and amplitudes of these
subcycles (Table 6) show that in most cases (except in the subcycle 4.1) the
contractionary stage is shorter than the expansionary stage. It can also be
seen in the three waves 4, 8 and 9 that the first subfluctuation is the most
balanced (over 39% of their total lengths).

Figure 7 shows the ten waves together with both asymmetric and sym-
metric cyclical models and Figure 8 the corresponding fits for the secondary
fluctuations of waves 4, 8 and 9. The asymmetric fit seems a reliable and
better model for all waves 1, 2, 3, 5, 6, 7 and 10 and all subwaves 4.2, 4.3,
8.1, 8.2, 9.1 and 9.2.
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Figure 7: UR Waves with symmetric (dotted) and asymmetric (dashed) fitted
models
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Figure 8: UR secondary fluctuations of waves 4, 8 and 9 with symmetric
(dotted) and asymmetric (dashed) fitted models

27

29

ivie
Cuadro de texto



500 1000 1500 2000 2500 3000
0

50

100

150

200

250

(a) Series

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

lag

(b) Correlogram

Figure 9: Sunspot Index

7.2 The sunspot index
As is common usage in the literature of cyclical time series analysis, a similar
study of the sunspot index was carried out. The sunspots series has been
considered as frequency asymmetric by many authors such as Nesme-Ribes
et al. (1994), Hathaway et al. (1994), Polygiannakis et al. (1996) and Passos
and Lopes (2008). In our case we will work with a version of the series that
comprises monthly observations of the sunspots from March 1755 to Decem-
ber 2008, spanning through all 23 complete solar cycles thoroughly recorded
so far with a total of T = 3046 observations. The series is displayed in Fig-
ure 9(a). The correlogram of the series (Figure 9(b)) shows clear evidence of
cyclical asymmetry.

Table 7 displays the results of estimation of the degree of asymmetry
in each individual solar cycle. According to these, only two cycles possess
longer expansions than recessions (cycles 1 and 7), one cycle (number 6)
is substantially symmetric and the rest of cycle expansions move within a
range of 20% to 40% of the cycle duration. The null hypothesis of symmetry
was tested as in the previous application, two-sidedly in this case as both
types of asymmetry may occur. The results of these tests indicate that the
hypothesis of symmetry is rejected in all the cycles except number 6 at the
0.1% significance level.

Figure 10 depicts the solar cycles together with both asymmetric and
symmetric models.

28

30

ivie
Cuadro de texto



Solar Cycle â+ â− â+/τ ρ̂asy ρ̂sym σ̂a+ ˆSNR

1 76.514∗∗1 59.486 0.563 30.458 29.726 2.108 2.699
2 42.189∗∗ 65.811 0.391 45.433 42.266 2.036 2.223
3 37.186∗∗ 73.814 0.335 67.979 55.353 1.279 5.419
4 33.165∗∗ 130.835 0.202 60.209 28.059 1.064 8.367
5 58.435∗∗ 92.565 0.387 24.398 22.644 1.529 5.489
6 72.571 76.429 0.487 20.421 20.396 2.719 1.804
7 80.888∗∗ 45.112 0.642 33.561 30.087 1.682 3.668
8 38.892∗∗ 77.108 0.335 61.069 50.445 1.438 4.477
9 58.762∗∗ 90.238 0.394 48.258 44.469 2.074 2.965

10 50.946∗∗ 84.054 0.377 40.750 36.932 1.558 4.681
11 38.487∗∗ 102.513 0.273 60.374 38.427 1.419 4.975
12 41.784∗∗ 93.216 0.310 33.047 27.158 1.786 3.240
13 30.841∗∗ 112.159 0.216 39.597 20.796 1.249 5.551
14 45.563∗∗ 92.437 0.330 31.464 26.933 2.087 2.511
15 47.980∗∗ 72.020 0.400 42.386 39.459 1.804 3.169
16 44.167∗∗ 76.833 0.365 35.860 32.544 1.590 3.976
17 51.111∗∗ 73.889 0.409 51.979 49.457 1.515 4.712
18 46.904∗∗ 75.096 0.384 71.756 66.292 1.254 6.578
19 39.971∗∗ 86.029 0.317 95.690 75.431 0.980 10.174
20 46.142∗∗ 93.858 0.330 48.976 41.189 1.287 6.685
21 43.874∗∗ 79.126 0.357 77.309 68.363 1.061 8.985
22 36.180∗∗ 79.820 0.312 76.900 61.515 1.049 8.098
23 45.819∗∗ 105.181 0.303 57.319 43.505 1.297 6.790

1 ∗∗ indicates rejection of H0 ≡ a+ = τ
2 against Ha ≡ a+ 6= τ

2 at the 0.1% significance level

Table 7: Sunspot Index Estimation Results
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Figure 10: Sunspot Cycles with symmetric (dotted) and asymmetric (dashed)
fitted models
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Figure 10: Sunspot Cycles with symmetric (dotted) and asymmetric (dashed)
fitted models (Cont.)
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8 Conclusions
In this work I have proposed a simple deterministic cycle with an asymmetric
behaviour in frequency, which can adequately describe different velocities of
adjustment to increases and decreases of the series.

This is a common phenomenon for example in macroeconomic series
where the periods of expansion have a different length than the periods of
recession. An analytical expression for both the periodogram and the ACV
of such cycles has been derived, evidencing a distinct behaviour which can
be used to discriminate between symmetric and asymmetric cycles.

In particular the main feature of the correlogram of frequency asymmetric
cycles consists in a cosinoidal wave that evolves with less deep troughs than
peaks are high, a difference in amplitude that becomes more evident as one
of the two asymmetric frequencies approaches π.

In the periodogram, the frequency asymmetry appears as a monotonically
decreasing shape at least in the four first Fourier frequencies. Again, this
feature becomes more prominent as max(λ+, λ−)→ π.

This last case implies that the cycle covers all the period of expansion or
contraction in one single step and constitutes the pole of complete frequency
asymmetry in the behaviour of second-order moments whereas the other pole
is represented by the symmetric cycle.

A Non-Linear Least Squares procedure of estimation of the asymmetric
frequencies, the amplitude and the phase of the cycle has also been proposed
and its finite sample performance in an extensive grid of parametric values
of the model checked. The results suggest that the procedure performs well
for a wide range of sample lengths and SNRs.

The empirical application focuses on the US Unemployment Rate and on
the Sunspot Index. Sustainable evidence of asymmetry in most fluctuations
of the business cycle as expressed by the US Unemployment Rate is reported
by the proposed statistical procedures. Specifically, using the NBER refer-
ence dated waves from November 1948, the ACFs and periodograms of waves
1, 2, 3, 5, 6, 7 and 10 show signs of cyclical asymmetry. These graphs also
show that in the longest fluctuations (waves 4, 8 and 9) the serial depen-
dence of the series obeys to the existence of predominant sub-cycles. The
estimation of the asymmetric frequencies of the Unemployment Rate yields
duration percentages for the recessions significantly different from 50 per cent
of the wave length, between 15% and 25% in the fluctuations 1, 2, 3, 5, 6
and 10 of the business cycle and 33% in the seventh one. In the case of
the longest business cycle waves 4, 8 and 9 the analysis shows that they are
composed by an initial almost symmetric large fluctuation followed by one
or two highly asymmetric smaller ones.
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In the case of the Sunspot Index, it has been shown that the correlogram
of the series holds a clear pattern of cyclical asymmetry. The estimation
of the asymmetric frequencies confirmed that in most fluctuations of the
series (except in solar cycles 1, 6 and 7) the expansions are shorter than the
contractions (between 20 to 40 per cent of the cycle length).
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A Appendix
The proofs of Proposition 1 and 2 use ϕ = 0. The results can be immediately
generalized for any positive integer ϕ as xt for 1 ≤ t ≤ τ will evaluate at
identical points at different positions.

A.1 Proof of Proposition 1
Let xt be as defined in (1) and ϕ = 0. Then

Mx = ρ

τ


a−∑
t=1

cos
(
λ−t

)
︸ ︷︷ ︸

Mλ−

+
τ∑

t=a−+1
− cos

[
λ+

(
t− a−

)]
︸ ︷︷ ︸

Mλ+


.
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Now by Equation 1342.2 in Gradstein and Ryzhik (2000) (GR)

Mλ− =
cos

(
π + λ−

2

)
sin π2

sin λ
−

2

= −1

and

Mλ+ = −
a+∑
k=1

cos
(
λ+k

)
= 1.

Then
Mx = ρ

τ
(−1 + 1) = 0

Now

S2
x = ρ2

τ


a−∑
t=1

cos2
(
λ−t

)
︸ ︷︷ ︸

Sλ−

+
τ∑

t=a−+1
cos2

[
λ+

(
t− a−

)]
︸ ︷︷ ︸

Sλ+


By Eq. 1351.2 in GR

Sλ− = π

2λ− + cos (π + λ−) sin π
2 sinλ− = π

2λ−

and

Sλ+ =
a+∑
k=1

cos2
(
λ+k

)
= π

2λ+ .

Then
S2
x = ρ2

τ

(
π

2λ− + π

2λ+

)
= ρ2

τ

π

λasy
= ρ2

2 .

However, if λmax = π ⇒ Sλmax = cos2 (π) = 1 and then

S2
x = ρ2

τ

(
π

2λmin
+ 1

)
= ρ2

2

(
1 + 1

τ

)
.

A.2 Proof of Proposition 2
Let xt be as defined in (1) and ϕ = 0. In the products of the autocovariance
function of xt both phases of the cycle are crossed with themselves and with
each other at lags determined by k. This produces three different sums of
four components such as:
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1. k ≤ amin: Then

s(k) = ρ2

τ


amax−k∑
j=1

cos [λmin (j + k)] cos (λminj)︸ ︷︷ ︸
S11(k)

+
k∑
j=1

cos [λmin (k − j)] cos (λmaxj)︸ ︷︷ ︸
S12(k)

+
amin−k∑
j=1

cos (λmaxj) cos [λmax (j + k)]
︸ ︷︷ ︸

S13(k)

+
k∑
j=1

cos (λminj) cos [λmax (k − j)]
︸ ︷︷ ︸

S14(k)



(18)

2. amin < k ≤ amax:

s(k) = ρ2

τ


amax−k∑
j=1

cos (λminj) cos [λmin (j + k)]
︸ ︷︷ ︸

S21(k)

+
amin∑
j=1

cos [λmin (k − j)] cos (λmaxj)︸ ︷︷ ︸
S22(k)

+
k−amin∑
j=1

cos [λmin (τ − k + j)] cos (λminj)︸ ︷︷ ︸
S23(k)

+
amin∑
j=1

[− cos (λmaxj)] cos [λmin (k − amin + j)]
︸ ︷︷ ︸

S24(k)



(19)
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3. amax < k ≤ τ :

s(k) = ρ2

τ


τ−k∑
j=1

cos (λminj) {− cos [λmax (k − amax + j)]}
︸ ︷︷ ︸

S31(k)

+
k−amin∑
j=1

cos (λminj) cos [λmin (j + τ − k)]
︸ ︷︷ ︸

S32(k)

+
τ−k∑
j=1

[− cos (λmaxj)] cos [λmin (j − amin + k)]
︸ ︷︷ ︸

S33(k)

+
k−amax∑
j=1

cos [λmax (j + τ − k)] cos (λmaxj)︸ ︷︷ ︸
S34(k)


Let k1 = τ

2 − m and k2 = τ
2 + m. Then S21(k1) = S23(k2), S22(k1) =

S24(k2), S11(k1) = S32(k2), S12(k1) = S33(k2), S13(k1) = S34(k2) and S14(k1) =
S31(k2) and therefore the autocovariance function is symmetric with respect
to τ

2 . We concentrate now on k ≤ τ
2 .

From (18)

S11(k) = 1
2

amax−k∑
j=1

[cos (2λminj + λmink) + cos (λmink)]

and by Eq. 1.343.1 in GR we get to

S11(k) = 1
2

{
cos [λmin (amax + 1)] sin [λmin (amax − k)]

sin λmin
+ (amax − k) cos (λmink)

}

= 1
2

[
− cosλmin sin (λmink)

sin λmin
+ (amax − k) cos (λmink)

]
= s1 (amax, amin, k) .

(20)

Also

S12(k) = 1
2


k∑
j=1

cos [λmink + j (λmax − λmin)] +
k∑
j=1

cos [λmink − j (λmax − λmin)]


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and again by Eq. 1.343.1 in GR

S12(k) = 1
2

cos
[
(k − 1) λmax+λmin

2 + λmax
]

sin
[
k(λmax−λmin)

2

]
sin

(
λmax−λmin

2

)
+

cos
[
(k − 1) λmax−λmin

2 + λmax
]

sin
[
k(λmax+λmin)

2

]
sin

(
λmax+λmin

2

)


= 1
2

sin
(
kλmax + λmax−λmin

2

)
− sin

(
kλmin + λmax−λmin

2

)
sin

(
λmax−λmin

2

)
+

sin
(
kλmax + λmax+λmin

2

)
− sin

(
−kλmin + λmax+λmin

2

)
sin

(
λmax+λmin

2

)


= 1
2 sin

(
λmax−λmin

2

)
sin

(
λmax+λmin

2

) [sin (kλmax + λmax−λmin
2

)
sin

(
λmax+λmin

2

)
− sin

(
kλmin + λmax−λmin

2

)
sin

(
λmax+λmin

2

)
+ sin

(
kλmax + λmax+λmin

2

)
sin

(
λmax−λmin

2

)
− sin

(
−kλmin + λmax+λmin

2

)
sin

(
λmax−λmin

2

)]
and by successive operations we get to

S12(k) = 1
cosλmin − cosλmax

{2 cos (kλmax) cosλmin

+ 2 cos (kλmin) cosλmax − 2 cos [(k + 1)λmax]
−2 cos [(k − 1)λmin]} = s2 (amax, amin, k) .

(21)

Now
S13(k) = s1 (amin, amax, k) (22)

and S14(k) = s2 (amin, amax, k) where s1 and s2 are as defined in (20) and
(21) respectively. Then

S12(k) + S14(k) = sin (kλmax) sinλmax − sin (kλmin) sinλmin
cosλmin − cosλmax
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and so for k ≤ amin

s(k) = ρ2

τ
[S11(k) + S12(k) + S13(k) + S14(k)]

= ρ2

τ

[
amax − k

2 cos (λmink) + amin − k
2 cos (λmaxk)

− cotλmax sin (λmaxk)
2 − cotλmin sin (λmink)

2

+sin (λmaxk) sinλmax − sin (λmink) sinλmin
cosλmin − cosλmax

]
.

(23)

Now from (19) S21(k) = S11(k). Also

S22(k) = 1
2

amin∑
j=1
{cos [λmink + j (λmax − λmin)] + cos [λmink − j (λmax + λmin)]}

= 1
2

cos
[
λmink + (amin + 1) λmax−λmin

2

]
cos

(
aminλmin

2

)
sin

(
λmax−λmin

2

)
+

cos
[
λmink − (amin + 1) λmax+λmin

2

]
cos

(
aminλmin

2

)
sin

(
λmax+λmin

2

)


and by successive operations we get to

S22(k) = − cos
(
λminamin

2

)cos
[
λmin

(
k − amin

2

)]
+

sin λmin sin
[
λmin

(
k − amin

2

)]
cosλmin − cosλmax

 .
(24)

Now, analogously to (20)

S23(k) = −1
2

{
cosλmin sin [λmin (k − amin)]

sin λmin
+ (k − amin) cos [λmin (k − amin)]

}
.

Finally,

S24(k) = −1
2

cos
[
λmin (k − amin) + amin+1

2 (λmin + λmax)
]

sin
[
amin(λmin+λmax)

2

]
sin

(
λmin+λmax

2

)
+

cos
[
λmin (k − amin) + amin+1

2 (λmin − λmax)
]

sin
[
amin(λmin−λmax)

2

]
sin

(
λmin−λmax

2

)

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and analogously to (24)

S24(k) = cos
(
λminamin

2

)cos
[
λmin

(
k − amin

2

)]
+

sin λmin sin
[
λmin

(
k − amin

2

)]
cosλmax − cosλmin


so

S22(k) + S24(k) =
2 cos

(
aminλmin

2

)
sin λmin sin

[
λmin

(
k − amin

2

)]
cosλmax − cosλmin

and then if amin < k ≤ τ
2

s(k) = ρ2

τ
(S21 + S22 + S23 + S24)

= ρ2

τ

{
amax − k

2 cos (λmink)− k − amin
2 cos [λmin (k − amin)]

+ cotλmin sin
[
λmin

(
k − amin

2

)]
sin

(
aminλmin

2

)
+

2 cos
(
aminλmin

2

)
sin λmin sin

[
λmin

(
k − amin

2

)]
cosλmax − cosλmin

 .
(25)

Now if amin = 1 (23) is undetermined due to the indetermination in (22).
But in this case from (18)

S13(k) = 1
2

1−k∑
j=1
{cos (2πj + πk) + cos (πk)}

= 1
2

1−k∑
j=1

[2 cos (πk)] = (1− k) cos (πk) = (1− k) (−1)k .

Also from (21) we can write

S12(k) = 1
2

cos
[
(k − 1) π+λmin

2 + π
]

sin
[
k(π−λmin)

2

]
sin

(
π−λmin

2

)
+

cos
[
(k − 1) π−λmin

2 + π
]

sin
[
k(π+λmin)

2

]
sin

(
π+λmin

2

)


= 1
2 cos

(
λmin

2

) {− cos
[
(k − 1) π+λmin

2

]
sin

[
k(π−λmin)

2

]
− cos

[
(k − 1) π−λmin

2

]
sin

[
k(π+λmin)

2

]}
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and by successive operations we get to

S12(k) = (−1)k
2 −

cos
[
λmin

(
k − 1

2

)]
2 cos

(
λmin

2

)
and analogously

S14(k) = 1
2

cos
[
(k − 1) π+λmin

2 + λmin
]

sin
[
k(λmin−π)

2

]
sin

(
λmin−π

2

)
+

cos
[
(k − 1) λmin−π

2 + λmin
]

sin
[
k(π+λmin)

2

]
sin

(
π+λmin

2

)


so

S14(k) = (−1)k+1

2 +
cos

[
λmin

(
k + 1

2

)]
2 cos

(
λmin

2

)
and then

S12(k) + S14(k) = 1
2 cos

(
λmin

2

) {cos
[
λmin

(
k + 1

2

)]
− cos

[
λmin

(
k − 1

2

)]}
= − sin (λmink) tan

(
λmin

2

)
so finally if k ≤ amin = 1

s(k) = ρ2

τ

{
1
2

[
− cosλmin sin (λmink)

sin λmin
+ (amax − k) cos (λmink)

]
− sin (λmink) tan

(
λmin

2

)
+ (1− k) (−1)k

}
.

In addition if λ− = λ+ then (23) and (25) are both undetermined, but in
this case

s(k) = ρ2

τ

τ∑
t=1

cos (λasyt) cos [λasy (t+ k)]

= ρ2

2τ

τ∑
t=1
{cos [λasy (2t+ k)] + cos (λasyk)}

= ρ2

2τ

τ cos (λasyk) +
τ∑
t=1

cos [λasy (2t+ k)]︸ ︷︷ ︸
S4

 .
Now by 1.341.3 in GR S4 = 0 and then

s(k) = ρ2 cos (λasyk)
2 ∀k.
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A.3 Proof of Proposition 3
Let xt satisfy (1). Then from (5)

A =
τ∑
t=1

xt cos (λjt) =
a−−ϕ∑
t=1

cos
[
λ− (t+ ϕ)

]
cos (λjt)︸ ︷︷ ︸

A1

−
τ−ϕ∑

t=a−−ϕ+1
cos

[
λ+

(
t− a− + ϕ

)]
cos (λjt)︸ ︷︷ ︸

A2

+
τ∑

t=τ−ϕ+1
cos

[
λ− (t− τ + ϕ)

]
cos (λjt)︸ ︷︷ ︸

A3

Now

A1 =
a−−ϕ∑
t=1

cos
[
λ− (t+ ϕ)

]
cos (λjt)

= 1
2


a−−ϕ∑
t=1

cos
[(
λ− + λj

)
t+ λ−ϕ

]
+

a−−ϕ∑
t=1

cos
[(
λ− − λj

)
t+ λ−ϕ

]
(26)

and by Eq. 1.341.3 in GR we get

A1 = 1
2


cos

[
λ−ϕ+ a−−ϕ+1

2 (λ− + λj)
]

sin
[(a−−ϕ)(λ−+λj)

2

]
sin

(
λ−+λj

2

)

+
cos

[
λ−ϕ+ a−−ϕ+1

2 (λ− − λj)
]

sin
[(a−−ϕ)(λ−−λj)

2

]
sin

(
λ−−λj

2

)


(27)

= 1
2


− sin

[
λ−+λj

2 + λj (a− − ϕ)
]
− sin

(
λ−+λj

2 + λ−ϕ
)

2 sin
(
λ−+λj

2

)

+
− sin

[
λ−−λj

2 − λj (a− − ϕ)
]
− sin

(
λ−−λj

2 + λ−ϕ
)

2 sin
(
λ−−λj

2

)
 .
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Let c− = 2 sin
(
λ−+λj

2

)
sin

(
λ−−λj

2

)
= cosλj − cosλ−. Then

A1 = 1
2c−

{
cos

[
λ− (ϕ+ 1)

]
+ cosλ− cos

[
λj
(
a− − ϕ

)]
− cos

[
λj
(
a− − ϕ+ 1

)]
− cosλj cos

(
λ−ϕ

)}
.

(28)

Besides, we can see

A2 = 1
2


τ−ϕ∑

t=a−−ϕ+1
cos

[
λ+

(
t− a− + ϕ

)
+ λjt

]

+
τ−ϕ∑

t=a−−ϕ+1
cos

[
λ+

(
t− a− + ϕ

)
− λjt

]
= 1

2


a+−1∑
t=0

cos
[(
λ+ + λj

)
(t+ 1) + λj

(
a− − ϕ

)]

+
a+−1∑
t=0

cos
[(
λ+ − λj

)
(t+ 1)− λj

(
a− − ϕ

)]
(29)

and proceeding as before we get

A2 = 1
2


cos

[
a++1

2 (λ+ + λj) + λj (a− − ϕ)
]

sin
[
a+(λ++λj)

2

]
sin

[
λ++λj

2

]

+
cos

[
a++1

2 (λ+ − λj)− λj (a− − ϕ)
]

sin
[
a+(λ+−λj)

2

]
sin

[
λ+−λj

2

]


(30)

= 1
2

−
sin

[
λ++λj

2 − λj (a+ + ϕ)
]

+ sin
[
λ++λj

2 − λjϕ
]

2 sin
(
λ++λj

2

)

−
sin

[
λ+−λj

2 + λj (a+ + ϕ)
]

+ sin
[
λ+−λj

2 + λjϕ
]

2 sin
(
λ+−λj

2

)


Let c+ = 2 sin
(
λ++λj

2

)
sin

(
λ+−λj

2

)
= cosλj − cosλ+. Then

A2 = − 1
2c+

{
cos [λj (ϕ− 1)] + cos

[
λj
(
ϕ+ a+ − 1

)]
− cosλ+ cos (λjϕ)− cosλ+ cos

[
λj
(
ϕ+ a+

)]} (31)
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Now

A3 = 1
2


τ∑

t=τ−ϕ+1
cos

[
λ− (t− τ + ϕ) + λjt

]

+
τ∑

t=τ−ϕ+1
cos

[
λ− (t− τ + ϕ)− λjt

]
(32)

Then

A3 = 1
2


cos

(
λ−+λj

2 + ϕλ−−λj
2

)
sin

[
ϕ(λ−+λj)

2

]
sin

(
λ−+λj

2

)

+
cos

(
λ−−λj

2 + ϕλ−+λj
2

)
sin

[
ϕ(λ−−λj)

2

]
sin

(
λ−−λj

2

)


(33)

= 1
2


sin

(
λ−+λj

2 + λ−ϕ
)
− sin

[
λ−+λj

2 − λjϕ
]

2 sin
(
λ−+λj

2

)

+
sin

(
λ−−λj

2 + λ−ϕ
)
− sin

[
λ−−λj

2 + λjϕ
]

2 sin
(
λ−−λj

2

)


Therefore

A3 = 1
2c−

{
cos (λjϕ) cosλ− + cos

(
λ−ϕ

)
cosλj

− cos
[
λ− (ϕ+ 1)

]
− cos [λj (ϕ− 1)]

} (34)

And finally

A = 1
c+c−

[(
cosλ− − cosλ+

)
sin λj cos

(
a−λj

2

)
sin

(
a−λj

2 − λjϕ
)]

Express c+c− = (cosλj − cosλmax) (cosλj − cosλmin). Now by Lemma 1
λmin < λj and therefore cosλmin > cosλj as λj ≤ π. Also λj = λmax ⇒ j =
λmax+λmin

2λmin = amax+amin
2amin . Let j∗ = λmax+λmin

2λmin . We can distinguish the following
cases:

1. λ+ 6= λ−:

(a) If j 6= j∗ ⇒ c+c− 6= 0⇒ A 6= 0.
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(b) If j = j∗ ⇒ c+c− = 0. In this case amax = (2j − 1) amin and
therefore

cos
(
a−λj

2

)
= cos

(
a−π

2amin

)
=
{

cos
[
(2j − 1) π

2

]
if a− > a+

cos π
2 if a− < a+

so cos
(
a−λj

2

)
= 0 and then A = 0

0 undetermined. We consider
here four cases:

i. a− > a+ 6= 1: From (28) and (34)

A1 + A3 = 1
2c−

{
− cos

[
λ+

(
a− − ϕ+ 1

)]
+ cosλ− cos

[
λ+

(
a− − ϕ

)]
− cos

[
λ+ (ϕ− 1)

]
+ cos

(
λ+ϕ

)
cosλ−

}
= 0

(35)

as cos [λj (a− ± k)] = cos [λj (a+ ∓ k)]. From (29)

A2 = 1
2


a+−1∑
t=0

cos
[
2λ+t+ λ+

(
a− − ϕ+ 2

)]

+
a+−1∑
t=0

cos
[
−λ+

(
a− − ϕ

)]
where the first sum is 0 by 1.341.3 in GR and then

A2 = a+ cos [λ+ (ϕ− a−)]
2 = −a

+ cos (λ+ϕ)
2

so
A = a+ cos (λ+ϕ)

2 = amin cos (λmaxϕ)
2 . (36)

ii. a− > a+ = 1: From (35) A1 + A3 = 0. Now from (29)

A2 = 1
2
{

cos
[
2π + π

(
a− − ϕ

)]
+ cos

[
−π

(
a− − ϕ

)]}
= cos

[
π
(
a− − ϕ

)]
= − cos (πϕ)

(37)

so
A = cos (πϕ) .

46

48

ivie
Cuadro de texto



iii. a+ > a− 6= 1: From (26) by Eq. 1.341.3 in GR

A1 = 1
2

{
− cosλ− sin (λ−ϕ)

sin λ− + cos
(
λ−ϕ

) (
a− − ϕ

)}

and from (31)

A2 = − 1
2c+

{
cos

[
λ− (ϕ− 1)

]
+ cos

[
π − λ− (ϕ− 1)

]
− cosλ+ cos

(
λ−ϕ

)
− cosλ+ cos

(
π − λ−ϕ

)}
= 0.

From (32) again by Eq. 1.341.3 in GR

A3 = 1
2

{
cosλ− sin (λ−ϕ)

sin λ− + cos
(
λ−ϕ

)
ϕ

}

so analogously to (36)

A = a− cos (λ−ϕ)
2 = amin cos (λmaxϕ)

2 .

iv. a+ > a− = 1: Now from (31) A2 = 0. And analogously to
(37) from (26) and (32)

A1 + A3 = cos (πϕ)

so again
A = cos (πϕ) .

2. λ+ = λ− = λasy. For the symmetric case we have

(a) If j > 1⇒ λj > λasy ⇒ c−c+ 6= 0, and then A = 0.
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(b) If j = 1⇒ λj = λasy ⇒ A = 0
0 . But

A =
a−−ϕ∑
t=1

cos [λasy (t+ ϕ)] cos (λasyt)

+
τ−ϕ∑

t=a−−ϕ+1
cos

[
π + λasy

(
t− π

λasy
+ ϕ

)]
cos (λasyt)

+
τ∑

t=τ−ϕ+1
cos [λasy (t− τ + ϕ)] cos (λasyt)

=
τ∑
t=1

cos [λasy (t+ ϕ)] cos (λasyt)

= 1
2


τ∑
t=1

cos [λasy (2t+ ϕ)]︸ ︷︷ ︸
A5

+
τ∑
t=1

cos (λasyϕ)



(38)

and then again by 1.341.3 in GR A5 = 0 so

A = τ

2 cos (λasyϕ) .

Focusing now on the part involving sines,

B =
τ∑
t=1

xt sin (λjt) =
a−−ϕ∑
t=1

cos
[
λ− (t+ ϕ)

]
sin (λjt)︸ ︷︷ ︸

B1

−
τ−ϕ∑

t=a−−ϕ+1
cos

[
λ+

(
t− a− + ϕ

)]
sin (λjt)︸ ︷︷ ︸

B2

+
τ∑

t=τ−ϕ+1
cos

[
λ− (t− τ + ϕ)

]
sin (λjt)︸ ︷︷ ︸

B3

(39)

Proceeding as before and using equation 1.341.2 in GR we get (complete
details are available from the author upon request)

B1 = 1
2


sin

[
λ−ϕ+ a−−ϕ+1

2 (λ− + λj)
]

sin
[(a−−ϕ)(λ−+λj)

2

]
sin

(
λ−+λj

2

)

−
sin

[
λ−ϕ+ a−−ϕ+1

2 (λ− − λj)
]

sin
[(a−−ϕ)(λ−−λj)

2

]
sin

(
λ−−λj

2

)


(40)
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so

B1 = − 1
2c−

{
cosλ− sin

[
λj
(
a− − ϕ

)]
−
(
cos

(
λ−ϕ

)
sin λj − sin

[
λj
(
a− − ϕ+ 1

)]} (41)

Now

B2 = 1
2


sin

[
a++1

2 (λ+ + λj) + λj (a− − ϕ)
]

sin
[
a+(λ++λj)

2

]
sin

[
λ++λj

2

]

−
sin

[
a++1

2 (λ+ − λj)− λj (a− − ϕ)
]

sin
[
a+(λ+−λj)

2

]
sin

[
λ+−λj

2

]


(42)

and then

B2 = 1
2c+

{
sin [λj (ϕ− 1)] + sin

[
λj
(
a+ + ϕ− 1

)]
− cosλ+ sin (λjϕ)− cosλ+ sin

[
λj
(
ϕ+ a+

)]} (43)

Finally

B3 = 1
2


sin

(
λ−+λj

2 + ϕλ−−λj
2

)
sin

[
ϕ(λ−+λj)

2

]
sin

(
λ−+λj

2

)

−
sin

(
λ−−λj

2 + ϕλ−+λj
2

)
sin

[
ϕ(λ−−λj)

2

]
sin

(
λ−−λj

2

)


(44)

so

B3 = 1
2c−

{
cos

(
ϕλ−

)
sin λj − cosλ− sin (ϕλj)− sin [λj (1− ϕ)]

}
(45)

Then

B = − 1
c+c−

[(
cosλ− − cosλ+

)
sin λj cos

(
a−λj

2

)
cos

(
a−λj

2 − λjϕ
)]

We distinguish again the following cases:

1. λ+ 6= λ−
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(a) If j 6= j∗ ⇒ c−c+ 6= 0⇒ B 6= 0
(b) If j = j∗ ⇒ c−c+ = 0 and analogously as before B = 0

0 , an
indetermination. Then, we may have the following situations:

i. a− > a+ 6= 1. From (41) and (45)

B1 +B3 = 1
2c−

{
cosλ− sin

[
λ+

(
a− − ϕ

)]
− sin

[
λ+

(
a− − ϕ+ 1

)]
− cosλ− sin

(
ϕλ+

)
− sin

[
λ+ (1− ϕ)

]}
= 0

as sin [λj (a− ± k)] = − sin [λj (a+ ∓ k)].
Now from (39)

B2 =
τ−ϕ∑

t=a−−ϕ+1
cos

[
λ+

(
t− a− + ϕ

)]
sin

(
λ+t

)

= 1
2

τ−ϕ∑
t=a−−ϕ+1

{
sin

[
λ+

(
2t− a− + ϕ

)]
− sin

[
λ+

(
−a− + ϕ

)]}

= 1
2


a+−1∑
k=0

sin
[
λ+

(
2k + a− − ϕ+ 2

)]
−

a+−1∑
k=0

sin
[
λ+

(
−a− + ϕ

)]
Now by Eq. 1.341.1 in GR the first sum is 0 so

B2 = −a
+

2 sin
[
λ+

(
−a− + ϕ

)]
= −a

+

2 sin
[
λ+

(
a+ + ϕ

)]
= −a

+

2 sin
(
π + ϕλ+

)
= a+

2 sin
(
λ+ϕ

)
and then we get

B = −a
+ sin (λ+ϕ)

2 = −amin sin (λmaxϕ)
2 . (46)

ii. a+ > a− 6= 1. We start from (39)

B1 =
a−−ϕ∑
t=1

cos
[
λ− (t+ ϕ)

]
sin

(
λ−t

)

= 1
2

a−−ϕ∑
t=1

{
sin

[
λ− (2t+ ϕ)

]
− sin

(
λ−ϕ

)}

= 1
2


a−−ϕ−1∑
t=0

sin
(
2λ−t+ ϕλ− + 2λ−

)
︸ ︷︷ ︸

B11

−
a−−ϕ∑
t=1

sin
(
λ−ϕ

)
︸ ︷︷ ︸

B12


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Now by Eq. 1.341.1 in GR

B11 = sin (π + λ−) sin (λ−ϕ)
sin λ− = − sin

(
λ−ϕ

)
and B12 = (a− − ϕ) sin (λ−ϕ) so

B1 = −a
− + ϕ− 1

2 sin
(
λ−ϕ

)
From (43)

B2 = − 1
2c+

{
cos

[
λ− (ϕ− 1)

]
+ cos

[
π − λ− (ϕ− 1)

]
− cosλ+ cos

(
λ−ϕ

)
− cosλ+ cos

(
π − λ−ϕ

)}
= 0

Finally from (39)

B3 =
τ∑

t=τ−ϕ+1
cos

[
λ− (t− τ + ϕ)

]
sin

(
λ−t

)

= 1
2

τ∑
t=τ−ϕ+1

{
sin

[
λ− (2t− τ + ϕ)

]
− sin

[
λ− (−τ + ϕ)

]}

= 1
2


ϕ−1∑
t=0

sin
[
λ− (2t+ τ − ϕ+ 2)

]
︸ ︷︷ ︸

B31

−
ϕ∑
t=1

sin
[
λ− (−τ + ϕ)

]
︸ ︷︷ ︸

B32

 .

Then

B31 = sin [λ− (τ + 1)] sin (λ−ϕ)
sin λ− = sin

(
λ−ϕ

)
and B32 = ϕ sin (λ−ϕ) so

B3 = 1− ϕ
2 sin

(
λ−ϕ

)
and then analogously to (46)

B = −a
− sin (λ−ϕ)

2 = −amin sin (λmaxϕ)
2 .
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iii. amin = 1: Then

B =
τ∑
t=1

xt sin (πt) = 0

2. λ+ = λ− = λasy

(a) If j > 1⇒ c−c+ 6= 0, then B = 0.
(b) If j = 1 ⇒ λj = λasy, then c+c− = 0 ⇒ B = 0

0 , undetermined.
But in this case by analogy with (38)

B =
τ∑
t=1

cos [λasy (t+ ϕ)] sin (λasyt)

= 1
2


τ∑
t=1

sin [λasy (2t+ ϕ)]︸ ︷︷ ︸
B5

−
τ∑
t=1

sin (λasyϕ)


and by 1.342.1 in GR B5 = 0 so

B = −τ2 sin (λasyϕ)

Then, the periodogram ordinates verify

I (λj) = 1
2πτ

(
A2 +B2

)
where A and B we have already proved that correspond to

A =



1
c+c−

[(
cosλ− − cosλ+

)
sinλj cos

(
a−λj

2

)
sin
(
a−λj

2
− λjϕ

)]
if λ+ 6= λ− and j 6= j∗

amin cos (λmaxϕ)
2

if λ+ 6= λ− and j = j∗ 6= τ
2

cos (πϕ) if λ+ 6= λ− and j = j∗ = τ
2

π

λasy
cos (λasyϕ) if λ+ = λ− and j = 1

0 if λ+ = λ− and j > 1

and

B =


−

1
c+c−

[(
cosλ− − cosλ+

)
sinλj cos

(
a−λj

2

)
cos
(
a−λj

2
− λjϕ

)]
if λ+ 6= λ− and j 6= j∗

−
amin sin (λmaxϕ)

2
if λ+ 6= λ− and j = j∗ 6= τ

2

−
π

λasy
sin (λasyϕ) if λ+ = λ− and j = 1

0 otherwise
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Besides we can see that

cos
(
a−λj

2

)
= cos

(
πjλ+

λ− + λ+

)
= (−1)j cos

(
πjλ−

λ− + λ+

)

as j ∈ Z+, so if λ+ 6= λ− and j 6= j∗ we can express I (λj) as

I (λj) = λasy

4π2


(cosλ− − cosλ+) sinλj cos

(
πj

2j∗

)
(cosλj − cosλ−) (cosλj − cosλ+)


2

Finally, considering ϕ ∈ N, we get (7).
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