
W
o

rk
in

g
 p

ap
er

s
W

o
rk

in
g

 p
ap

er
s

n
g

 p
ap

er
s

Jorge González Chapela

Things that make us different:
analysis of variance in the
use of timead

serie

WP-AD 2010 -18



 

 
 
 
Los documentos de trabajo del Ivie ofrecen un avance de los resultados de las 
investigaciones económicas en curso, con objeto de generar un proceso de 
discusión previo a su remisión a las revistas científicas. Al publicar este 
documento de trabajo, el Ivie no asume responsabilidad sobre su contenido.  
 
Ivie working papers offer in advance the results of economic research under way 
in order to encourage a discussion process before sending them to scientific 
journals for their final publication. Ivie’s decision to publish this working paper 
does not imply any responsibility for its content. 
 
 
La Serie AD es continuadora de la labor iniciada por el Departamento de 
Fundamentos de Análisis Económico de la Universidad de Alicante en su 
colección “A DISCUSIÓN” y difunde trabajos de marcado contenido teórico. 
Esta serie es coordinada por Carmen Herrero. 
 
The AD series, coordinated by Carmen Herrero, is a continuation of the work 
initiated by the Department of Economic Analysis of the Universidad de 
Alicante in its collection “A DISCUSIÓN”, providing and distributing papers 
marked by their theoretical content. 
 
 
Todos los documentos de trabajo están disponibles de forma gratuita en la web 
del Ivie http://www.ivie.es, así como las instrucciones para los autores que 
desean publicar en nuestras series. 
 
Working papers can be downloaded free of charge from the Ivie website 
http://www.ivie.es, as well as the instructions for authors who are interested in 
publishing in our series. 
 
 
 
 
 
 
 
 
 
Edita / Published by: Instituto Valenciano de Investigaciones Económicas, S.A. 
 
Depósito Legal / Legal Deposit no.: V-1699-2010 
 
Impreso en España (abril 2010) / Printed in Spain (April 2010)  



 
 

WP-AD 2010-18 
 

Things that make us different: 
analysis of variance in the use of time*

 

 

Jorge González Chapela** 

 
 
 
 
 

Abstract 
 

The bounded character of time-use data poses a challenge to the 
analysis of variance based on classical linear models. This paper 
investigates a computationally simple variance decomposition 
technique suitable for these data. As a by-product of the analysis, a 
measure of fit for systems of time-demand equations that possesses 
several useful properties is proposed. 
 
Keywords: Time allocation, multivariate regression, deviance. 
 
JEL Classification: C52, J22. 
 
 
 
 
 
 
 
 
 
 
 
 
 
*A previous version of this paper, circulated as “Things that make us different: 
Analyzing individual-level heterogeneity in the use of time,” benefited from the 
comments of Lola Collado, Daniel Hamermesh, Ángel López, Andrés Romeu, and 
seminar participants at Universidad de Alicante and Universidad Politécnica de 
Cartagena. I am also grateful to participants in the 31st IATUR meeting at 
Lueneburg, particularly to Jay Stewart, and to a referee. Financial support from 
the Instituto Valenciano de Investigaciones Económicas (Ivie) and the Spanish 
Ministry of Education (ECO2008-05721/ECON) is gratefully acknowledged. 
** Jorge González Chapela: University of Alicante. E-mail: jorge@merlin.fae.ua.es. 
 

 3



 1

1 Motivation 

The analysis of variance (ANOVA) is a collection of statistical techniques utilized in a 

wide variety of disciplines for different, although interrelated, purposes. As commonly 

applied, the decomposition of variance is based on a linear regression model which, although 

generally appropriate for data with Normal errors, is considered inadequate when the 

dependent variable is bounded. McCullagh and Nelder (1989, p. 35), for example, point out 

that the linear model inadequacy is reflected in that ANOVA sums of squares are no longer 

appropriate measures of the contribution of a factor to the total discrepancy observed in the 

data. 

The bounded nature of time-use data, which represent proportions of a given total 

time, poses therefore a challenge to classical ANOVA. Nevertheless, ANOVA has been the 

technique generally utilized for screening the effects of explanatory factors over the allocation 

of time,1 perhaps due to the technical and computational simplicity allowed by the linear 

model. In this paper, we investigate a computationally simple variance decomposition 

technique suitable for time-use data. The many uses of ANOVA, including exploratory data 

analysis, testing means across groups of observations, and testing nested sequences of models, 

and the increasing availability and usage of time-use data,2 calls for an adequate variance 

decomposition technique for this kind of data. 

We start off in Section 2 by reviewing the literature on specification and estimation of 

systems of time-demand equations. Because of its robustness to distributional failure and 

computational simplicity, we advocate the multinomial logit specification and quasi-

                                                 
1 See, e.g., Gershuny (2000, Ch. 6) and Freeman and Schettkat (2005). 

2 An up-to-date description of data and developments in time-use analysis can be found at the 

University of Oxford’s Centre for Time Use Research, http://www.timeuse.org/. 
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likelihood estimation method proposed in Mullahy and Robert (2008) as an attractive 

statistical approach for time-use data. Then, in Section 3, we set out the statistical theory 

needed for performing an analysis of variance on a sample of time-use data based on Mullahy 

and Robert’s statistical framework. As a generalized measure of discrepancy between a 

sample of time-use data and a set of fitted values derived from a model we use the concept of 

deviance. Our main result, which is a particular case of a more general theory presented for 

example in McCullagh and Nelder (1989, Ch. 9), is that if we are willing to specify the mean 

and variance function of a sample of time-use data as those of a one-trial multinomial 

distribution, this distribution could be then utilized to assess the deviance as if it had truly 

generated the data. Thus, the scaled value of the resulting quasi-likelihood would allow us to 

assess the contribution of a factor to the total deviance observed in the data. 

To our knowledge, there is no goodness-of-fit measure for systems of time-demand 

equations. In Section 4, and as a by-product of the previous analysis, we propose an 2R  

measure for systems of time-demand equations that possesses several important properties. 

Our 2R  is an extension of Hauser’s (1978) 2pseudo-R  for multinomial regression models that 

can be computed using quasi-likelihood statistics, instead of maximum likelihood statistics as 

in Hauser’s original formulation. The new measure may be for example interpreted in a 

similar way to 2R  in the linear regression context, namely as the fraction of variation of the 

dependent variable accounted for by the explanatory variables. 

Section 5 illustrates the previous methods on a sample of time-use data taken from the 

Spanish Time Use Survey. The results of sequential and partial analysis of deviance reveal 

that employment status is the major contributor to deviance in the allocation of time between 

noon and 1 pm on a representative weekday, whereas the proposed 2R  suggests that the 

logarithm of age fits better the data than age itself. Section 6 offers some conclusions. 
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2 Specification and Estimation of a System of Time-Demand 

Equations 

In multivariate analyses of the allocation of time, the total time analyzed ( )T  is generally 

classified into M  mutually exclusive and exhaustive-of-T  activities. Then, letting mt  denote 

the amount of time devoted to activity m  and ( )21, , , Kx x≡x …  represent a 1 K×  vector of 

explanatory variables, a linear form for the regression of mt  on x  is commonly specified, 

 ( ) , 1, , ,m mE t m M= =x xβ …  (1) 

where mβ  is a 1K ×  vector of parameters. As it seems natural for an analysis of variance 

exercise, we assume that the same set of explanatory variables shows up in each of these M  

linear regressions, though this assumption is not necessary and could be relaxed. 

In such a framework, the equation-by-equation Ordinary Least Squares (OLS) is a 

logical estimator for the parameters of (1), for it is easy to apply, it has good econometric 

properties, and it automatically takes into account the natural requirement that predicted times 

must add up to T . Nevertheless, the OLS estimator can not preserve that predicted times lie in 

the interval [ ]0,T , and, given the bounded character of the dependent variables, the linear 

model implication of constant partial effects can not be literally true unless the range of x  is 

severely restricted. In practice, both drawbacks seem to be counterbalanced by the technical 

and computational simplicity allowed by the linear model. 

For systems of equations in which the components of the multivariate dependent 

variable are non-negative, may take on certain values with positive probability, and add up to 

a constant, Wales and Woodland (1983) developed two alternative econometric models 

estimated by the maximum likelihood principle. Although both approaches yield parameter 

estimates with good econometric properties, we think that the technical and computational 
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complexities involved in Wales and Woodland’s approaches make them more appealing for 

final data analysis3 than for exploratory decomposition of variance exercises. 

In an article published in 1996, Papke and Wooldridge developed an attractive 

specification as well as a simple quasi-likelihood estimation method for a regression model of 

a dependent variable bounded between 0 and 1. More recently, Mullahy and Robert (2008) 

have generalized the Papke and Wooldridge approach to the context of a complete system of 

time-demand equations where the total time analyzed is normalized to 1. The population 

regression considered in Mullahy and Robert (2008) is of the multinomial logit form, 

 ( ) ( )
( )1

exp
, 1, , ,

exp
m

m M
kk

E y m M
=

= =
∑

xβ
x

xβ
…  (2) 

where / , 1, ,m my t T m M= = … . This nonlinear specification ensures for example that the 

predicted value of my  lies in the interval ( )0,1 , that the sum from 1 to M  of the predicted smy  

adds up to 1, and that the partial effect of jx  on ( )mE y x  is not constant, but depending on x . 

Another important feature is that equation (2) is well defined even if every my  can take on 0 

or 1 with positive probability. The normalization 1 =β 0  is generally imposed for identification 

purposes. 

A particular quasi-likelihood method is advocated in Mullahy and Robert (2008) to 

estimate the parameters of (2). The multinomial logit log-likelihood function 

 ( ) ( )( )( )1 1
ln expM M

m m km k
l y

= =
≡ −∑ ∑b xb xb , (3) 

where ( )2, , , M
′′ ′ ′≡b 0 b b…  is a generic element of the parameter space, is an objective function 

of the class associated with linear exponential probability distributions. Given the availability 

                                                 
3 Performed, for example, in Dong, Gould, and Kaiser (2004) and Prowse (2009). 
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of a sample of N  independent observations ( ){ }, : 1,2, ,i i i N=x y … , where ( )1, ,i i iMy y ′≡y … , the 

quasi-maximum likelihood estimator (QMLE) of ( )2, , , M
′′ ′ ′≡β 0 β β…  obtained from the 

maximization problem 

 ( )1
max N

ii
l

=∑b
b , (4) 

is consistent for β  and asymptotically normal provided that equation (2) holds.4 In other 

words, although the conditional-on- x  probability distribution of the random vector y  is not 

multinomial, if the conditional mean is correctly specified the fact that the assumed 

probability distribution is linear exponential makes the QMLE β̂  to have satisfying 

econometric properties regardless of the true distribution of y  given x . Although technically 

more complex than the equation-by-equation OLS estimator, this QMLE is not much more 

difficult to compute, for, as Mullahy and Robert (2008) point out, it can be implemented using 

minor modifications of ordinary multinomial logit estimation algorithms. 

The asymptotic covariance matrix of the multinomial logit QMLE shares the general 

shape of the QMLE variance matrix given for example in Gourieroux et al. (1984). In the 

particular case that 

 ( ) 2
i i iV σ=y x V , (5) 

where 2σ  denotes a dispersion parameter, iV  represents a variance function with thmk  

element ( )im imk ikp pδ − , 

 ( )
( )1

exp

exp
i m

im M
i kk

p
x β

x β
=

≡
∑

, (6) 

                                                 
4 A general exposition of the properties of quasi-maximum likelihood estimators is provided 

in Gourieroux et al. (1984), for example. 
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and imkδ  is an indicator variable equal to 1 if m k=  and equal to 0 if m k≠ , the asymptotic 

covariance matrix of β̂  could be simply estimated as 

 2 1ˆσ̂ −A . (7) 

Following McCullagh and Nelder (1989), 

 ( ) ( ) ( )1 22ˆ ˆ ˆ ˆ1im im im im
im

NM N MK y p p pσ −= − − − −∑ , (8) 

while 
 ( )1

ˆ ˆN
í i ii

A V x x
=

′≡ − ⊗∑ , (9) 

the symbol ⊗  denoting the Kronecker product. 

3 Variance Decomposition in a System of Time-Demand Equations 

The analysis of variance is a useful statistical method for screening the effects of explanatory 

factors and their interactions on a possibly multidimensional dependent variable. Its 

fundamental technique is a partitioning of the total sum of squares of a dependent variable 

into a component related to the factors included in the model and a residual component: 

 ( ) ( ) ( )2 2 2ˆ ˆi i i i
i i i

y y y y y y− = − + −∑ ∑ ∑ , (10) 

where iy  denotes a data value, ˆiy  is a value predicted by the model being fitted, and y  is a 

sample average. As it is well known, the partitioning in (10) holds in the ordinary regression 

analysis of an unbounded response variable, but it does not generally apply when the response 

variable is bounded and a nonlinear regression model for ( )E y x  has to be estimated. 

Nevertheless, the literature on generalized linear models (see for example the monograph by 

McCullagh and Nelder, 1989) has generalized the analysis of variance to certain non-linear 

contexts based on the concept of deviance. In the remainder of this section, we present the 

concept of deviance in connection with the Kullback-Leibler distance function, and we show 

how the deviance can be used to assess the discrepancy to data of a non-linear model 
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estimated by maximum likelihood. Then, we show how to compute the deviance in a sample 

of time-use data when there is insufficient information to construct a likelihood function. The 

concepts presented next are established results that are re-stated here for readability. 

Let 
i

fy  and fp  denote two absolutely continuous probability distributions associated to 

the 1M ×  random vector y  that differ only in terms of their means: 
i

fy  is centred at a 

realization of y  (denoted iy ), whereas fp  is centred at [ ]E =y p . A standard measure of 

discrepancy between 
i

fy  and fp  is the Kullback-Leibler (KL) divergence, 

 ( ) ( ) ( )( ), 2 ln
i iiK E f fy y py p y y≡ , (11) 

where 
i

Ey  refers to expectation with respect to 
i

fy  and the factor 2 has been added for 

convenience. The KL divergence averages a measure of discrepancy between the two 

probability distributions over their support, giving more weight in this average to values of 

higher probability, as determined by 
i

fy . Thus, although the argument is not defined when 

( ) ( ) 0
i

f fy py y= = , such values of y  have no effect when computing the average. The fact that 

( ), 0iK y p ≥ ,5 with equality if and only if 
i

f fy p≡ , may lead us to think of ( ),iK y p  as 

representing a distance between iy  and p . But since K  is asymmetric in its arguments, the 

term deviation or divergence is generally preferred. 

Efron (1978) showed that when f  belongs to the linear exponential family (LEF) of 

probability distributions, the expectation in (11) drops out and ( ),iK y p  is simply given by 

 ( ) ( ) ( )( ), 2ln
ii i iK f f≡ y py p y y . (12) 

                                                 
5 ( ),iK y p = ∞  is allowed, which occurs when 0

i
fy >  and 0fp =  for some y . 
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Expression (12), which measures the discrepancy between the probability distributions 
i

fy  

and fp  just at the point iy , is called the deviance (or component of deviance). The deviance is 

generally regarded a goodness of fit measure, for if a parametric model for p  were specified, 

the deviance would quantify the prediction error in using p  to predict iy .6 As an example, if 

f  represented a one-parameter Gaussian density with 2 1σ = , the deviance would be 

equivalent to ( )2
iy p− , a loss criterion whose minimization is the basis of several estimators, 

including OLS. 

Given a sample of N  independent observations and a particular data generating 

process for the data, denoted fp , the estimated deviance between the observations 

( )1, , N=Y y y…  and the fitted values ( )1
ˆ ˆ ˆ, , N=P p p…  would be given by 

 ( ) ( ) ( )( )ˆ1
ˆ, 2 ln ln

i i

N
i ii

K f f
=

≡ −∑ y pY P y y . (13) 

The term ( )ˆ1
ln

i

N
ii

f
=∑ p y  is the estimated log likelihood based on fp . In the simplest case, fp  

has an 1M ×  vector of parameters (the null model), giving rise to a common vector of fitted 

values for all the siy . The resulting estimated deviance might be called the data total 

deviance, ( )ˆ,K 0Y P , where the sub-index 0  refers to fitted values obtained from the null 

model. As an example, if f  represented a one-parameter Gaussian density with 2 1σ = , and 

estimation were done by minimizing squared error loss, the total deviance would be the total 

sum of squares, ( )
2

1

N
ii

y y
=

−∑ . At the other extreme, fp  contains as many 1M ×  vectors of 

parameters as observations (the full model), and the fitted values derived from it match the 

data exactly, leaving no room for deviance. In this case, fp  achieves its maximum log-

                                                 
6 If a dispersion parameter, 2σ , further characterized f , the discrepancy of the model to data 

would be scaled by 2σ . 
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likelihood, denoted ( )1
ln

i

N
ii

f
=∑ y y . The difference ( ) ( )ˆ ˆ, ,K K−0Y P Y P  is a measure of the 

reduction in deviance achieved by the fitted model, i.e., due to the inclusion of explanatory 

variables. 

The foregoing discussion assumed the process by which the data were generated was 

known, but often this process is unknown. We may, however, be able to estimate the deviance 

if we are willing to specify certain features of the data. Let the mean and variance function of 

y  be those of a linear exponential probability distribution, denoted f  in (15). Then, as shown 

for example in McCullagh and Nelder (1989, Ch. 9), the deviance between the observations 

( )1, , N=Y y y…  and the fitted values ( )1
ˆ ˆ ˆ, , N=P p p…  can be computed as 

 ( )ˆ2 ;Q P Y− , (14) 

where 

 ( ) ( ) ( )( )ˆ1
ˆ ; ln ln

i i

N
i ii

Q f f
=

= −∑ p yP Y y y  (15) 

is the (estimated) quasi-likelihood for fp  based on data y , which generally differs from the 

log-likelihood due to the presence of the constant ( )1
ln

i

N
ii

f
=∑ y y . Note that there is no support 

restrictions in calculating the quasi-likelihood, so the iy  need not belong to the support of f . 

In the case of a sample of time-use data, we may assume that the vector y  has conditional 

mean p  with thm  element as given in (2) and covariance matrix ( )V y x  as specified in (9), 

which, except for the presence of 2σ , are the mean and variance of a one-trial multinomial 

distribution. The quasi-likelihood would be then given by 

 ( ) ( )( )( )( )1 1 1 1
; ln exp lnN M M M

im i m i k im imi m k m
Q y y y

= = = =
= − −∑ ∑ ∑ ∑P Y x b x b , (16) 

the data total deviance could be computed as ( )ˆ2 ;Q− 0P Y , and the reduction in deviance 

achieved by the inclusion of explanatory variables would be ( ) ( )( )ˆ ˆ2 ; ;Q Q− −0P Y P Y . 
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An interesting property of LEF models that use the canonical link is that the KL 

divergence exhibits the Pythagorean property (see Hastie, 1987, pp. 19-20; Simon, 1973): 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ, , ,K K K= +0 0Y P Y P P P . (17) 

In this case, the difference ( ) ( )ˆ ˆ, ,K K−0Y P Y P  can be interpreted not only as the reduction in 

deviance due to inclusion of explanatory variables, but also as the deviance explained by the 

regression model, ( )ˆ ˆ,K 0P P . Since 

 
1

ln , 1, ,m
m

p m M
p

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
xβ … , (18) 

the mean function specified in (2) corresponds to the canonical link of the multinomial 

distribution. Hence, if the mean and variance function of a sample of time-use data are those 

of a multinomial distribution, it turns out that 

 ( ) ( ) ( )( )ˆ ˆ ˆ ˆ2 ; 2 ; ;Q Q Q− = − +0 0P Y P Y P P , (19) 

and the difference ( ) ( )( )ˆ ˆ2 ; ;Q Q− −0P Y P Y  would equal the deviance explained by the 

regression model. 

4 An R-Squared Measure of Goodness of Fit for Systems of Time-

Demand Equations 

A commonly reported goodness-of-fit statistic in the standard linear regression model is the 

coefficient of determination, or 2R , which, among other possible interpretations, generally 

conveys the intuitive meaning of fraction of variation of the dependent variable explained by 

the explanatory variables. It is well known, however, that the direct application of this statistic 

to nonlinear contexts is troublesome, for it can lie outside the [ ]0,1  interval and decrease as 

explanatory variables are added. For this reason, alternative 2 -typeR  goodness-of-fit statistics 
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(generally called 2pseudo- sR ) have been constructed for particular nonlinear models using a 

variety of methods. For multinomial regression models, Hauser (1978) proposed a 2pseudo-R  

derived from information theory and calculated using maximum likelihood statistics which, 

among other satisfying properties, lies between 0 and 1 and is non-decreasing as explanatory 

variables are added. Later on, Cameron and Windmeijer (1997) proposed a 2pseudo-R  

measure based on the KL divergence for exponential family regression models estimated by 

Maximum Likelihood, of which Hauser’s goodness-of-fit statistic is a particular case. 

In this section, we draw upon the exposition in Cameron and Windmeijer (1997) to 

extend Hauser’s 2pseudo-R  measure to be computed using QML statistics. We also 

reinterpret Hauser’s 2pseudo-R  in the light of the deviance measure of discrepancy defined 

above. A possible extension of Cameron and Windmeijer’s 2pseudo-R  measure to be 

computed using QML statistics is left for future research. 

Under the conditions that let 2Q−  to be a measure of deviance, a measure of the 

proportionate reduction in total deviance achieved by the fitted regression model can be 

calculated as: 

 ( ) ( )2 ˆ ˆ1 ; ;QR Q Q= − 0P Y P Y . (20) 

The 2
QR  has the following properties: 

1. 2
QR  is non-decreasing as explanatory variables are added. Proof: The QMLE 

maximizes ( );Q P Y , which will therefore not decrease as explanatory variables are 

added, i.e., as constraints on the coefficients are removed. 

2. 20 1QR≤ ≤ . Proof: The lower bound of 0  occurs if inclusion of explanatory variables 

leads to no change in the fitted values, and the upper bound occurs when the model fit 

is perfect. 
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3. 2
QR  is a scalar multiple of the quasi-likelihood ratio (QLR) test statistic for the 

hypothesis that the coefficients of all the explanatory variables, save the constants, are 

0 . Proof: Re-expressing 2
QR  as ( ) ( )( ) ( )ˆ ˆ1 1

ˆln ln ;
i

N N
i ii i

f f Q
= =

−∑ ∑0p p 0y y P Y , where ˆ 0p  is 

the vector of fitted values derived from the null model, it turns out that 

( )
2

2 ˆ
ˆ2 ;
u

QR QLR
Q
σ

=
− 0P Y

, where 2ˆuσ  is a consistent estimate of 2σ  obtained from 

unrestricted estimation. 

4. 2
QR  can be equivalently expressed as 

 
( )
( )

2
ˆ ˆ;
ˆ ;

Q

Q
R

Q
=

0

0

P P

P Y
, (21) 

where ( )ˆ ˆ;Q 0P P  is (up to the factor 2− ) the estimated deviance between the null model and 

the fitted model. Hence, 2
QR  could be equivalently interpreted as the fraction of deviance 

explained by the fitted model. Proof: See the discussion surrounding expression (19). 

Properties 1 and 2 are standard properties often desired for squaredR −  measures. 

Property 3 generalizes a similar result for the linear regression model under normality 

(Anderson, 1958), and has the practical intent of avoiding conflicting signals between the 

ranking of models generated by 2
QR  and the related statistical test. Property 4 is also desirable 

for it allows 2
QR  to be interpreted similarly as the usual squaredR −  in the linear regression 

model: either as the proportionate reduction in the deviance due to inclusion of explanatory 

variables, or as the fraction of deviance explained by the regression model. 
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5 Application 

As an illustration of the previous methods, we perform an analysis of deviance on a sample of 

time-use data as well as a test of non-nested hypotheses using 2
QR . Data are from the Spanish 

Time Use Survey (STUS), which between October 1, 2002, and September 30, 2003, 

interviewed a representative sample of the non-institutionalized population. Among other 

information, all sample members aged 10 years old or older were requested to list their 

activities in every 10-minutes slot of a particular 24-hours cycle.7 

Our sample contains 2,341 persons, who were selected following these criteria: 

persons must be 10 years old or older, they must live in Galicia—a north-western region of 

Spain, the time diary must pertain to a weekday, and the potential explanatory variables 

(detailed below) must code valid and non-missing answers. Following the suggestions of Ås 

(1978), these persons’ allocation of time to main activities was classified into four aggregate 

time uses: necessary time (made up mainly of eating, sleeping, and cleansing), contracted 

time (working in the market, searching for job, studying), committed time (including 

housework and caring for children), and free time (volunteering, exercising, etc.) Time 

travelling was classified according to the declared purpose of the trip. 

                                                 
7 The STUS sample is a two-stage sample. At a first stage, selection was from a list of 

secciones censales, which are clusters of housing units generally comprising between 500 and 

2000 inhabitants. The sample of secciones censales was uniformly distributed along the 52 

weeks of the sample period, with half of the housing units in each sección censal being 

assigned a weekday (Monday to Thursday) and half a weekend day. The housing units 

themselves, in which all residents aged 10 years old or older were asked to fill in a time diary, 

were selected at the second stage. The STUS is designed to produce reliable estimates at the 

region and country level. 
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The variables whose inclusion in x  is to be assessed are employment status, sex, child 

status, household income, health status, completed schooling, and trimester of interview. Each 

of these factors is represented by a set of dummy variables whose cardinality is generally 

determined by the number of answer alternatives in the corresponding survey question. In two 

cases, however, the answers were simplified: employment status represents only two 

outcomes: employed (working full- or part-time or receiving education) and non-employed 

(rest of situations); child status, by which we mean the number and age of co-resident 

children, has three possible values: being part of a family with no children, being part of a 

family whose youngest child is 5 years or younger, or being part of a family whose youngest 

child is between 6 and 17 years. Of course, many other factors could be relevant for 

explaining the allocation of time on weekdays in Galicia, but in order to simplify the 

exposition, only these seven factors are considered. (Below, in a non-nested model selection 

exercise, we shall discuss the introduction of age as an additional explanatory variable.) For 

table layout simplicity, possible overlaps among these factors are ignored. 

Although STUS respondents do provide information on the allocation of time for a 

complete 24-hours cycle, we focus on the allocation of time just during one hour of the 

assigned diary day, specifically between noon and 1 pm. We do this to take into account the 

intraday variability in the timing of activities, which, if the day were selected as the unit of 

analysis, would be obscured (Winston, 1982). Indeed, the seven potential explanatory factors 

listed above are not equally significant for explaining the allocation of time in each of the 24 

parts that the day is divided into. In our sample, the hour between noon and 1 pm is the part in 

which these factors are capable of explaining the largest fraction of deviance, the lowest 

fraction explained being between 10 pm and 11 pm. 

Tables 1 and 2 record, respectively, the results of sequential and partial analyses of 

deviance on our time-use data. The sequential analysis of deviance table illustrates a method 
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of organizing a series of model comparisons tests which is relevant when explanatory factors 

are added one at a time, the order generally based on judgment and/or convention. In this 

case, the order, which is given in the Source column of Table 1, is based on our own 

presumptions about causal priority. The sequential deviance for a factor is the gain in 

prediction from a model including that factor plus those preceding it in column 1 of Table 1, 

over a model including the preceding factors only. Thus, for example, the sequential deviance 

for Child status is the gain in prediction from a model including Employment status, Sex, and 

Child Status over a model including Employment status and Sex only. By construction, the 

total deviance explained by all seven factors, called hereafter the model deviance, equals the 

sum of their sequential deviances. 

On the other hand, the partial analysis of deviance table examines the contribution of 

each factor over and above the joint contribution of the remaining factors. Hence, partial 

deviances are calculated as the model deviance minus the deviance in the sub-model in which 

only the factor of interest is eliminated. Thus, for example, the partial deviance for Child 

status is the gain in prediction from a model including all seven factors over a model 

excluding Child status. The sum of partial deviances does not generally add up to the model 

deviance because the explanatory terms tend to be correlated. 

The columns of both tables also list the degrees of freedom ( df ), the values of the 

quasi-likelihood ratio statistic (QLR ) for testing the statistical significance of each 

explanatory factor or of the overall model, and the p-values associated to the values of this 

statistic. The QLR statistic is computed based on the difference in the quasi-likelihood 

function with and without the restrictions imposed, that is, 

 
( ) ( )( )ˆ ˆ1 1

2

2 ln ln

ˆ
r u

N N
i ii i

u

f f
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σ
= =

− −
=

∑ ∑p py y
, (22) 
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where 2ˆuσ  is calculated as indicated in expression (8) using results from the unrestricted 

estimation (see Wooldridge, 2002, p. 370). The QLR statistic has a 2χ  limiting distribution 

under 0H , with degrees of freedom given by the number of restrictions being tested. Since 

each variable may have associated non-zero coefficients in three out of the four uses of time 

being explained, the degrees of freedom are given by three times the number of dummy 

variables representing the factor(s) whose statistical significance is evaluated. 

In our sample of 2,341 observations, the total deviance amounts to 5,183.6. The model 

is able to explain 1,807.6 when the seven explanatory factors are jointly included in x . Hence, 

the value of 2
QR  amounts to 0.3487, clearly conveying the message that this model provides a 

good fit for these data. Employment status is the major contributor to deviance in the 

allocation of time between noon and 1 pm on a representative weekday in Galicia: its partial 

deviance represents about 16 per cent of the total deviance observed in the data, whereas, by 

itself, it represents about 28 per cent of the total deviance. Both analyses reveal also sizeable 

sex, education, and health status effects, whereas they show modest effects associated to child 

status, household income, and trimester of interview. As shown in Table 2, sex, education, or 

health status are adding to the ability of the model to predict the allocation of time even when 

all other six factors are included in x . On the other hand, child status is not a significant 

predictor of the allocation of time in a model containing employment status and sex (Table 1), 

or when the model includes all other six factors (Table 2). Likewise, household income is not 

a significant predictor in a model with employment status, sex, and child status (Table 1), or 

when all other six factors are included in x  (Table 2). The figures for trimester of interview in 

both tables do coincide because the contribution to deviance of this factor in Table 1 is 

evaluated once all other six factors are included in x , the conclusion being that trimester of 

interview does not serve as a significant predictor of the allocation of time. 
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Table 1. Sequential analysis of deviance in time use 

 No. of observations: 2,341 2 .3487QR =  

Source Sequential 
deviance df 2σ̂  QLR Prob > QLR 

Model deviance 1,807.6 81 1.106 1,634 .0000 

Employment status 1,451.7 3 1.115 1,302 .0000 
Sex 219.7 3 1.100 199.7 .0000 
Child status 5.34 6 1.100 4.85 .5631 
Household income 21.50 21 1.108 19.41 .5588 
Health 38.71 12 1.090 35.51 .0004 
Education 58.52 27 1.095 53.44 .0018 
Trimester of interview 12.15 9 1.106 10.99 .2766 

Residual deviance 3,376.0 2,257    
Total deviance 5,183.6 2,338    
Notes: Author’s calculations based on a sample from the STUS. QLR: quasi-
likelihood ratio statistic, calculated as 2ˆsequential deviance σ . 2σ̂  is computed 
as shown in expression (8) using results from the corresponding unrestricted 
model. 

 

Table 2. Partial analysis of deviance in time use 

 No. of observations: 2,341 2 .3487QR =  

Source Partial 
deviance df QLR Prob > QLR 

Model deviance 1,807.6 81 1,634 .0000 

Employment status 847.8 3 766.5 .0000 
Sex 217.4 3 196.6 .0000 
Child status 9.15 6 8.27 .2189 
Household income 15.95 21 14.42 .8508 
Health 31.03 12 28.06 .0054 
Education 59.16 27 53.49 .0017 
Trimester of interview 12.15 9 10.99 .2766 

Residual deviance 3,376.0 2,257   
Total deviance 5,183.6 2,338   
Notes: Author’s calculations based on a sample from the STUS. QLR: quasi-
likelihood ratio statistic, calculated as 2ˆpartial deviance σ . 2σ̂ , computed as 
shown in expression (8) using results from the model with all seven factors 
included, equals 1.106 . 
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Besides quantifying the proportion of total deviance explained by the fitted model, the 

2
QR  proposed in this paper may also be useful to select among alternative non-nested models, 

provided that the models contain the same number of parameters. Suppose for example that 

we decided to add each person’s age to the set of seven explanatory factors considered so far, 

but we wonder whether it is better (in predictive ability terms) to add age in levels or its 

natural logarithm. It turns out that both age and its natural logarithm are statistically 

significant predictors for the allocation of time, but when age is added to x , 2
QR  increases to 

0.3510, whereas 2
QR  equals to 0.3514 when it is its natural logarithm the variable included in 

x . Although for a small margin, the logarithm function of age seems to fit better the data. 

6. Conclusion 

The multinomial logit specification and quasi-likelihood estimation method proposed in 

Mullahy and Robert (2008) make up an attractive statistical approach for time-use data. 

Additionally, if we are willing to specify the variance function of the data as that of a one-trial 

multinomial distribution, a variance decomposition exercise can be performed from ordinary 

quasi-likelihood statistics. From this output it is also possible to construct a measure of fit 

statistic that has the right interpretation at the limits of the unit interval, as well as an 

intuitively appealing interpretation between these limits. An empirical application to Spanish 

time-use data illustrates the usefulness of these methods: employment status is the major 

contributor to deviance in the allocation of time between noon and 1 pm on a representative 

weekday, whereas the logarithm of age seems to fit better the data than age itself. 
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