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I. Introduction

In this paper, we propose a notion of fairness that reconciles the requirements of
efficiency and equity in School Choice Problems. We call this notion τ -fairness.
Additionally, we provide an allocation procedure that proposes, for each School
Choice Problem, an allocation satisfying τ -fairness. This procedure allows any
District School Board (DSB) to implement a τ -fair allocation according to the
stated preferences.

Every year, many municipalities face the problem of allocating the available
public school places among a large number of new applicants. Municipalities
entrust this task to DSBs, which are concerned with how places are distributed
through the systematic application of priorities and rules.

Some DSBs resort to School Choice Systems because of the difficulties asso-
ciated with providing students with places in their schools of choice. A School
Choice System first determines how to prioritize seemingly identical students.
Then, it decides how priorities should be combined with the preferences of the
students to generate an allocation. In this paper we assume that priorities are
exogenously determined, and we concentrate on the allocation procedure.

There are two main allocation procedures used by the DSBs. The first proce-
dure is known as the Boston mechanism (BM) because it was used in the Boston
area until 2005. The BM is an example of a decentralized system for School
Choice Problems. It provides efficient allocations based on student preferences.
The second procedure, the Student Optimal Stable mechanism (SOSM) is the pri-
mary example of a centralized system for School Choice Problems. The SOSM
equitably balances the preferences of students with the priorities of the schools.

The choice of a specific procedure depends on the objective of the DSB. When
efficiency is the main goal, the DSB might use the BM; in contrast, the SOSM is
a useful option when the objective is to reconcile the preferences of the students
with the priorities of the school in an equitable manner. Taking the priority lists
as given, the classic notions of efficiency and equity might not be applicable to
School Choice Problems.1 The classical concept of fairness in the School Choice

1Alcalde and Romero-Medina (2011a) explore how to prioritize students to avoid the equity-
efficiency trade-off.
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framework is based on the confluence of equity and efficiency. Balinski and Sön-
mez (1999) proposed a reinterpretation of the stability concept used in matching
markets as an equity criterion in the School Choice Problem. Following this ap-
proach, we suggest a weaker notion of equity, which we call λ-equity. This new
notion will allow us to define τ -fairness as the conjunction of both λ-equity and
Pareto efficiency.

To define λ-equity, we follow an old tradition in (cooperative) game theory.
Aumann and Maschler (1964) proposed an iterative process to argue that some
instability should not be (credibly) taken into account. With this idea in mind, we
proceed as follows. Any student can object to a given allocation by claiming that
it fails to be equitable according to the priorities of the school. If a student objects
to the initial allocation, she must propose an alternative allocation. If no student
claims that the new allocation is not equitable, the initial proposal fails to meet
the equity criterion. Otherwise, we dismiss the initial objection. If an allocation is
objected to without a counter objection or is not objected to at all, it is λ-equitable.
Note that the logic of the process is very similar to the definition of the Bargaining
Set proposed by Zhou (1994).

The concept of τ -fairness introduces two interesting new features to the School
Choice Problem. First, each School Choice Problem has at least one τ -fair alloca-
tion. Second, there are systematic procedures for selecting a τ -fair allocation for
each School Choice Problem. In this paper, we propose a simple mechanism that
always provides a τ -fair allocation for each School Choice Problem. This proce-
dure, which we call the Compensating Exchange Places Mechanism (CEPM), 2

operates in two phases and works as follows:

Phase 1. First, it proposes an equitable and, thus, λ-equitable tentative allocation.
This can be accomplished by using the SOSM.

Phase 2. Because the above allocation might fail to be efficient, we consider a pure
exchange economy where the agents are the students and the exchangeable

2Alcalde and Romero-Medina (2011b) introduce a family of matching procedures called the
Exchanging Places Mechanisms, the elements of which propose a τ -fair allocation. In this pa-
per, for simplicity of exposition, we select one specific rule, the CEPM, designed to (possibly)
compensate students for the negative effects induced by the “tie-breaking” lottery.
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goods are the places. Finally, the initial endowment for each student is the
place that was tentatively assigned to her in Phase 1.

Our contribution has to be understood in the context of the reforms established
in the schooling systems. In fact, the game-theoretical analysis of the BM can be
seen as the origin of important reforms in the admission systems used in elemen-
tary schools in some areas of the US.3 Simultaneously to the above reforms, other
changes have been suggested in different countries.4

This redesign effort has resulted in the adoption of the SOSM as the best op-
tion for schooling systems (i.e., for almost one-sided markets with indifferences).
However, as Abdulkadiroğlu et al. (2009), Erdil and Ergin (2008), and Kesten
(2010) agree, the welfare lost due to the adoption of the SOSM can be disturbingly
large.

We have seen how the implementation of τ -fair allocations requires minimal
reforms in the SOSM and avoids its lack of efficiency while simultaneously re-
specting a well-defined equity criterion. In fact, related ideas have inadvertently
been proposed by some authors. These authors have either used a mechanism sim-
ilar to the CEPM in order to compute the welfare lost due to the use of the SOSM
(see Abdulkadiroğlu et al., 2009) or proposed efficiency corrections of the SOSM
(see, e.g., Kesten, 2010) such as the Efficiency Adjusted Deferred Acceptance
mechanism (EADAM), which computes an allocation that we can now recognize
as τ -fair.

In this paper, we propose to adopt the CEPM, a procedure for selecting a τ -fair
allocation. The CEPM accomplishes this by introducing a pure-exchange market
for places where students have property (or usufruct) rights to the places they have
been assigned by the SOSM. The theory behind our proposal has already been
used in many decentralized environments where individuals have endowments and
there is room for improvement.

Although it is unusual to argue that students can exchange the places they have
been assigned, there are similar situations in public administrations where agents

3For example, see the papers by Abdulkadiroğlu et al. (2009) related to the New York City
High School Match or Abdulkadiroğlu et al. (2006) related to the Boston Public School Match.

4For example, see the papers by Biró (2008) on the Hungarian system, Feng (2005) on some
high school processes in China, Shelim and Salem (2009) on the process in Egypt, or Ting (2007)
for a study of the university access system in Taiwan.
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are allowed to exchange their job positions. Therefore, in our opinion, there is
legal support for the introduction of a centralized exchange of places to be phased
into the allocation procedure.

Finally, it is worth noting that efficient mechanisms are being either imple-
mented (as in the BM) or proposed (as in the EADAM proposed by Kesten, 2010)
in the absence of the equity consideration that underlies the CEPM. In particu-
lar, we know that the τ -fair allocations are not only λ-equitable but can also be
characterized as the efficient allocations that all students weakly prefer to the ones
determined by the SOSM.

We conclude this section by providing an overview of the rest of the paper.
First, we introduce the basic model in Section II, and we formally state the general
incompatibility between equity and efficiency in the traditional framework. Sec-
tion III is devoted to introducing the main contribution of this paper; we propose a
formal definition of τ -fairness, and in Theorem 11, we also describe the applica-
bility of τ -fair allocations to any School Choice Problem. A formal (constructive)
proof for Theorem 11 is provided in Section IV, which focuses on introducing the
CEPM. The set of τ -fair allocations is characterized in Section V. In Section VI,
we consider the strategic properties of the CEPM. Finally, our main conclusions
are gathered in Section VII. For simplicity, we relegate some technical proofs to
the Appendix.

II. The School Choice Problem

This section is devoted to introducing several formalisms related to the School
Choice Problem (SCP). We consider two sets of non-empty disjoint agents to be
called students and schools. The set of students has n individuals, and is denoted
by S = {s1, . . . , si, . . . , sn}. The set of schools is denoted by C and has m ele-
ments (i.e., C = {c1, . . . , cj, . . . , cm}).

Each school has a (fixed) number of places to be distributed among the stu-
dents, which will be called its capacity. Let qcj ≥ 1 denote the capacity of school
cj , and let Q =

(
qc1 , . . . , qcj , . . . , qcm

)
denote the vector summarizing the capaci-

ties of the schools. Schools are also endowed a linear ordering prioritizing the set
of students. Let πcj ∈ Rn be the students’ ordering for school cj , and let Π be

4
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the (m× n)-matrix summarizing these priorities. Formally, πcj is described as an
n-dimensional vector such that for each k ∈ {1, . . . , n}, there is a unique student
si for whom πcjsi = k; given this description, the j-th row for matrix Π coincides
with vector πcj .

Note that using our description, no school would consider a student to be in-
admissible. Most DSBs impose such a restriction in the way that the schools
rank their potential students. Nevertheless, our model could easily capture the
possibility of a student being inadmissible: this can be accomplished simply by
introducing a new variable for each school that has defined the priority level of
the last admissible student.

In contrast, each student has linear preferences over the set of schools such
that no student will consider two different schools as equivalent and, additionally,
that no school is considered unacceptable by a student. Let ρsi denote the rank-
ing of the schools denoting the preferences of student si,5 and let Φ denote the
(n×m)-matrix summarizing these rankings. Note that our model assumes that
each student considers all the schools to be admissible.6 Nevertheless, we can
also reformulate this model by assuming that each student might consider some
schools to be unacceptable. The essence of this paper is the same in both frame-
works.

Therefore, a SCP can be described by listing the elements above (S, C,Φ,Π, Q).
We will say that an SCP is non-scarce whenever there are sufficient places to al-
locate among all the students ∑

cj∈C

qcj ≥ n.

Given a SCP, (S, C,Φ,Π, Q), a solution for it is an application µ that matches
students and places. Such a correspondence is called a matching. Formally,

Definition 1 A matching for (S, C,Φ,Π, Q) is a correspondence µ, applying S∪C
into itself such that:

5i.e., ρsicj = 3 indicates that student si considers cj to be her third-best school.
6Here, we can also invoke the legislative regulations establishing that school attendance is

compulsory for children of certain ages.
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1. For each si in S, if µ (si) 6= si, then µ (si) ∈ C.

2. For each cj in C, µ (cj) ⊆ S and |µ (cj)| ≤ qcj .
7

3. For each si in S and any cj in C, µ (si) = cj if and only if si ∈ µ (cj).

The central solution concept used throughout the literature is pair-wise sta-

bility, introduced by Gale and Shapley (1962). In the present paper, we follow
the suggestion of Balinski and Sönmez (1999) to identify this stability notion as
a situation where the distribution of places among students is envy-free, which is
why we say that a matching is equitable whenever it captures this idea of envy-
freeness. Under our considerations (i.e., each school is acceptable to any student
and vice versa), equity is defined as follows.

Definition 2 A matching for (S, C,Φ,Π, Q), say µ, is determined to be equitable

if there is no student-school pair (si, cj) such that

1. ρsicj < ρsiµ(si)
8 and

2. |µ (cj)| < qcj or πcjsi < πcjsh for some sh ∈ µ (cj).

To illustrate the function of Definition 2, let us consider a matching µ, and
let us assume that student si prefers to study at school cj rather than her current
school µ (si). If si has a priority higher than some of the actual students attending
school cj or if this school still has vacancies, then student si might claim that the
allocation process has been unfair.

The concept of efficiency has also been analyzed in this framework. To intro-
duce this concept appropriately, let us remember that the only role for schools is
to provide educational services to students. Therefore, the natural notion of ef-
ficiency, as proposed by Balinski and Sönmez (1999) for this framework, is the
Pareto efficiency from the perspective of the students.

Definition 3 Given a School Allocation Problem, (S, C,Φ,Π, Q), matching µ is
Pareto efficient if for any other matching µ′ 6= µ, there is a student, si, such that

ρsiµ(si) < ρsiµ′(si).

7Throughout this paper, |T | will denote the cardinality of set T .
8Throughout this paper, we adopt the convention that ρsiµ(si) = m+ 1 whenever µ (si) = si.
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Note that for any non-scarce SCP, stability and/or efficiency of a matching µ
implies that for each student si, µ (si) ∈ C.

A matching rule, M, is a regular procedure that assigns a matching to each
SCP. Rule M is said to be equitable if for any given problem, it always selects
an equitable allocation. Similarly, we say that a matching rule is Pareto efficient
if its outcome is always Pareto efficient relative to its input. Clearly, there are
stable matching rules. In fact, any of the versions of the deferred-acceptance al-
gorithms proposed by Gale and Shapley (1962) assigns an equitable matching for
the related SCP. In contrast, the now-or-never rule introduced by Alcalde (1996)
always selects a Pareto-efficient matching when the proposals are made by the
students.

We first address the possibility of designing matching rules that always select
fair allocations (i.e., matchings that are equitable and Pareto efficient). As Propo-
sition 4 states, reconciling the “fairness” notion with equity and Pareto efficiency
might be an impossible task.

Proposition 4 There is no matching rule that selects an equitable and Pareto-
efficient allocation for each SCP.

Proposition 4 suggests the need for a new solution concept that accurately
combines the notions of equity and Pareto efficiency.

III. τ -Fairness: A New Solution Concept

In this section, we propose a new solution concept for the SCP. This concept
reduces the trade-off between equity and efficiency. The central idea is to restrict
the statements of students that are considered “admissible” to induce inequity in
an allocation.

It is important to precisely define the objections (made by a set of agents) that
should be taken into account. This definition is at the essence of both the Bargain-
ing Set introduced by Aumann and Maschler (1964) and the solution concepts that
follow in this paper. The Bargaining Set is based on the idea that any agent who
formulates an objection against an allocation should propose an alternative allo-
cation fitting some properties. Then, if an agent objects to an allocation, any other

7
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agent might formulate an objection against this new proposal in the same fash-
ion. That is, any other agent might counter object. The λ-equity of an allocation
requires that the following criteria are met:

1. No agent will object to the allocation (i.e., it is equitable), or

2. Any objection presented by an agent will be counter objected.

We capture the concept of (weak) equity by considering only objections against
an allocation that cannot be counter objected to be valid. The following example
illustrates this proposal.

Example 5 Let us consider the following SCP: S = {1, 2, 3}; C = {a, b, c};
Q = (1, 1, 1); and the ranking and priorities matrices are

Φ =

 1 3 2

2 3 1

2 3 1

 , and Π =

 3 2 1

2 1 3

1 3 2

 .
Note that matching µ, with µ (1) = a; µ (2) = b; and µ (3) = c, is not equitable
because student 2 claims that she has priority over student 1 for school a. Now,
let us propose the following arrangement to student 2:

“If you are able to propose a matching that you prefer to µ and if
no other student would claim that the new proposal fails to be equi-
table (as you did when µ was proposed), the new matching will be
implemented.”

Student 2 cannot propose such a matching.

Therefore, the arguments of the Bargaining Set that are captured by λ-equity
can be informally described as follows. Let us consider a matching µ. Then, any
student is free to claim that this allocation fails to be equitable. Her objection must
be supported by an alternative matching. The new proposal will be accepted only
if no student is able to show, using identical arguments, that the new matching is
also inequitable.

8
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Definition 6 [Fair Objection]

Let (S, C,Φ,Π, Q) be a SCP, and let µ be a matching for such a problem. A fair

objection from student si ∈ S against µ is a pair (si, µ
′) such that

1. ρsiµ′(si) < ρsiµ(si), and

2. |µ (µ′ (si))| < qµ(µ′(si)), or πµ′(si)si < πµ′(si)sh for some sh ∈ µ (µ′ (si)).

Definition 7 [Counter Objection]

Let (si, µ
′) be a fair objection to matching µ. A counter objection from student sh

against (si, µ
′) is a pair (sh, µ

′′) that constitutes a fair objection to matching µ′.
We say that (si, µ

′) is a justified, fair objection to µ if it cannot be counter
objected.

Definition 8 [λ-Equity]

Let (S, C,Φ,Π, Q) be a SCP. We say that matching µ is λ-equitable if there is no
(si, µ

′) constituting a justified, fair objection to µ.

Therefore, the idea of λ-equity for matching µ is that whenever a student can
claim that this matching is unfair, she must be unable to propose an alternative
matching that no student would consider unfair.

Note that for any given SCP, the set of λ-equitable matchings is a super-set of
the sets of equitable allocations. Therefore, the following statement applies.

Proposition 9 Let (S, C,Φ,Π, Q) be a SCP. Then it has a λ-equitable matching.

In general, there are SCPs with λ-equitable matchings that are not equitable.
Notice that the matching µ, proposed in Example 5, is not equitable, but it is
λ-equitable.

The central solution concept that we propose in this section, τ -fairness, com-
bines two solution ideas, namely Pareto efficiency and λ-equity.

Definition 10 [τ -Fairness]
Let (S, C,Φ,Π, Q) be a SCP. We say that matching µ is τ -fair if it is Pareto effi-
cient and λ-equitable.

9
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The next question that we address is the existence of τ -fair allocations. Al-
though the sets of equitable and Pareto-efficient matchings might not intersect
(Proposition 4), when we focus on λ-equitable allocations rather than equitable
allocations, such an intersection is always non-empty.

Theorem 11 Let (S, C,Φ,Π, Q) be a School Allocation Problem. Then, it has a
matching µ that is τ -fair.

IV. From Equity to τ -Fairness: The CEPM

This section introduces the CEPM, a matching rule that always selects a τ -fair
allocation.

A simple way to define the CEPM is by the (sequential) composition of two
well-known allocation procedures. The first, the input of which is a SCP, is the
SOSM, which is the realization of the classic algorithm of students proposing
deferred acceptance (see Gale and Shapley, 1962). When the SOSM is applied,
we can interpret its outcome as a Housing Market (see Shapley and Scarf, 1974)
whose agents are the students, and each individual is initially endowed with the
place that the SOSM assigned to her. We can then apply Gale’s Tops Trading
Cycle, introduced by Shapley and Scarf (1974), to reach a Pareto improvement
related to the initial outcome of the SOSM. We show in Theorem 16 that the
outcome for this iterative procedure is always a τ -fair matching.

Therefore, the CEPM can be seen as a constructive proof of Theorem 11, or,
alternatively, as a suggestion for how to improve the system adopted by the Boston
School Committee in 2005 by guaranteeing assignment efficiency.

We now provide a formal definition of the CEPM. First, Definition 12 de-
scribes how to compute, for each SCP, its Student Optimal Stable matching, µSO.
Second, for a given problem, (S, C,Φ,Π, Q) and matching µ, Definition 13 de-
scribes its Compensating Placing Market. Then, for a given placing market, Def-
inition 14 describes how the Tops Trading Cycle works. We devote Appendix A
to an example illustrating how to compute the CEPM for a specific SCP.

Definition 12 Let (S, C,Φ,Π, Q) be a SCP, we define its Student Optimal Stable

Matching, µSO, as the solution of the following algorithm.
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Step 1. Each student, si, applies to the school that is ranked first after ρi. Each
school, cj , tentatively accepts up to qcj students, according its priority list,
πcj . The remaining applications (if any) are rejected.

. . .

Step k. Each student, si, applies to the first school after ρi (if any) that has not previ-
ously rejected her application. If such a school does not exist, si will remain
unassigned. Each school, cj , tentatively accepts up to qcj students, accord-
ing its priority list, πcj . The remaining applications (if any) are rejected.

The algorithm ends when each student who remains unassigned has been re-
jected by all the schools. Each student is assigned to the school (if any) that
accepted her application at the last step.

The Housing Market introduced by Shapley and Scarf (1974) involves a set of
agents who each own one indivisible object (her house). Each agent exhibits pref-
erences over the houses that can be described by a linear preorder. In this model,
no agent considers two distinct houses as equivalent. Following this structure, we
will build, from any SCP, (S, C,Φ,Π, Q), and matching µ, a problem that shares
the structure of the Housing Markets as described above. In this transition from a
SCP and an allocation to a problem reflecting the structure of a Housing Market,
there are some specifications that are (or can be seen as) natural.

In this placing market, a student, si, reveals that she wants to trade with sh
whenever her preferences for exchange satisfy shPsisi. Therefore, the following
can be uncontroversially assumed.

(a) Student si wants to exchange her place with sh only if she will garner a
positive benefit from such an exchange,

shPsisi =⇒ ρsiµ(sh) < ρsiµ(si).

(b) For any two students, sh and sk, who have been assigned to different schools,
any other student, si, prefers to exchange with the student who has a place-
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ment in her preferred school,

ρsiµ(sh) < ρsiµ(sk) =⇒ shPsisk.

Nevertheless, there is no a priori reason justifying a student’s prioritization of
two different students who have been assigned a placement in the same school.
A compensating placing market will consider that each student is willing to ex-
change with an individual who is prioritized lower in that school. The rationale of
such a hypothesis is derived from the manner in which priorities are established
in real-life situations. When developing a priority list, schools divide students
into four categories based on two main factors (siblings and residence). With this
method of classifying students, multiple students are prioritized equally by the
school at this stage. Lotteries are used to break these ties. Therefore, in most
cases, it is expected that the school prioritizes one student relative to another be-
cause of some random factor.9 The proposal of the Compensating Placing Market
to reverse the priority lists is intended to compensate for the random effect intro-
duced by the lottery.10

Definition 13 Let (S, C,Φ,Π, Q) be a SCP and µ a matching for this problem.
We define its associated Compensating Placing Market, CPM (µ), as the pair(
Ŝ, P

)
where Ŝ, the set of agents, coincides with the set of students that, accord-

ing to µ, has been assigned a placement in some school,

Ŝ = {si ∈ S : µ (si) ∈ C} , and

P = (Psi)si∈Ŝ , the preferences profile for exchange, satisfies the condition that
for each si ∈ Ŝ, Psi is a linear preorder on Ŝ fulfilling the following:

(a) For each sh ∈ Ŝ such that ρsiµ(si) ≤ ρsiµ(sh), siPsish;

(b) For each sh, sk ∈ Ŝ such that ρsiµ(sh) < ρsiµ(sk), shPsisk; and

9Most systems consider several factors to categorize students. Then, a random lottery is used
to break ties.

10Alcalde and Romero-Medina (2011b) explore a family of placing markets, including the
CPM, each of which yields a τ -fair allocation. In the present version and for the sake of sim-
plicity, we concentrate on the CPM.
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(c) For any two students sh and sk such that µ (sh) = µ (sk) 6= µ (si), shPsisk
if and only if πµ(sh)sk < πµ(sh)sh .

In a more general context, a Placing Market is a pair (S, P ), where S is a set
of agents and P denotes the profile of their preferences for exchange (i.e., for each
si in S, Psi is a linear preorder on S).

Definition 14 We define the Tops Trading Cycle rule as the procedure for assign-
ing to each Placing Market, (S, P ), the outcome for the following algorithm.

Step 1. Let us consider the digraph whose set of nodes coincides with S, and for any
two (possibly equal) students, si and sh, there is an arc from si to sh if sh
is the maximal for Psi in S. This digraph has at least one cycle. Let K (S)

be the set of students belonging to some cycle. Then, match each student
in K (S) to her most preferred “mate for exchanging” (i.e., if si ∈ K (S),
then TTCsi (S, P ) = sh whenever sh is the maximal for Psi in S).

Let us define S2 = S \K (S). If S2 is empty, the algorithm stops. Other-
wise, go to Step 2.

. . .

Step t. Let us consider the digraph whose set of nodes coincides with St, and for
any two (possibly equal) students, si and sh, there is an arc from si to sh if sh
is the maximal for Psi in St. This digraph has at least one cycle. Let K (St)

be the set of students belonging to some cycle. Then, match each student
in K (St) to her most preferred “mate for exchanging” (i.e., if si ∈ K (St),
then TTCsi (S, P ) = sh whenever sh is the maximal for Psi in St).

Let us define St+1 = St \ K (St). If St+1 is empty, the algorithm stops.
Otherwise, go to Step (t+ 1).

Because there is a finite number of students, and for each t, it holds that St+1 (
St, this algorithm stops in a finite number of steps.

We can now provide a formal definition for the Compensating Exchange Places

Mechanism, which can be straightforwardly introduced by the next sequential pro-
cedure
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(1) Given the SCP (S, C,Φ,Π, Q), let us compute its Student Optimal Stable
matching, µSO;

(2) Let us describe the Compensating Placing Market associated with the pair
formed by (S, C,Φ,Π, Q) and µSO, CPM

(
µSO

)
; and

(3) Let us compute the Tops Trading Cycle outcome for CPM
(
µSO

)
.

Once the process above is complete, we can distinguish two groups of students:
first, those students who have not obtained a placement during the first phase (i.e.,
µSO (si) = si) and second, the remaining students. At the end of the process, the
former students will remain unassigned (i.e., µCEP (si) = µSO (si) = si), whereas
the latter students will have the possibility of improving their initial assignment,
namely µSO (si), if they are involved in the exchanging process guided by the
TTC rule.

Definition 15 [The Compensating Exchange Places Mechanism]

We define the Compensating Exchange Places Mechanism as the matching rule
that assigns to each given SCP, say (S, C,Φ,Π, Q), the matching, µCEP , such that
for each si ∈ S,

µCEP (si) =

{
si if µSO (si) = si

µSO
(
TTCsi

(
CPM

(
µSO

)))
otherwise

.

where

(a) µSO is the matching obtained when applying the SOSM to (S, C,Φ,Π, Q);
and

(b) TTC is the outcome for the Tops Trading Cycle rule when applied to the
Compensating Placing Market, CPM

(
µSO

)
, assigned to the initial SCP,

(S, C,Φ,Π, Q), and its Student Optimal Stable matching, µSO.

We can now establish the following result: the CEPM can be applied to yield
a τ -fair allocation. Therefore, Theorem 11 is a direct consequence of the result
below.
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Theorem 16 Let (S, C,Φ,Π, Q) be a SCP. Its Compensating Exchange Places

matching, µCEP , is a τ -Fair allocation for such a problem.

A formal proof for this result can be found in the Appendix. Nevertheless, the
reader might find a heuristic explanation for why our result holds useful.

First, let us note that the µSO outcome is (constrained) Pareto efficient when
restricted to the set of equitable allocations; in other words, when considering a
given problem, (S, C,Φ,Π, Q), for every student, si, and any equitable matching,

ρsiµSO(si) ≤ ρsiµ(si).

Second, for each SCP, (S, C,Φ,Π, Q), and any matching, µ, the allocation, µ′,
obtained by exchanging the places accordingly to TTC,

µ′ (si) =

{
si if µ (si) = si

µ (TTCsi (CPM (µ))) otherwise
.

is Pareto efficient and obeys the fact that µ determines school placement for stu-
dents.

Together, the two observations above and µSO being equitable are crucial to
the determination that µCEP is τ -fair.

V. Characterizing the Set of τ -Fair Allocations

In this section, we present a complete description of the τ -fair assignments of
places.

The 2005 reforms in the Boston School System shifted the system from an
efficient, decentralized process, the so-called BM, to an equitable, decentralized
allocation mechanism, the SOSM.

If we concentrate on the trade-off between (BM) efficiency and (SOSM) eq-
uity, we can select any (τ -fair) intermediate procedure minimizing this trade-off.
As we pointed out in the previous section, this objective can be achieved by the
CEPM. Nevertheless, as Theorem 17 reports, there are other ways to reduce the
gap between efficiency and equity.
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Theorem 17 Let (S, C,Φ,Π, Q) be a SCP and µ be a matching. µ is τ -fair if and
only if

(a) µ is efficient, and

(b) For each student, si,

ρsiµ(si) ≤ ρsiµSO(si).

Theorem 17 establishes that the only Pareto-efficient allocations that are τ -
fair are those Pareto dominating the one that is implemented by the SOSM. Note
that this result yields some straightforward consequences. The first consequence,
which is the aim for Corollary 18, establishes that the unique allocation (if any)
that might be equitable and Pareto efficient is the Student Optimal Stable match-
ing. The second consequence, which is reflected in Corollary 19, reports that it is
not worthwhile to distinguish between allocative fairness and τ -fairness when the
former concept is non-empty. Therefore, the size of the set of τ -fair allocations
can useful for measuring the welfare loss induced by employing the SOSM.

Corollary 18 Let (S, C,Φ,Π, Q) be a SCP, and let F(S, C,Φ,Π, Q) denote the
set of its fair matchings. Then

F(S, C,Φ,Π, Q) ⊆
{
µSO

}
.

Corollary 19 Let (S, C,Φ,Π, Q) be a SCP. If its Student Optimal Stable match-
ing is Pareto efficient, then any τ -fair matching is a fair allocation.

VI. Strategizing the CEPM

We know that for every SCP, namely (S, C,Φ,Π, Q), its outcome (under BM) is
Pareto efficient and gives the students incentives to act strategically. The school in
which a student obtains a placement depends not only on her true characteristics
but also on the preferences she has revealed. Additionally, for each SCP, the
application of the BM combined with the students’ strategic behavior yields an
(expected) equitable allocation that might fail to be Pareto efficient.
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The use of the SOSM in the Boston area hinged largely on the realization
that students will play the BM strategically, which will, at best, induce equitable
allocations (see, e.g., Abdulkadiroğlu et al., 2005, Section IV). Under the SOSM,
students will reveal their preferences truthfully.

The CEPM is a combination of two strategy-proof mechanisms. First, we use
the SOSM; then, we apply the TTC. However, the combination of both mecha-
nisms cannot be strategy proof due to the impossibility of finding a Pareto-efficient
and strategy-proof mechanism that Pareto dominates SOSM (see, e.g., Abdulka-
diroğlu et al., 2009 or Kesten, 2010).

The violation of strategy-proofness does not necessarily imply easy manipu-
lability. However, it is not difficult to build examples of manipulation with the
CEPM.

Example 20 Let us consider the following SCP. S = {1, 2, 3}; C = {a, b, c};
Q = (1, 1, 1); and the ranking and priorities matrices are

Φ =

 1 2 3

2 1 3

3 1 2

 and Π =

 3 2 1

1 3 2

2 1 3

 .
The application of the student-proposed deferred acceptance algorithm, the

output of which is µSO with µSO (1) = b, µSO (2) = a, µSO (3) = c. There-
fore, the CEPM yields matching µCEP with µCEP (1) = a, µCEP (2) = b, and
µCEP (3) = c.

Student 3 can misrepresent her ranking by declaring

ρ′3 = (2, 1, 3) .

If the CEPM is applied in such a case, this student is allocated a place at school
b. Therefore, in such a case, student 3 can manipulate the CEPM.

Let us observe that student 3’s manipulation is related to a (sophisticated)
risky strategy. By declaring ρ′3, she provokes that, at the SOSM phase, student
1 is assigned a placement at b. Simultaneously, she secures a placement at a,
the best school from 1’s point of view but the worst school from her perspective.
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Therefore, at the trading step, student 3 forces student 1 to prefer to trade with
her, thus preventing student 2 from obtaining the unique placement available at
a. Because the SOSM is strategy-proof, when this student acts strategically, she
never obtains a placement in a school that is better (from her point of view) than
the one she would obtain by acting sincerely. Therefore, her only opportunity to
gain from misrepresenting her preferences comes from the following combination
of factors

(a) The student loses at the SOSM phase. However, due to this loss, she secures
a placement at a school that is desired by other students.

(b) This desirability allows the student to gain during the trading phase.

Let us observe that the success of a student’s manipulation strongly depends
on the information she has about the characteristics of her rivals.11 Roth and
Rothblum (1999) and Ehlers (2008) pointed out the difficulties associated with
manipulation in incomplete information environments. In particular, the absence
of complete information impedes the detection and exploitation of manipulation
opportunities. For example, schools that are at a similar geographic distance might
be almost identical from the student’s point of view. Additionally, the existence of
opportunities to manipulate requires not only a consensus on the best alternative
but preferences that are contrary to the general perception. If we assume that
the preferences of the students are strongly positively correlated, this possibility
decreases.

VII. Concluding Remarks

A philosophical position on the trade-off between equity and Pareto efficiency is
at the origin of the modification to the mechanism used in the Boston area. The
solution was to adopt the SOSM, which always selects an equitable allocation (see
the description provided in Abdulkadiroğlu et al., 2006). This reform precipitated
a debate in school districts such as New York and San Francisco. At the origin

11In terms of the difficulty associated with manipulating the system, we want to stress that
this strong requirement on knowing the characteristics of others is not necessary when the BM is
employed.
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of this debate was the objective to clarify, from a social perspective, the criteria
behind the selection of a specific allocation rule.

The solution adopted in Boston did not solve the efficiency-equity trade-off
that sparked the reform process. Moreover, there is evidence that the Boston re-
form generated allocations that produced large welfare losses (see Abdulkadiroğlu
et al. (2009), Erdil and Ergin (2008), or Kesten (2010), among others).

This paper provides an alternative approach to circumventing the efficiency-
equity dilemma. Our approach relies on a reinterpretation of the classical notion
of stability in the framework of matching markets. We propose an alternative way
to interpret the legitimacy of an agent’s claim against the equity of an allocation.
The notion of λ-equity embodies this idea and can be illustrated as follows:

When a student claims that an allocation fails to be equitable, she is
asked to propose an “alternative allocation”. Then, any other student
is asked whether, in her opinion, this alternative is equitable. A neg-
ative answer would only be justified by proposing a third allocation,
and so on. Therefore, the first claimant’s opposition to the DSB’s
proposal might induce an everlasting chain of objections and counter

objections, or, eventually, this chain will end with the first claimant’s
assignment of a place that she considers worse than that which she
was initially assigned.

λ-equity requires that objections against the DSB’s proposal that can be counter
objected should be disregarded. We find that λ-equity is a weaker notion of equity
and does not conflict with the objective of implementing a Pareto-efficient allo-
cation. In fact, the combination of the ideas of λ-equity and efficiency is at the
essence of τ -fairness.

We have also found a simple way to obtain τ -fair allocations, the procedure
called CEPM. This rule has a familiar flavor and can be implemented by introduc-
ing a minimal reform in some schooling systems, such as the procedure recently
adopted in the Boston area. In short, we allow students to exchange the placements
that were allocated to them in the actual system. This change, combined with our
redefinition of equity, allowed us to eliminate the trade-off between efficiency and
equity that was intrinsic to the previous formulation of the problem.
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In reference to the ability of the CEPM to implement τ -fair allocations, we
can say that, as far as we know, there is no DSB that already has a system in place
in which students are allowed to exchange their places. Nevertheless, there is
evidence that such a reform might be legally feasible. There are related situations
where agents are allowed to improve their initial allocation by exchanging their
rights. This evidence is abundant both in the ranges of civil servants and in the
army. For instance, civil servants are allowed to exchange their placements in
Spain,12 and a similar exchange can be performed in the US Army under the so-
called Enlisted Assignment Exchanges (SWAPS).13 Similar systems (i.e., agents
can exchange goods that they do not own, but they retain some rights) can be
found in some socially accepted systems, such as several international student

exchange programs or a recent kidney exchange14 program. Additionally, our
procedure shares some features with the proposals by the Ecole Démocratique

to reform the actual system in the French-speaking area of Belgium.15

12Art. 62 in the Spanish law that governs civil servants or Law 315/1964, B.O.E 15.02.1964.
This regulation can be obtained from http://www.ua.es/oia/es/legisla/funcion.htm.

13The reader is directed to http://usmilitary.about.com/od/armyassign/a/swap for further infor-
mation on this matter.

14Transplant services at the Ronald Reagan UCLA Medical Center provide some information
via the web page http://transplants.ucla.edu/body.cfm?id=112

15We would like to acknowledge Estelle Cantillon for pointing out these similarities.
The proposals by the Ecole Démocratique can be found in French on its web page
http://www.skolo.org/spip.php?article1126&lang=fr.

20

23

http://www.ua.es/oia/es/legisla/funcion.htm
http://usmilitary.about.com/od/armyassign/a/swap
http://transplants.ucla.edu/body.cfm?id=112
http://www.skolo.org/spip.php?article1126&lang=fr


References
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APPENDIX

A. The CEPM: An Example

This appendix provides an example illustrating how to compute the CEPM.
Let us consider the following SCP. S = {1, 2, 3, 4, 5, 6, 7, 8}; C = {a, b, c, d};
the capacity for each school is 2; and the Rankings and Priorities matrices are

Φ =



2 1 3 4

2 4 1 3

3 2 1 4

4 2 3 1

1 4 2 3

1 2 3 4

1 2 4 3

2 1 3 4


; and Π =


2 3 8 1 7 4 6 5

6 2 1 5 8 4 3 7

7 5 6 8 2 3 1 4

8 5 3 4 1 2 7 6

 .

The SOSM

The application of the student-proposed deferred acceptance algorithm, the output
of which is µSO, is summarized in the following table16

16A row in the table indicates the applications that each school receives at each step. The
students framed in a box are those whose applications are refused, whereas the remaining students
are tentatively accepted by the school.
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Step a b c d

1 5 , 6, 7 1, 8 2, 3 4

2 6, 7 1, 8 2, 3 , 5 4

3 6, 7 1, 3, 8 2 , 5 4

4 6, 7 , 8 1, 3 2 , 5 4

5 6, 8 1 , 3 , 7 2 , 5 4

6 1, 6, 8 3 , 7 2 , 5 4

7 1, 6 3 , 7 2 , 5 , 8 4

8 1, 2, 6 3 , 7 5 , 8 4

9 1, 2 3 , 6 , 7 5 , 8 4

10 1, 2 3, 7 5 , 6, 8 4

11 1, 2 3, 7 5 , 6 4, 8

µSO := 1, 2 3, 7 5, 6 4, 8

Therefore, the SOSM proposes to allocate a placement in school a to students 1

and 2; students 3 and 7 are accepted by school b; students 5 and 6 are placed at
school c; and, finally, students 4 and 8 will attend school d.

The Compensating Placing Market

As we mention in Section IV, a Placing Market is determined by the set of stu-
dents, S = {1, 2, 3, 4, 5, 6, 7, 8}, and a preference profile, P , denoting, for each
student, how she orders her “rivals” depending on an initial matching, µ. We in-
terpret the preferences determined by a student as her inclination to exchange the
placement that µ assigns to her with the other students. The idea of how to build
these preferences is guided by the following two principles.

(a) A student participates in this market if she obtains a positive net profit from
the exchange; and
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(b) A student, when exchanging, wants to maximize her utility (i.e., she tries
to secure a placement at the best school, according to her opinion about the
educational institutions).

In the case of CEPM, the initial matching is µSO, and a student orders two
agents, other than her, who have been located at the same school by “reversing the
schools ordering” proposed by the priority lists.

To illustrate how to compute the students’ preferences for exchanging, (Pci)ci∈S ,
we will concentrate on student 6. The process is the following

(1) Because her preferred school is a, and µSO (a) = {1, 2}, we note that her
two “tops for exchanging” are students 1 and 2. Moreover, because 2 =

πa1 < πa2 = 3, we note that

2 P6 1.

(2) Now, the second school in student 6’s preference list is b. Given that µSO (b) =

{3, 7}, we note that these students will be placed in the third and fourth po-
sitions according to P6. Because 1 = πb3 < πb7 = 3, it follows that

7 P6 3.

(3) Because the third school in student 6’s preference list is c, and µSO (c) =

{5, 6}, Principle (a) above indicates that

6 P6 5.

For our purposes, once student 6 has established her own position on P6, we
do not need to continue describing how the remaining students are ordered.
Nevertheless, for the sake of completeness, we will also explain how P6

orders students 4 and 8.

(4) Because µSO (4) = µSO (8) = d, and 4 = πd4 < πd8 = 6, we note that

8 P6 4.
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Summarizing, the preferences for exchange exhibited by student 6 are

2 P6 1 P6 7 P6 3 P6 6 P6 5 P6 8 P6 4,

or equivalently,

P6 := 2, 1, 7, 3, 6, 5, 8, 4.

Applying a similar argument to the remaining students, we can compute P ,
the description of which is

P1 := 7, 3, 1, 2, 6, 5, 8, 4

P2 := 6, 5, 2, 1, 8, 4, 7, 3

P3 := 6, 5, 3, 7, 2, 1, 8, 4

P4 := 4, 8, 7, 3, 6, 5, 2, 1

P5 := 2, 1, 5, 6, 8, 4, 7, 3

P6 := 2, 1, 7, 3, 6, 5, 8, 4

P7 := 2, 1, 7, 3, 8, 4, 6, 5

P8 := 7, 3, 6, 5, 8, 4, 2, 1

Therefore,CPM
(
µSO

)
= (S, P ), where S = {1, . . . , 8} is the set of students

and P is the preferences profile described above.

The Tops Trading Cycle rule

To continue with our illustrative example, we now compute the outcome for the
TTC rule when applied to the Compensating Placing Market that was previously
described.

Step 1. At the first step, the set of students coincides with S. To draw the next
digraph, we proceed as follows. A node is assigned to each student. We
draw an arc connecting si to sh if the latter is the top for Psi .

17

17For instance, because 7 is the top for P1, we draw an arc that departs from 1 and is incident to
7.
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1

2

3

7

5

4

6 8

Let us observe that the above digraph contains two cycles; the first includes
students 2 and 6, and the second contains only student 4. Therefore, these
three students exit from the market, and we can describe a “new market”
whose students are S2 = {1, 3, 5, 7, 8}

Step 2. At the second step, the set of students coincides with S2 described above.
We proceed in a similar manner to that explained in the previous step and
draw its corresponding directed graph.

1 3

7

5

8

There is clearly a cycle involving students 1 and 7. Therefore, K (S2) =

{1, 7}, and both students exit from the market, allowing us to consider the
residual market S3 = {3, 5, 8}.
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Step 3. In this step, the set of remaining students is S3. It is easy to see that there
are two cycles; one cycle contains student 3, whereas the other cycle only
includes student 5. Therefore,K (S3) = {3, 5} and S4 = {8}. To conclude,

Step 4. Because S4 is a singleton, we note that K (S4) = {8} and that S5 = ∅.
Given that each student is, at this point, involved in some cycle, the algo-
rithm stops.

Therefore, the outcome of the Tops Trading Cycle, applied to CPM
(
µSO

)
, is

si 1 2 3 4 5 6 7 8

TTC (si) 7 6 3 4 5 2 1 8

The Compensating Exchange Places Mechanism

To conclude the process, we must move from the initial matching µSO to the
matching that results from the exchange of places suggested by the Tops Trading
Cycle rule. For instance, because TTC (1) = 7, then

µCEP (1) = µSO (7) = b.

Therefore, the outcome of the CEPM for this example is

si 1 2 3 4 5 6 7 8

µCEP (si) b c b d c a a d

To conclude this example and with the aim of presenting a comparison for
the application of some allocation procedures relative to the data proposed in the
present example, let us consider Table 1. This table assigns each student two
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1 2 3 4 5 6 7 8
BM b 1 c 1 c 1 d 1 d 3 b 1 a 1 b 1
SOSM a 2 a 2 b 2 d 1 c 2 c 3 b 2 d 4
CEPM b 1 c 1 b 2 d 1 c 2 a 1 a 1 d 4

Table 1: Comparing School Choice Mechanisms

items: the school in which she secures a placement (first item) and the position of
this school in the student’s ranking (second item).

Let us note that,

(1) The solution proposed by the BM is not τ -fair. In fact, the pair
(
5, µSO

)
constitutes a justified fair objection to µBM ;

(2) When comparing the SOSM and the CEPM, it is clear that the latter Pareto
dominates the former. Moreover, both mechanisms yield λ-equitable allo-
cations.

B. A Proof for Proposition 4

To prove Proposition 4, let us consider the following School Allocation Problem.
S = {1, 2, 3} ; C = {a, b, c} ; Q = (1, 1, 1); and the ranking and priorities

matrices are

Φ =

 1 3 2

2 3 1

2 3 1

 and Π =

 3 2 1

2 1 3

1 3 2

 .

Note that there is only one stable matching in this type of problem, µ, such that
µ (1) = c; µ (2) = b; and µ (3) = a. Nevertheless, µ fails to be Pareto efficient
because µ′, defined as µ′ (1) = a; µ′ (2) = b; and µ′ (3) = c, Pareto dominates µ.
�
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C. A Proof for Theorem 17

This appendix introduces a formal proof for Theorem 17, which characterizes the
set of τ -fair allocations associated with each SCP. Let us remember that our result
establishes that a matching, µ, is τ -fair if it satisfies two properties. The first
property is Pareto efficiency, which is also required by Definition 10; the second
is that each student (weakly) prefers the placement that µ assigns to her over the
placement suggested by the SOSM,

ρsiµ(si) ≤ ρsiµSO(si). (1)

Proof of Theorem 17
Let (S, C,Φ,Π, Q) be a SCP, and let µ be a matching. We first show that if µ

is τ -fair, then it satisfies Condition (1). Note that by Definition 10, µ should be
Pareto efficient.

To meet our objective, let us assume by way of contradiction that µ does not
satisfy Condition (1). There should be a student, si, such that

ρsiµSO(si) < ρsiµ(si).

In this case, the pair
(
si, µ

SO
)

constitutes a justified, fair objection to µ, which
contradicts our hypothesis that µ is τ -fair.

In contrast, let us assume that µ is a Pareto-efficient allocation that satisfies
Condition (1). We will see that µ is τ -fair.

To reach a contradiction, let us assume that µ is not τ -fair. Then, because µ
is Pareto efficient, it should be a student-matching pair, (si, µ

′), that constitutes a
justified, fair objection to µ.

Therefore, by Definition 6 and Condition (1), we note that

ρsiµ′(si) < ρsiµ(si) ≤ ρsiµSO(si). (2)

Note that this relationship implies that µ′ (si) ∈ C. Let us denote such a school
by cj .

From Martínez et al. (2001), we know that for any matching µ̂, if ρsiµ̂(si) <
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ρsiµSO(si) for some student, si, then µ̂ is not equitable. In particular, this implies
that matching µ′ fails to be equitable. Therefore, there should be a student, sh,
and a school, ck, such that

(1) ρshck < ρskµ′(sh), and

(2) πcksh < πcksl for some sl 6= sh, or |µ′ (ck)| < qck .

Therefore, if we consider any matching, µ′′, such that µ′′ (sh) = ck, the pair
(sh, µ

′′) describes a counter objection to µ, which contradicts the hypothesis that
µ fails to be τ -fair. �

D. A Proof for Theorem 16

To prove Theorem 16, let us consider a School Allocation Problem, (S, C,Φ,Π, Q),
and let µSO be its student optimal stable matching.

Let us observe that when describing the Compensating Places Market, the
preferences for exchange held by a student, si, such that µ (si) 6= si, verify that
for any other student sh,

shPsisi ⇒ ρsiµ(sh) < ρsiµ(si).

By construction, the Tops Trading Cycle satisfies the requirement that for each
Placing Market, (S, P ), and any si ∈ S such that TTCsi (S, P ) 6= si,

TTCsi (S, P )Psisi.

This implies that for each student, si

ρsiµCEM (si) ≤ ρsiµSO(si). (3)

Because µSO is equitable, we note the following.

(a) If for some student, si, µSO (si) = si, then (S, C,Φ,Π, Q) is a scarce SCP,
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i.e.,

n >
∑
cj∈C

qcj , and

(b) If there is some school, cj , that has vacancies at µSO, i.e.,

∣∣µSO (cj)
∣∣ < qcj ,

then for each student, si,

ρsiµSO(si) ≤ ρsicj .

To complete our proof, let us assume that µCEM is not τ -fair. Taking into account
Equation (3) and Theorem 17, we note that µCEM should not be Pareto efficient.
Therefore, there should be a matching, µ, such that for each student, si ∈ S

ρsiµ(si) ≤ ρsiµCEM (si), and

there should be a student, sh, such that

ρshµ(sh) < ρshµCEM (sh). (4)

Let S denote the set of students fulfilling Condition (4). By Equation (3) and
given that µSO is equitable, we note that for each si ∈ S, there is another student,
sh, in S such that µ′ (si) = µCEM (sh). This finding implies that si’s preferences
for exchange satisfy the requirement that

shPsiTTCsi
(
CPM

(
µSO

))
. (5)

To reach a contradiction, for each student si ∈ S, we let t (si) denote the stage
at which it is determined TTCsi

(
CPM

(
µSO

))
. Without loss of generality, let us

assume that si ∈ S is such that t (si) ≤ t (sh) for each sh ∈ S. By Equation (4),
we note that in the digraph for stage t (si), there is no arc from si to µCEM (si).

This finding constitutes a contradiction, which points out that there is no
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matching, µ, Pareto dominating µCEM . �
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