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Abstract 
 In this paper I attempt to explain why labor economists typically have not been able to 
find much evidence on compensating wage differentials for job disamenities, except for risk of 
death. The key insight here is that, although workers need to be compensated when their 
preferences do not match the requirements for performing a job task, the occurrence of 
mismatch also decreases productivity, reducing the surplus to be divided between workers and 
firms, and decreasing wages. I focus on the match between workers’ preferences for routine jobs 
and the variability in tasks associated with the job. Using data from the Wisconsin Longitudinal 
Study, I find that mismatched workers earn lower wages and that both male and female workers 
in routinized jobs earn, on average, 5.5% and 7% less than their counterparts in non-routinized 
jobs. However, once preferences and mismatch are accounted for, this difference decreases to 2% 
for men and 4% for women. These findings suggest that accounting for mismatch is important 
when analyzing compensating wage differentials.  
Keywords: compensating wage differentials, preferences, comparative advantage, mismatch, 
routine 
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1. Introduction 

For more than thirty years, labor economists have been trying to find evidence of wage 

premiums for jobs that involve such disamenities as physical effort, routine nature of 

the work, or job insecurity. According to the theory of compensating wage differentials, 

which goes back to Adam Smith and involves the framework of analysis outlined by 

Rosen (1974), workers must receive a wage premium for suffering from job 

disamenities, ceteris paribus. However, a survey of the evidence has concluded that 

“tests of the theory of compensating wage differentials are inconclusive with respect to 

every job characteristic except risk of death” (Borjas, 2005, Chapter 6, p. 224, italics 

added). 

It is obvious that on-the-job risk of death is an undesirable job characteristic, and 

the available empirical evidence indeed suggests that wages are positively associated 

with on-the-job risk of death (Viscusi and Aldy, 2003). However, many other job 

characteristics are not regarded as intrinsically undesirable by all workers. Instead, the 

desirability of a large number of job attributes depends crucially on individual workers’ 

tastes or personalities. Smith (1979) notes that the heterogeneity of worker tastes make 

testing for compensating wage differentials difficult. 

At first glance, preference heterogeneity may seem consistent with mixed results 

for repetitive work. For example, Lucas (1977) finds evidence of significant 

compensation for repetitive work, while Brown (1980) reports a negative estimate. 

Almost twenty years later, the mixed results are even more striking. Daniel and Sofer 

(1998) present some such results in their paper. 

One straightforward way to account for preference heterogeneity when looking 

for compensating wage differentials is to run separate wage regressions for workers 

with different preferences. Still, as I show in the next section, non-routine-preferring 
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workers earn lower wages in routinized jobs, which is contrary to what the theory of 

compensating wage differentials would predict. Therefore, preference heterogeneity by 

itself does not explain the puzzle of compensating wage differentials. 

Why, even after accounting for preference heterogeneity, are compensating 

wage differentials not observed or incorrectly signed? What if workers’ preferences for 

one type of job (or job attribute) are related to their productivity in performing that type 

of job? Workers’ tastes for a certain job attribute may correlate with their comparative 

advantage in such jobs. This is not the same as saying that preferences can have a direct 

effect on wages, independent of the type of job; i.e., workers with different preferences 

may have different absolute advantages in performing any job. Rather, the key insight 

here is that when workers’ preferences do not match job attributes, they are less 

productive. For example, non-routine-preferring workers are likely to be more 

productive in non-routinized jobs than routine-preferring workers. By the same token, 

routine-preferring workers are likely to be more productive in routinized jobs than non-

routine-preferring workers. 

If matching were perfect and each worker was assigned to a job according to 

comparative advantage, then the marginal routine-preferring worker would be willing to 

pay for working in a routinized job. Similarly, the marginal non-routine-preferring 

worker would need to be compensated for working in a routinized job. This would be 

consistent with the compensating wage differentials theory. 

However, as Lang and Majumdar (2004) pointed out, both casual empiricism 

and research show that matching is imperfect. More recently, Shimer (2007) 

acknowledges that skills and geographical location of workers are poorly matched with 

the skill requirement and location of jobs: unemployed workers are attached to an 

occupation and a geographic location where jobs with their skills are currently scarce. 
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Here, a similar point can be made. As I will show, a mismatch between workers’ 

preferences and job attributes does exist, and must be taken into account when looking 

for compensating wage differentials. Indeed, my findings indicate that not accounting 

for mismatch in wage equations could bias compensating wage differentials estimates. 

I propose a simple assignment model with Nash bargaining over wages for 

analyzing the role of mismatch when looking for compensating wage differentials. 

Assuming that observed workers are not in long-run market equilibrium, all workers, no 

matter what their preferences are, need to be compensated if working in the sector with 

a shortage of workers in the absence of pay differentials. However, only mismatched 

workers, who are less productive because their sectors do not match their preferences, 

are penalized. 

This simple framework offers a rationale for the existence of mixed estimates for 

compensating wage differentials. Indeed, in the literature the standard estimates may 

confound the effect on wages of the job attribute being analyzed with the one 

attributable to mismatch. 

This paper focuses on job routinization (i.e., jobs involving repetitive and 

routine tasks). I consider this is an important job attribute to study because estimates for 

it in the literature are mixed (e.g., Lucas, 1977, Brown, 1980, Daniel and Sofer, 1998). 

So, this analysis may shed new light on the sources of these mixed results. Furthermore, 

Table 1 shows that 29% of male workers and 36% of female workers report that “being 

able to do different things rather than the same things over and over” is “much more 

important than high pay”. Indeed, the Table indicates that variability of tasks is one of 

the most highly valued characteristics on the job for workers. This suggests that it 

should be easier to find compensating wage differentials for job routinization than for 

other job attributes. 
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Using data from the Wisconsin Longitudinal Study (WLS), I find that 

mismatched workers earn lower wages. My results also indicate that accounting for 

mismatch is important in obtaining more reliable estimates of compensating wage 

differentials. On average, male workers in routinized jobs are paid 5.5% less than 

workers in non-routinized jobs, after accounting for: differences in completed years of 

education, IQ measured at high school, high school rank, adult cognition, tenure, 

occupation and firm size. This difference decreases to 4.5% after accounting for 

differences in the preference for routine work. Furthermore, controlling for mismatch 

reduces the difference in average wages between male workers in routinized versus non-

routinized jobs to 2%. For female workers, the difference decreases from 7% to 4%. 

This paper is laid out as follows. Section 2 briefly describes the puzzle. It 

presents a brief review of the compensating wage differentials literature, offers a 

description of the WLS dataset, and takes a first look at the data. Section 3 presents a 

model that sheds light on the puzzle. Section 4 offers the empirical model. My results 

are in Section 5. Section 6 offers some robustness checks. Finally, Section 7 concludes. 
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2. The Puzzle 

2.1. A Brief Review 

More than two centuries ago, Adam Smith noted that workers with the same level of 

competence should be paid different wages if their working conditions are different. 

Rosen (1974) formalizes Adam Smith’s ideas showing that, under perfect competition, 

identical workers need to be compensated for job disamenities. 

The standard method for testing the prediction of this theory is to estimate a 

wage equation with characteristics of the job ( ) and personal characteristics ( ).                     

In general, the equation is of the form: 

 ln  (1)

The estimation of (1) using cross-sectional data identifies a market relationship between 

ln  and . If the market relationship is linear, then  measures the marginal cost of 

the disamenity for any worker who is in his most preferred job in long-run market 

equilibrium. For an undesirable job attribute, the theory predicts that 0. However, 

the empirical evidence on compensating wage differentials is mixed for job 

characteristics other than the risk of death (see Rosen (1986) for a classical discussion 

on the theory of equalizing differences). 

There have been several previous attempts at solving this puzzle. First, the 

estimates may suffer from selection bias: workers choosing a job with a specific 

undesirable attribute may have less distaste for such an attribute (e.g., Kostiuk, 1990). 

Second, working conditions are endogenously determined: richer individuals are more 

able to bargain over working conditions than poorer individuals (e.g., Garen, 1988). 

Third, omitted variables can also lead to biased estimates because of the correlation 

between unobserved skills, individual productivities, and the quality of working 

conditions (e.g., Brown, 1980, Duncan and Holmlund, 1983, Hwang, Reed and Hubard, 
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1992). Fourth, when working conditions are reported by the workers themselves, the 

estimates are likely to suffer from simultaneity bias (e.g., McNabb, 1989). Further, if 

answers to survey questions about working conditions are given in subjective terms, 

then the estimates are likely to suffer from subjectivity biases (e.g., McNabb, 1989). 

Finally, when worker conditions are defined using average occupation (or industry) 

characteristics and then matched to individual workers, misclassification bias may arise. 

From an empirical perspective, in this paper I take into account most of these 

biases. First, I control for preferences in my wage regressions to account for selection 

bias. Second, I use IQ measured at high school and high school rank as proxies for 

unobserved skills and individual productivities, and occupation and size of firm dummy 

variables to account for characteristics other than job routinization (the job attribute 

under study) that may be related to worker productivities. Third, job routinization is 

measured by time spent doing monotone tasks in order to circumvent the problem of 

subjectivity biases due to the use of answers given in subjective terms. Last but not 

least, I measure working conditions at the worker level, not at the occupation level, to 

avoid misclassification bias. 

From a theoretical point of view, this paper can be thought of as looking at the 

consequence of the possibility that observed workers are not in a long-run equilibrium.  

I present a very simple model: workers are randomly assigned to jobs and wages are 

determined by Nash bargaining. The model highlights the effect of mismatch on wages, 

which must be taken into account when looking for compensating wage differentials. 

I start by presenting the implications of preference heterogeneity (about the 

attractive or unattractive features of performing a job task) for estimates of 

compensating wage differentials. Suppose there are two types of workers: those who 
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enjoy  ( 1) and those who have distaste for  ( 0). In that case, to test the 

theory of compensating wage differentials, the following regressions should be run:  

 ln      if     0 (2)

 ln      if     1 (3)

If the theory is correct, I should find evidence on 0 and 0: workers who have 

distaste for  ( 0) are compensated for working in a job involving high levels of z, 

while workers who enjoy  ( 1) are willing to pay for working in a job involving 

high levels of . With these predictions at hand, I can assess the existence of 

compensating wage differentials for job routinization depending on workers’ 

preferences. Before taking a first look at the data, I provide a description of the dataset 

used in this paper. 

 

2.2. Data 

I use data from the Wisconsin Longitudinal Study (WLS) of the University of 

Wisconsin-Madison. The sample contains information on 10,317 men and women who 

graduated from Wisconsin high schools in 1957, approximately one-third of all seniors 

in Wisconsin high schools in 1957. It contains a rich set of self-reported information 

from sample members, siblings, and parents, as well as administrative data, collected in 

a series of surveys: 1957 (graduates), 1964 (graduates), 1975 (graduates), 1977 

(siblings), 1992-3 (graduates), 1993-4 (siblings) and 2003-5 (graduates and spouses).                 

I focus on the 1992-3 waves, when respondents were in their early fifties. This 

decision is based on both informational requirements and sample (size and selectivity) 

considerations. First of all, information on workers’ preferences is not available prior to 

the 1992-3 waves. Second, participation in the labor market is higher for people in their 

fifties (1992-3 waves) than in their sixties (2003-5 waves): 92.4% of men were 
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employed in 1992 while only 47.8% of them were employed in 2004. Finally, this helps 

me to minimize non-random attrition problems.  

The WLS dataset offers an opportunity for exploring the role of mismatch in 

observing compensating wage differentials. It contains a set of individual characteristics 

obtained from the (graduate) respondents, such as IQ score measured at high school, 

high school rank, adult cognition, education, tenure, preference for job routinization, 

hourly wages, hours of work, number of hours performing different tasks on the job, 

etc. Moreover, the sample is quite homogeneous (high school graduates from Wisconsin 

high schools in 1957), which makes any concerns about omitted variables less 

important. 

My sample is restricted to workers who were employed in 1992. Unfortunately, 

employment status is missing for 1,824 individuals. This implies a dramatic decrease in 

the original sample size from 10,317 to 8,493. There are 7,196 individuals employed in 

1992. After restricting our sample size to those individuals having a positive hourly 

wage rate, the number of observations decreases to 6,756. Focusing only on Wisconsin 

residents, the sample decreases to 4,696. The sample also excludes individuals who 

were: working less than 20 hours per week, self-employed, employees of their own 

company, or family workers. Farm workers and members of the military also are 

excluded from my sample. After applying these restrictions, my working sample is left 

with approximately 3,800 observations. The presence of extreme values in the wage 

distribution was detected accidentally through the comparison of average wages for men 

and women. To avoid the estimates being driven by extreme values in the wage 

distribution, I trim the tails of the log-wage distribution at both the 3% bottom and the 

3% top. Finally, after dealing with missing observations for the variables used in the 
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analysis, the working sample size is about 3,200. The next subsection presents the 

definition of the main variables used in the empirical analysis. 

 

2.3. Definition of the Main Variables 

The main variables in this paper are job routinization; worker’s preference for routine; 

and mismatch, i.e., the discrepancy between job routinization and worker’s preference 

for routine. In this subsection, I discuss how these variables are measured. 

The job routinization indicator ( ) —whether a job is classified as routinized or 

non-routinized— is constructed using the fraction of working time doing the same 

things over and over: job routinization is measured as 1 (routinized job) if the fraction 

of working time doing the same things over and over is equal to or higher than 0.5.               

Sensitivity analyses with alternative definitions of job routinization will be performed in 

the robustness checks section. I compute this fraction as the ratio of the number of 

weekly hours doing the same things over and over on the job to the total number of 

weekly working hours. Note that the reported number of hours can be compared across 

individuals; this addresses standard subjectivity bias concerns due to workers’ 

subjective assessments about working conditions. Moreover, the fact that the number of 

hours worked is reported by the workers themselves confronts the misclassification bias 

that is attributable to imprecise matching of average job (occupation or industry) 

characteristics to individuals whose job characteristics may depart (by and large) from 

the average characteristics within their occupation or industry. Of course, as in previous 

studies, simultaneity biases may exist: workers who are unhappy with earnings that they 

receive may also respond negatively when asked about job attributes (McNabb, 1989). 

The worker’s preference for routine indicator ( ) —whether a worker is 

classified as a routine-preferring worker or a non-routine-preferring worker— is 
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measured by the response to this question: “To what extent do you see yourself as 

someone who prefers work that is routine and simple?” The possible answers to this 

question are: agree strongly, agree moderately, agree slightly, neither agree nor 

disagree, disagree slightly, disagree moderately, disagree strongly. This is one of the 

questions asked in scoring the Five-Factor Model of Personality Structure, and it is 

included in the personality section of the 1992-3 questionnaire, separate from job 

history or current/last job characteristics. Hence, the potential concerns about framing 

effects are minimized. For workers who agree strongly, moderately, or slightly, 

preferring work that is routine and simple, 1. Sensitivity analyses with alternative 

definitions of worker’s preference for routine will be performed in the robustness 

checks section. 

Finally, mismatch between job routinization and worker’s preference for routine 

and simple work is measured as the absolute value of the difference between  and , 

, | |. I adopt this approach because absolute value seems to be the most 

intuitive way of thinking about the discrepancy between two variables. Note that for 

binary indicators, the absolute-value deviation is equivalent to the quadratic deviation. 

 

2.4. Descriptive Statistics 

Table 2 presents the main descriptive statistics of the WLS sample for currently 

employed individuals (1992-3). A first glance at the Table shows that, on average, male 

workers in non-routinized jobs earn $18.09 per hour, while male workers in routinized 

jobs earn $15.21: a difference of approximately $3 in the hourly wage. Women in non-

routinized jobs earn $11.41 per hour, while women in routinized jobs earn $9.33. 

Although these are unadjusted averages, workers do not seem to be compensated for job 

routinization. 
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The Table also shows that the majority of men (52%) work in non-routinized 

jobs, while the majority of women work in routinized jobs (64%). At the same time, the 

fraction of workers who prefer routine and simple work is higher for women than for 

men: 0.24 versus 0.18. The fact that workers in non-routinized jobs are not compensated 

for job routinization is even more striking given that the supply of routine-preferring 

workers seems to be very low (24% of male workers, 18% of female workers) in 

comparison to the demand for them (48% of male workers, 64% of female workers). 

Can mismatch explain the apparent lower wages in routinized jobs? The 

percentages of well-matched workers (according to job routinization and preference for 

routine and simple work) are 62% and 53% for men and women, respectively. Hence, 

mismatch is higher for women (47%) than for men (38%). For both men and women, 

mismatch is very high. Moreover, mismatch may be responsible for (part of) the 

difference in average wages between routinized and non-routinized jobs: mismatched 

men are paid $15.51 per hour while those who are well-matched are paid $17.44 per 

hour. For women the difference is smaller: $9.61 versus $10.53. 

As expected, men are paid higher hourly wages than women: $16.71 versus 

$10.09. Not surprisingly, given the cohort under study, born around 1940, women on 

average are less educated than men.  

Table 3 shows the distribution of workers (by their preferences for routine and 

simple work) across jobs (by routinization) and the average hourly wages by worker-job 

type. Among men, 42% of non-routine-preferring workers are mismatched into 

routinized jobs (567/1359*100), while this percentage is 57 for women (758/1331*100). 

For both men and women, the percentage of mismatched workers is lower in non-

routinized jobs. This is consistent with the fact that the majority of men and women are 

non-routine-preferring workers (76% of men, and 82% of women). Regarding the 
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average hourly wage, the Table describes an interesting feature of my data: there are no 

differences in average wages between mismatched and well-matched routine workers. 

Indeed, the differences are found only for non-routine-preferring workers. 

 

2.5. A First Look at the Data 

I start by measuring job routinization as the fraction of time at work doing the same 

things over and over. Routine-preferring workers ( 1) are defined as those 

individuals who strongly agree, moderately agree, slightly agree, or neither agree nor 

disagree, with the statement “I see myself as someone who prefers work that is routine 

and simple”. 

Table 4 reports the degree of job routinization by occupational category for men 

and women, respectively. As the Table makes clear, “Professional and Technical 

Specialty Operations”, and “Executive, Administrative, and Managerial” occupational 

categories on average involve less routinization, while occupations such as “Operators 

and Fabricators” involve more routinization of tasks. Another interesting feature that 

emerges from this Table is that female workers tend to spend a higher fraction of time 

than male workers doing the same things over and over. In other words, women tend to 

do more routinized tasks than men within occupational categories. 

The results from Table 5 show evidence contrary to the theory of compensating 

wage differentials: workers with lower preferences for routine and simple work earn 

lower wages in the routinized jobs. Columns (2) and (4) show that both non-routine-

preferring male and female workers do not appear to be compensated for working in 

routinized jobs; rather, if anything, they appear to be penalized. For routine-preferring 

workers, columns (1) and (3), I find a positive but not statistically significant 

association between job routinization and hourly wages.  
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The bottom line of Table 5 is that preference heterogeneity clearly matters, but 

in a surprisingly opposite way to what one would have expected from a selection-bias 

explanation: workers with lower preference for routine and simple work earn lower 

wages in routinized jobs. This paper provides an explanation for such a finding.  

Notice that the implicit assumption behind the prediction of a positive 

association between job routinization and wages for non-routine-preferring workers is 

that they must be compensated because of their higher disutility when working in 

routinized jobs. However, non-routine-preferring workers are likely to be less 

productive in routinized jobs. In other words, workers’ preferences are likely to reflect 

two things that are equally important for wage determination: their disutility from 

working, which will be higher as the discrepancy between preferences and job attributes 

(characteristics or job tasks) increases; and their comparative advantage on the job, 

which will be lower as the discrepancy between preferences and job attributes increases.  

If matching were perfect, and each worker was assigned to a job according to her 

comparative advantage, then the productivity effect of comparative advantage would 

not play any role: productivity would be the same for every worker, because every 

worker would be assigned to a job where her comparative advantage was maximized. 

However, matching is far from perfect, and neglecting its influence on wages is likely to 

confound the compensating wage differentials estimates. In other words, (2) and (3) 

would be mis-specified if mismatch also matters. 

Thus, a potential explanation for the puzzling results in Table 5 is that 

preferences for performing a job and the worker’s comparative advantage in performing 

it are (positively) correlated. If this is the case, then workers with lower preference for 

routine and simple work will earn lower wages in routinized jobs, not because they are 
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3. Conceptual Framework 

In this section I present a simple assignment model with Nash bargaining to show the 

effect of mismatch on the wage rate. The main purpose of the model is to show the 

importance of the mismatch productivity effect on the wage rate, and its relevance for 

understanding estimates of compensating wage differentials.  

There are two types of workers 0,1 , defined by their preferences for a job 

attribute ( 0 for non-routine preferring workers, 1 for routine-preferring 

workers) and a continuum of firms’ types 0,1 , defined by the job attribute ( 0 

for completely non-routinized jobs, and 1 for completely routinized jobs).                  

Each firm is randomly matched with each worker: ,  for each firm-worker pair. 

Then, the firm  and the worker  bargain over the division of the match surplus to 

decide the optimal wage.  

The profit function of the firm is given by 

 ,  (4)

where  is gross revenue (production), which depends negatively on mismatch , , 

and  is the wage rate. The negative relationship between  and  is assumed on the 

grounds that the worker’s taste for a job attribute (e.g., routine-preferring worker) is 

likely to be positively correlated with his ability to perform well in a job with such an 

attribute (e.g., routinized job). In other words, a routine-preferring worker will tend to 

have a comparative advantage in doing repetitive things. Tinbergen (1975) sets a 

production function that depends on the extent to which a person’s abilities match those 

required in the execution of a job task.  
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The utility function of the worker is given by 

 , ,  (5)

where  is the disutility from work, which depends positively on mismatch ,  

between the job characteristic ( ) and the worker’s preference for such a job 

characteristic ( ), and on the job characteristic ( ). 

This random assignment setting can be understood by assuming that due to 

fractions the market is not in long-run equilibrium. This is a plausible assumption since 

the data suggest that mismatch is substantial: 18% of male workers are classified as 

routine-prefer workers, while 48% of them are working in jobs involving half (or more) 

of their weekly time doing the same things over and over. Hence, I assume that the 

routinized sector is the sector with a shortage of workers in the absence of pay 

differentials, , , 0.  

The solution to the Nash bargaining problem is obtained from 

 max  (6)

where 0 1  measures the firm bargaining power. 

The FOC gives us the optimal wage rate: 

 , , , , 1 ,  (7)

The marginal effect of  holding  constant, which is the “standard” 

compensating wage differential, is 

 , , , ,
 

(8)

which is positive given my previous assumption. 
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However, the total effect of  holding  constant is 

 , , , , , ,
,

,
 

(9)

where , , 0 from (8), , 0 if 0 (i.e., the higher is job 

routinization, the higher is the mismatch for a non-routine preferring worker), and  

, 0 if  1 (i.e., the higher is job routinization, the lower is the mismatch for a 

routine preferring worker).  

Equation (9) gives us precisely the effects being estimated as  and  in 

equations (2) and (3), in which  is omitted. What is the sign of , ,
,

 ? The 

answer to this question is given by proposition 1. 

 

Proposition 1. When mismatch also affects gross revenue (output), it has an ambiguous 

effect on the wage rate. If the productivity effect dominates the disutility effect, then 

mismatch affects the wage rate negatively. If the reverse is the case, then mismatch 

affects the wage rate positively. If both effects cancel each other out, then mismatch has 

no effect on the wage rate. 

Proof.  

 , , , ,
1

,
 

(10)

Hence, given proposition 1, we conclude that the total effect of  holding  

constant is ambiguous1. 

 

                                                            
1 Borghans et al. (2006) show that the effect of people skills on wages (in the 
equilibrium assignment) can be decomposed into two effects: first, workers with more 
people skills earn more because they generate higher (net) revenue (productivity effect); 
second, workers with more people skills take jobs where people tasks are more 
important and these jobs pay less, all else equal (compensating wage differential effect). 



21 
 

4. Empirical Model 

My model yields three parameters that are captured in (11): a routine sector main effect 

(the “standard” compensating wage differential, ); a routine-preferring worker main 

effect (the absolute advantage of this type of worker, ); and a negative wage effect for 

workers who are in a sector other than the one they prefer (the negative productivity 

effect due to mismatch, ). 

 ln ,  (11)

To identify the effects of  and , I need to be aware of the possibility that the 

error term  is correlated with  and/or . First, mismatch ( ) is likely to be correlated 

with worker’s ability: workers with worse skills are likely to be paid lower wages and to 

end up being mismatched. Second, the level of job routinization ( ) could be correlated 

with worker’s skills and skills requirements of the job: routine jobs are perhaps those 

requiring unskilled workers.  

I measure relevant worker’s characteristics that may be related to both wages 

and mismatch by education (completed years of education), IQ score measured at high 

school, high school rank, and an adult cognition measure which is based on eight of the 

fourteen items from the Weschler Adult Intelligence Scale (WAIS). To account for the 

relevant characteristics of the job that may be related to both wages and job 

routinization, I control for occupation dummy variables (the 8 occupational categories 

are described in Table 4). Notice that once I control for occupation, the unique variation 

used to identify the wage premium/penalty associated with job routinization is within-

occupation variation. Further, I also control for size of firm dummy variables. Given 

this rich set of control variables ( ), it seems plausible to identify the effects of  and 

 by means of (12): 

 ln , Π  (12)
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Finally, although I have a rich set of control variables that helps me to identify 

the effects of  and , regression (12) contains worker’s preferences ( ), which may 

well be endogenously determined and thus may compromise the interpretation of my 

estimates: workers’ preferences are likely to be affected by their labor market 

experience. More specifically, an individual’s working experience on a particular job 

(tenure) is likely to affect his preferences for such a job. Although I do not have suitable 

data for assessing whether workers’ preferences change over time, I try to overcome this 

shortcoming by controlling for tenure: keeping tenure constant, the effect of preferences 

on wages is obtained net of the effect of tenure on preferences. Hence,  will also 

include tenure. 
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5. Results 

5.1. Empirical Findings 

Tables 6 and 7 present the results on the effect of job routinization on wages for men 

and women, respectively. Column (1) in Table 6 shows that, on average, male workers 

in routinized jobs earn 11% less than male workers in non-routinized jobs. Once the 

worker’s preference for routine work is accounted for, this penalty is reduced to 10% 

(see column (2)). Column (3) shows that routinized jobs on average pay 7% less than 

non-routinized jobs when mismatch is controlled; on average, mismatched workers earn 

4% less than well-matched workers. Hence, if mismatch is not accounted for, the 

negative effect of job routinization on wages is overestimated. Indeed, once mismatch is 

included as a new variable in the wage regression, I can explain a substantial portion of 

the incorrectly-signed estimate for job routinization. 

While columns (1) to (3) control for worker heterogeneity, they do not account 

for job heterogeneity. In columns (4)-(6) I add both occupation and size of firm dummy 

variables into the previous specifications in an attempt to account for both kinds of 

heterogeneity. Notice that controlling for occupation is crucial to account for different 

skill requirements of the job. The results in columns (4)-(6) are qualitatively similar to 

those in columns (1)-(3): male workers in routinized jobs earn 5.5% less than their 

counterparts in non-routinized jobs (see column (4)). This penalty decreases to 4.5% 

once I adjust for differences in preferences (see column (5)). Finally, once workers’ 

preferences and mismatch are accounted for, this difference is reduced to 2% (see 

column (6)). Moreover, this is not statistically different from zero.  

Table 7 reports similar results for women. Accounting for differences in 

preferences slightly decreases the job-routinization wage penalty, from 10% to 8% 

(columns (1) and (2)), or from 7% to 6.5% (columns (4) and (5)). Again, adding 
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mismatch into the model seems to be important: the effect of job routinization decreases 

from 8% to 3.5% (columns (2) and (3)), or from 6.5% to 4% (columns (5) and (6)). In 

none of the cases, the job routinization effect on wages is statistically significant once 

both preferences for routinization and mismatch are accounted for. Mismatched female 

workers earn 4% less than well-matched female workers. 

Overall, two features of the data stand out. First, mismatch is negatively related 

to wages. This is consistent with both my assignment model and Borghans et al. (2007): 

people are most productive in jobs that match their style, and they earn less when they 

have to shift to other jobs. Indeed, I find a mismatch effect after accounting for worker 

type (worker’s preference for routine work), job type (job routinization), and other 

observable characteristics at the worker, occupation and firm levels. Second, once 

mismatch is accounted for, the coefficient on job routinization is attenuated. The evident 

mismatch effect can explain a substantial portion (but not all) of the incorrectly-signed 

compensating differential for job routinization indicated in previous analyses. Indeed, in 

the models with occupation and size of firm dummy variables, the compensating 

differential for job routinization cannot be statistically distinguished from zero. In the 

next section, I perform several robustness checks to the use of alternative measures and 

the presence of outliers. Before presenting the results of my sensitivity analyses, it is 

important to discuss my results. 

 

5.2. Discussion 

My results show that accounting for mismatch explains a substantial portion (but not 

all) of the incorrectly-signed compensating differential for job routinization indicated in 

previous analyses. The fact that job routinization has still a negative sign could be 

reflecting that workers in routine jobs are less productive than workers in non-routine 
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jobs. However, we control for different proxies for individual productivity such as 

education and IQ. Furthermore, in the most complete empirical models, the coefficient 

on job routinization is not statistically different from zero. 

Regarding the estimated effect of mismatch on wages, it must be recognized that 

this could be picking up two different kinds of effects. On the one hand, mismatch can 

have a negative effect on productivity due to the discrepancy between worker’s 

preferences for routine jobs and the variability in tasks associated with the job 

(Tinbergen (1975) sets a production function that depends on the extent to which a 

person’s abilities match those required in the execution of a job task). On the other 

hand, mismatch may reflect unobserved worker’s ability: mismatched workers could be 

less productive to start with. Unfortunately, I cannot disentangle these two effects in my 

paper. Nonetheless, the fact that mismatch must be accounted for in wage equations is 

an important one.  

Future research could benefit from such a framework using new and better data 

that may help to disentangle these two effects by using quasi-experimental variation in 

mismatch. For example, plant closing could be used as an instrument for mismatch to 

identify the effect of mismatch on wages for “workers who have been displaced from a 

non-routine job to a routine one by plant closing”. 
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6. Robustness Checks 

This section addresses some potential concerns about my previous estimates: the use of 

alternative measures of job routinization, routine-preferring worker and mismatch, and 

the sensitivity of OLS estimates to outliers. 

 

6.1. Alternative Measures 

The discrete approach to measuring job routinization and workers’ preferences is 

appealing because it is neat and clear cut. Unfortunately, it does not take full advantage 

of all the available information contained in my data. Moreover, the thresholds defining 

routine jobs and routine-preferring workers are arbitrary. 

In this subsection, I start by exploiting the variability in workers’ preferences 

and measures of job routinization. Here, job routinization is measured as a continuous 

variable; workers’ preferences are measured by several binary indicators; and mismatch 

is measured as it is in the rest of the paper. More specifically, the new job routinization 

variable is the fraction of working time doing the same things over and over on the job 

(as in Table 5). Workers’ preference for routine is captured by several binary indicators: 

Routine-Preferring Worker 1 (equal to 1 for workers who disagree strongly or 

moderately with the statement “I see myself as someone who prefers work that is 

routine and simple”, zero otherwise); Routine-Preferring Worker 2 (equal to 1 for 

workers who agree slightly, neither agree nor disagree, or disagree slightly with the 

previous statement, zero otherwise); Routine-Preferring Worker 3 (equal to 1 for those 

workers who agree moderately or strongly with the previous statement, zero otherwise). 

Tables 8 and 9 present the new estimates using these alternative measures of job 

routinization and workers’ preferences, where the omitted category is Routine-

Preferring Worker 1. The new estimates are very similar to the previous ones: the 
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negative association between wages and job routinization decreases dramatically after 

accounting for worker’s preference and mismatch. The Tables also reveal a negative 

association between mismatch and wages for both men and women: on average, both 

mismatched female and male workers earn 3% less than their well-matched 

counterparts.    

I also check the sensitivity of my estimates to the thresholds defining routine 

jobs and routine-preferring workers. Now, I classify a job as routinized if the fraction of 

time doing the same things over and over is above the third quartile on the distribution 

of the fraction of time. And, a worker is classified as routine-preferring if his score on 

the preference for routine and simple work is above the third quartile on the distribution 

of preferences. The new mismatch measure is the absolute value of the difference 

between these new alternative measures. I provide new estimates with these alternative 

definitions for men and women in Table 10. The new estimates are very similar. 

For men, column (1) shows that workers in routinized jobs on average earn 7% 

less than their counterparts in non-routinized jobs. Column (2) shows that accounting 

for differences in preferences makes the wage penalty lower: almost 6%. Finally, adding 

mismatch into the model, column (3), decreases the wage penalty even further: 3%. 

Note too that being mismatched is associated with a wage penalty of 7%. Similar 

qualitative results are found for women in columns (4)-(6). 

 

6.2. Sensitivity to Outliers 

OLS estimates are known to be sensitive to outliers. In my analysis, I trimmed both the 

bottom 3% and the top 3% of the wage distribution in order to avoid the influence of 

extreme values. Here, I go one step further and perform a median Quantile regression 
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analysis to make sure that my previous OLS estimates are not driven by extreme values 

of the wage distribution. 

The new (median) estimates reported in Tables 11 and 12 are robust to outliers 

and very similar to my previous OLS estimates. In Table 11, column (1) shows that, at 

the median, male workers in routinized jobs earn 11% less than male workers in non-

routinized jobs. Once the worker’s preference for routine work is accounted for, this 

penalty is reduced to 9% (column (2)). Column (3) shows that routinized jobs at the 

median pay 5% less than non-routinized jobs when mismatch is controlled. Mismatched 

workers earn 6% less than well-matched workers. Table 12 shows similar results for 

women, columns (1)-(3). 

To sum up, my results appear to be robust. Moreover, the rich set of covariates I 

consider in the WLS (education, IQ at high school, high school rank, cognition score, 

preferences, tenure, occupation type and size of firm) helps me to control to some extent 

for both workers’ and job’s heterogeneity. Nonetheless, it should be noted that the 

absence of comparable longitudinal information on job routinization and workers’ 

preferences as well as the absence of any valid instruments prevents me from arguing 

that the associations I document are causal. 
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7. Conclusions 

In this paper my goal has been to argue that previous estimates of compensating wage 

differentials are inconclusive because they do not account for the discrepancy between 

workers’ preferences and job attributes. Both casual empiricism and research results 

suggest that this discrepancy indeed exists. In my sample, 38% of the men and 47% of 

the women appear to be mismatched. 

I propose a simple assignment model with Nash bargaining over wages for 

analyzing the role of mismatch when looking for compensating wage differentials. 

Assuming that observed workers are not in long-run market equilibrium, all workers, no 

matter what their preferences are, need to be compensated if working in the sector with 

a shortage of workers in the absence of pay differentials. However, only mismatched 

workers, who are less productive because their sectors do not match their preferences, 

are penalized. If mismatch is not accounted, then the association between wages and job 

attributes may be picking up the correlation between job attributes, preferences, and 

mismatch. 

My empirical analysis uses the Wisconsin Longitudinal Study (WLS) and 

focuses on job routinization (the fraction of working time spent doing the same things 

over and over). I report several findings. First, mismatch is negatively related to wages, 

which is consistent with the negative mismatch productivity effect dominating the 

positive compensating wage differential effect. Second, for both men and women, I find 

that the negative relationship between wages and job routinization is attenuated once 

mismatch and workers’ preferences are accounted for. The evident mismatch effect can 

explain a substantial portion (but not all) of the incorrectly-signed compensating wage 

differential for job routinization that previous analyses have indicated. 
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In my view, this paper highlights the importance of accounting for mismatch 

when looking for compensating wage differentials. Clearly, much more work needs to 

be done on the theoretical front, for instance, by endogenizing mismatch. Nevertheless, 

I anticipate that as long as there are search frictions that ensure that some workers 

remain in jobs that are not optimal given the existing wage rates, the results of the 

assignment model presented here will generalize to a market setting. Given the 

substantial mismatch I find in the data, these sorts of frictions seem realistic. 
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Appendix 
 
 

Table 1: Percentage of currently employed individuals reporting that job 
characteristic is much more important than high pay, WLS 1992-3.

Job characteristic Men Women

Being able to do different things rather than the same things over and over 29 36 

Being able to work without frequent checking by a supervisor 22 27 

Having the opportunity to get on-the-job training 18 25 

Having a job that other people regard highly 7 11 

Being able to avoid getting dirty on the job 2 6 
      
Source: Table 2 in Andrew et al. (2006). 
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Table 2: Descriptive statistics.  
Men Women 

Obs. Mean SD Obs. Mean SD 
 Hourly wage routinized jobs  800 15.21 4.98 1,111 9.33 3.46 

 Hourly wage non-routinized  865 18.09 6.10 637 11.41 4.19 
 jobs   

 Job Routinization   1,665 0.48 0.50 1,748 0.64 0.48 
 (z = 1 if fraction of weekly  
 worked hours doing the same  
 things over and over is equal  
 or higher than 0.5, z = 0   
 otherwise) 

 Routine-Preferring Worker  1,656 0.18 0.38 1,743 0.24 0.42 
 (Preference for routine and  
 simple work: x = 1 if   
 strongly/moderately/slightly  
 agree, x = 0 if   
 strongly/moderately/slightly/  
 disagree or neither agree nor  
 disagree)  

 Mismatch, |z – x|   1,656 0.38 0.49 1,743 0.47 0.50 

 Fraction of weekly worked  1,665 0.48 0.38 1,748 0.61 0.37 
 hours doing the same things  
 over and over   

 Preferences for routine and  
 simple work   

 Strongly agree 94 0.06 -- 108 0.06 -- 
 Moderately agree 162 0.10 -- 238 0.14 -- 

 Slightly agree 35 0.02 -- 48 0.03 -- 
 Neither agree nor disagree 6 0.00 -- 18 0.01 -- 

 Slightly disagree 59 0.04 -- 68 0.04 -- 
 Moderately disagree 447 0.27 -- 503 0.29 -- 

 Strongly disagree 853 0.52 -- 760 0.44 -- 
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Table 2: (continued)   
Men Women 

Obs. Mean SD Obs. Mean SD 
Hourly wage mismatched   636 15.51 5.08 821 9.61 3.52 
workers 

Hourly wage well-matched  1,020 17.44 6.04 922 10.53 4.12 
workers  

Hourly wage   1,665 16.71 5.77 1,748 10.09 3.87 

IQ (measured at high school)  1,665 98.95 14.35 1,748 100.10 13.89 

High School Rank  1,543 41.59 27.03 1,636 57.04 27.21 

Education   1,665 13.44 2.19 1,748 12.93 1.71 
(years of completed education)

Adult Cognition Score   1,653 7.47 2.78 1,739 7.62 2.63 
(WAIS)   

Tenure   1,659 19.34 11.00 1,744 12.09 9.00 

Note: Author’s calculations.
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Table 3: Distribution of workers across jobs and average hourly wages by worker-job type, 
WLS 1992-3. 
    
(Number of observations) z = 0  z = 1
    
Male    
    
x = 0 
 

48% 
18.4  

34% 
15.7

 (792)  (567)
    
x = 1 
 

4% 
14.3  

14% 
14.0

 (69)  (228)
    
Female 
    
x = 0 
 

33% 
11.8  

43% 
9.7

 (573)  (758)
    
x = 1 
 

4% 
8.4  

20% 
8.5

 (63)  (349)
    
Note: Author’s calculations. 
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Table 4: Fraction of weekly worked hours doing the same things over and over by 
occupational category, WLS 1992-3. 

Occupational Category Men Women

Professional and Technical Specialty Occupations 0.27 0.46 

0.27 0.41 Executive, Administrative and Managerial Occupations

0.54 0.70 Sales Occupations 

0.63 0.65 Administrative Support Occupations (including clerical)

0.44 0.83 Precision Production, Craft, and Repair Occupations

0.79 0.86 Operators and Fabricators 

0.64 0.79 Service Occupations  

0.73 0.90 
Handlers, Equipment Cleaners, Helpers, Laborers, Farm Operators, 
Farm Workers, and Related Occupations
       
Source: Author's calculations. 
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Table 5: Job routinization and wages by workers’ preferences
OLS estimates for men and women. 
Dependent variable: log(hourly wage)
Job Routinization = fraction of weekly worked hours doing the same things over and over 

Men Women 
Workers’ Preferences Workers’ Preferences

Routine Non Routine Routine Non Routine
(1) (2) (3) (4) 

Job Routinization 0.035 –0.082 0.004 –0.096 
(0.052) (0.024) (0.046) (0.016) 

Completed Years of Education 0.044 0.032 0.042 0.016 
(0.016) (0.005) (0.015) (0.006) 

IQ Measured at High School 0.002 0.002 0.002 0.004 
(0.002) (0.001) (0.002) (0.001) 

High School Rank 0.000 0.000 –0.000 0.000 
(0.001) (0.005) (0.001) (0.000) 

Adult Cognition Score –0.005 0.004 –0.002 0.001 
(0.007) (0.003) (0.006) (0.004) 

Tenure 0.009 0.008 0.016 0.013 
(0.002) (0.001) (0.002) (0.001) 

       
R2 0.25 0.32 0.39 0.38 
Number of Observations 270 1,253 378 1,243 
Notes: Heteroskedasticity robust standard errors are reported in parentheses. All regressions 
include occupation dummy variables.
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Table 6: Mismatch and compensating wage differentials.
OLS estimates for men.  
Dependent variable: log(hourly wage)

(1) (2) (3) (4) (5) (6)

Job Routinization –0.107 –0.095 –0.068 –0.053 –0.045 –0.023
(0.016) (0.016) (0.022) (0.016) (0.016) (0.021)

Routine-Preferring Worker -- –0.073 –0.091 -- –0.056 –0.071
(0.020) (0.022) (0.019) (0.022)

Mismatch -- -- –0.037 -- -- –0.031
(0.022) (0.021)

Completed Years of Education 0.049 0.049 0.048 0.033 0.033 0.033
(0.003) (0.004) (0.004) (0.005) (0.005) (0.005)

IQ Measured at High School 0.003 0.003 0.003 0.003 0.003 0.003
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

High School Rank 0.000 0.000 0.000 0.000 –0.000 –0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Adult Cognition Score 0.006 0.005 0.005 0.003 0.002 0.002
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Tenure 0.008 0.008 0.008 0.007 0.007 0.007
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Occupation dummy variables? NO NO NO YES YES YES

Firm Size dummy variables? NO NO NO YES YES YES

          
R2 0.27 0.28 0.28 0.36 0.36 0.37
Adjusted R2 0.27 0.27 0.28 0.35 0.36 0.36
Number of Observations 1,523 1,523 1,523 1,520 1,520 1,520
Notes: Heteroskedasticity robust standard errors are reported in parentheses.  
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Table 7: Mismatch and compensating wage differentials.
OLS estimates for women.  
Dependent variable: log(hourly wage)

(1) (2) (3) (4) (5) (6)

Job Routinization –0.100 –0.083 –0.034 –0.072 –0.064 –0.038
(0.018) (0.018) (0.021) (0.016) (0.016) (0.020)

Routine-Preferring Worker -- –0.114 –0.157 -- –0.076 –0.099
(0.018) (0.021) (0.017) (0.019)

Mismatch -- -- –0.071 -- -- –0.037
(0.021) (0.019)

Completed Years of Education 0.047 0.046 0.045 0.022 0.022 0.021
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

IQ Measured at High School 0.005 0.005 0.005 0.004 0.004 0.004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

High School Rank 0.000 –0.000 –0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Adult Cognition Score 0.004 0.004 0.004 0.001 0.001 0.001
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Tenure 0.015 0.015 0.015 0.012 0.012 0.012
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Occupation dummy variables? NO NO NO YES YES YES

Firm Size dummy variables? NO NO NO YES YES YES

          
R2 0.31 0.32 0.32 0.44 0.45 0.45
Adjusted R2 0.30 0.32 0.32 0.44 0.44 0.44
Number of Observations 1,621 1,621 1,621 1,612 1,612 1,612
Notes: Heteroskedasticity robust standard errors are reported in parentheses.  
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Table 8: Mismatch and compensating wage differentials.
OLS estimates for men.  
Dependent variable: log(hourly wage)

(1) (2) (3) (4) (5) (6)

Job Routinization –0.144 –0.125 –0.086 –0.071 –0.058 –0.029
(0.021) (0.022) (0.027) (0.022) (0.022) (0.027)

Routine-Preferring Worker 2 -- –0.052 –0.056 -- –0.046 –0.049
(0.034) (0.034) (0.032) (0.032)

Routine-Preferring Worker 3 -- –0.081 –0.104 -- –0.061 –0.078
(0.022) (0.024) (0.021) (0.023)

Mismatch -- -- –0.046 -- -- –0.034
(0.020) (0.019)

Completed Years of Education 0.049 0.048 0.048 0.033 0.033 0.033
(0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

IQ Measured at High School 0.003 0.003 0.002 0.002 0.002 0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

High School Rank 0.000 0.000 0.000 0.000 –0.000 –0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Adult Cognition Score 0.006 0.004 0.004 0.003 0.002 0.002
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Tenure 0.008 0.009 0.009 0.007 0.007 0.007
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Occupation dummy variables? NO NO NO YES YES YES

Firm Size dummy variables? NO NO NO YES YES YES

          
R2 0.27 0.28 0.28 0.36 0.36 0.36
Adjusted R2 0.27 0.28 0.28 0.35 0.35 0.36
Number of Observations 1,523 1,523 1,523 1,520 1,520 1,520
Notes: Heteroskedasticity robust standard errors are reported in parentheses.  
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Table 9: Mismatch and compensating wage differentials.
OLS estimates for women.  
Dependent variable: log(hourly wage)

(1) (2) (3) (4) (5) (6)

Job Routinization –0.152 –0.126 –0.086 –0.106 –0.092 –0.068
(0.023) (0.023) (0.027) (0.022) (0.022) (0.025)

Routine-Preferring Worker 2 -- –0.075 –0.086 -- –0.047 –0.053
(0.030) (0.030) (0.028) (0.029)

Routine-Preferring Worker 3 -- –0.110 –0.142 -- –0.073 –0.092
(0.019) (0.022) (0.018) (0.020)

Mismatch -- -- –0.051 -- -- –0.029
(0.019) (0.018)

Completed Years of Education 0.045 0.045 0.044 0.021 0.022 0.021
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

IQ Measured at High School 0.005 0.005 0.005 0.004 0.004 0.004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

High School Rank –0.000 –0.000 –0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Adult Cognition Score 0.004 0.004 0.004 0.001 0.001 0.001
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Tenure 0.015 0.015 0.015 0.012 0.012 0.012
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Occupation dummy variables? NO NO NO YES YES YES

Firm Size dummy variables? NO NO NO YES YES YES

          
R2 0.31 0.32 0.33 0.44 0.45 0.45
Adjusted R2 0.31 0.32 0.32 0.44 0.44 0.44
Number of Observations 1,621 1,621 1,621 1,612 1,612 1,612
Notes: Heteroskedasticity robust standard errors are reported in parentheses.  
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Table 10: Mismatch and compensating wage differentials.
OLS estimates for men and women. 
Dependent variable: log(hourly wage)

Men Women 
(1) (2) (3) (4) (5) (6)

Job Routinization –0.071 –0.056 –0.030 –0.089 –0.072 –0.054
(0.018) (0.018) (0.019) (0.017) (0.017) (0.018)

Routine-Preferring Worker -- –0.086 –0.070 -- –0.116 –0.114
(0.019) (0.020) (0.018) (0.018)

Mismatch -- -- –0.067 -- -- –0.038
(0.019) (0.017)

Completed Years of Education 0.050 0.050 0.049 0.050 0.048 0.048
(0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

IQ Measured at High School 0.003 0.003 0.003 0.006 0.005 0.005
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

High School Rank 0.000 0.000 0.000 0.000 –0.000 –0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Adult Cognition Score 0.006 0.005 0.005 0.004 0.004 0.004
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Tenure 0.008 0.008 0.008 0.015 0.015 0.015
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

          
R2 0.26 0.27 0.27 0.30 0.32 0.32
Number of Observations 1,523 1,523 1,523 1,621 1,621 1,621
Notes: Heteroskedasticity robust standard errors are reported in parentheses.  
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Table 11: Mismatch and compensating wage differentials.
Quantile Median estimates for men. 
Dependent variable: log(hourly wage)

(1) (2) (3) (4) (5) (6)

Job Routinization –0.108 –0.088 –0.049 –0.044 –0.037 –0.016
(0.020) (0.021) (0.029) (0.021) (0.020) (0.027)

Routine-Preferring Worker -- –0.074 –0.107 -- –0.068 –0.087
(0.025) (0.030) (0.020) (0.026)

Mismatch -- -- –0.060 -- -- –0.029
(0.030) (0.025)

Completed Years of Education 0.053 0.052 0.052 0.034 0.034 0.035
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

IQ Measured at High School 0.003 0.003 0.002 0.003 0.003 0.003
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

High School Rank 0.000 0.000 0.000 –0.000 –0.000 –0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Adult Cognition Score 0.007 0.005 0.006 0.001 0.003 0.003
(0.004) (0.004) (0.004) (0.004) (0.004) (0.003)

Tenure 0.008 0.008 0.008 0.006 0.006 0.006
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Occupation dummy variables? NO NO NO YES YES YES

Firm Size dummy variables? NO NO NO YES YES YES

          
Pseudo R2 0.16 0.17 0.17 0.22 0.22 0.22
Number of Observations 1,523 1,523 1,523 1,520 1,520 1,520
Notes: Bootstrapped standard errors (1,000 replications) are reported in parentheses.  
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Table 12: Mismatch and compensating wage differentials.
Quantile Median estimates for women. 
Dependent variable: log(hourly wage)

(1) (2) (3) (4) (5) (6)

Job Routinization –0.100 –0.089 –0.056 –0.070 –0.069 –0.037
(0.024) (0.022) (0.027) (0.022) (0.021) (0.024)

Routine-Preferring Worker -- –0.134 –0.157 -- –0.074 –0.111
(0.021) (0.027) (0.022) (0.025)

Mismatch -- -- –0.060 -- -- –0.052
(0.026) (0.022)

Completed Years of Education 0.064 0.063 0.063 0.032 0.032 0.030
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

IQ Measured at High School 0.006 0.005 0.006 0.004 0.004 0.004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

High School Rank 0.000 0.000 0.000 –0.000 –0.000 –0.000
(0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

Adult Cognition Score 0.001 –0.003 –0.002 –0.001 –0.003 –0.002
(0.005) (0.006) (0.006) (0.004) (0.004) (0.004)

Tenure 0.016 0.017 0.017 0.013 0.014 0.014
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Occupation dummy variables? NO NO NO YES YES YES

Firm Size dummy variables? NO NO NO YES YES YES

          
Pseudo R2 0.20 0.21 0.21 0.30 0.30 0.30
Number of Observations 1,621 1,621 1,621 1,612 1,612 1,612
Notes: Bootstrapped standard errors (1,000 replications) are reported in parentheses.  

 
 
 
 



44 
 

References 

Andrew, Megan, Shlomit Bornstein, Pascale Carayon, Deborah Carr, Heejeong Choi,  

John Delamater, Heather Doescher, Kathryn Flynn, Carl Frederick, Dan Fischer, 

Jeremy Freese, Hanna Grol-Prokopczyk, Robert M. Hauser, Taissa S. Hauser, 

Reiping Huang, Jeong Hwa Ho, Peter Hoonakker, Dmitry Khodyakov, David 

Merrill, Luke Piefer, Jane Piliavin, Tetyana Pudrovska, Elizabeth Rainwater, 

James Raymo, Carol Roan, Erin Ruel, Diane Shinberg, Kamil Sicinski, Erica 

Siegl, Kristen Springer, John Robert Warren, Erin Wicke, Alexandra Wright, 

and James Yonker (2006), “The Class of 1957 in their Mid-60s: A First Look,” 

Hauser, Robert M. and Carol L. Roan, eds., Center for Demography and 

Ecology, University of Wisconsin-Madison, CDE Working Paper No. 2006-03. 

Borghans, Lex, Bas ter Weel, and Bruce A. Weinberg (2006), “People People: Social 

Capital and the Labor-Market Outcomes of Underrepresented Groups,” NBER 

Working Paper No. 11985. 

Borghans, Lex, Bas ter Weel, and Bruce A. Weinberg (2007), “Interpersonal Styles and  

Labor Market Outcomes,” NBER Working Paper No. 12846. 

Borjas, George J. (2005), Labor Economics, Third Edition, New York: McGraw-Hill  

Irwin. 

Brown, Charles (1980), “Equalizing Differences in the Labor Market,” Quarterly  

Journal of Economics, 94(1), pp. 113–34. 

Daniel, Christophe, and Catherine Sofer (1998), “Bargaining, Compensating Wage 

Differentials, and Dualism of the Labor Market: Theory and Evidence for 

France,” Journal of Labor Economics, 16(3), pp. 546–75. 

 

 



45 
 

Duncan, Greg J., and Bertil Holmlund (1983), “Was Adam Smith Right After All?  

Another Test of the Theory of Compensating Wage Differentials,” Journal of 

Labor Economics, 1(4), pp. 366–79. 

Garen, John (1988), “Compensating Wage Differentials and the Endogeneity of Job  

Riskiness,” Review of Economics and Statistics, 70(1), pp. 9–16. 

Goldin, Claudia, Lawrence F. Katz, and Ilyana Kuziemko (2006), “The Homecoming of  

American College Women: The Reversal of the College Gender Gap,” Journal 

of Economic Perspectives, 20(4), pp. 133–56. 

Hwang, Hae-Shin, W. Robert Reed, and Carlton Hubbard (1992), “Compensating Wage  

Differentials and Unobserved Productivity,” Journal of Political Economy, 

100(4), pp. 835–58. 

Kostiuk, Peter (1990), “Compensating Differentials for Shift Work,” Journal of  

Political Economy, 98(5), pp. 1054–75. 

Lang, Kevin, and Sumon Majumdar (2004), “The Pricing of Job Market Characteristics  

when Market Do Not Clear,” International Economic Review, 45(4), pp. 1111–

28. 

Lucas, Robert E. B. (1977), “Hedonic Wage Equations and Psychic Wages in the  

Returns to Schooling,” American Economic Review, 67(4), pp. 549–58. 

McNabb, Robert (1989), “Compensating Wage Differentials: Some Evidence for  

Britain,” Oxford Economic Papers, 41(2), pp. 327–38. 

Mueller, Gerrit, and Erik Plug (2006), “Estimating the effect of personality on male and  

female earnings,” Industrial and Labor Relations Review, 60(1), pp. 3–22. 

Rosen, Sherwin (1974), “Hedonic Prices and Implicit Markets,” Journal of Political 

Economy, 82(1), pp. 34–55. 

 



46 
 

Rosen, Sherwin (1986), “The Theory of Equalizing Differences,” in Ashenfelter, Orley, 

and Richard Layard, eds., Handbook of Labor Economics, vol.1, Amsterdam, 

The Netherlands: Elsevier Science. 

Shimer, Robert (2007), “Mismatch,” American Economic Review, 97(4), pp. 1074–101. 

Smith, Robert S. (1979), “Compensating Wage Differentials and Public Policy: A  

Review,” Industrial and Labor Relations Review, 32(3), pp. 339–52. 

Tinbergen, Jan (1975), Income Distribution: Analysis and Policies, Amsterdam: North  

Holland Co. 

Viscusi, W. Kip, and Joseph E. Aldy (2003), “The Value of a Statistical Life: A Critical  

Review of Market Estimates throughout the World,” Journal of Risk and 

Uncertainty, 27(1), pp. 5–76. 

Zax, Jeffrey S., and Daniel I. Rees (2002), “IQ, Academic Performance, Environment  

and Earnings,” Review of Economics and Statistics, 84(4), pp. 600–16. 

 

 

 

 



PUBLISHED ISSUES*  
 
 
 
 
WP-AD 2010-01 “Scaling methods for categorical self-assessed health measures” 
 P. Cubí-Mollá. January 2010. 
 
WP-AD 2010-02 “Strong ties in a small world” 
 M.J. van der Leij, S. Goyal. January 2010. 
 
WP-AD 2010-03 “Timing of protectionism” 

A. Gómez-Galvarriato, C.L. Guerrero-Luchtenberg. January 2010. 
 
WP-AD 2010-04 “Some game-theoretic grounds for meeting people half-way” 
 P. Gadea-Blanco, J.M. Jiménez-Gómez, M.C. Marco-Gil. February 2010. 
 
WP-AD 2010-05 “Sequential city growth: empirical evidence” 

A.  Cuberes. February 2010. 
 
WP-AD 2010-06 “Preferences, comparative advantage, and compensating wage differentials for job 
 routinization”.  

C.  Quintana-Domeque. February 2010. 
 
WP-AD 2010-07 “The diffusion of Internet: a cross-country analysis” 
 L. Andrés, D. Cuberes, M.A. Diouf, T. Serebrisky. February 2010. 
 
WP-AD 2010-08 “How endogenous is money? Evidence from a new microeconomic estimate” 

D.  Cuberes, W.R: Dougan. February 2010. 
 
WP-AD 2010-09 “Trade liberalization in vertically related markets” 
 R. Moner-Colonques, J.J. Sempere-Monerris, A. Urbano. February 2010. 
 
WP-AD 2010-10 “Tax evasion as a global game (TEGG) in the laboratory” 
 M. Sánchez-Villalba. February 2010. 

 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        * Please contact Ivie's Publications Department to obtain a list of publications previous to 2010. 

 
 47



Ivie
Guardia Civil, 22 - Esc. 2, 1º

46020 Valencia - Spain
Phone: +34 963 190 050
Fax: +34 963 190 055

Department of Economics
University of Alicante

Campus San Vicente del Raspeig
03071 Alicante - Spain

Phone: +34 965 903 563
Fax: +34 965 903 898

Website: http://www.ivie.es
E-mail: publicaciones@ivie.es

ad
serie


	JMP-january-2010-IVIE-manuscript
	JMP-january-2010-IVIE-tables
	JMP-january-2010-IVIE-references
	AD-06_Climent.CORREGIDO[1].pdf
	JMP-january-2010-IVIE-manuscript
	JMP-january-2010-IVIE-tables
	JMP-january-2010-IVIE-references


	Text1: not compensated for taking such jobs but because they are less productive in performing them.
	Text2: them.
	Text3: 


