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Abstract 
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1 Introduction

This paper studies the properties of the solution to the incomplete markets

model with aggregate uncertainty in Den Haan, Judd and Juillard (2008).

Our solution method consists of two interconnected steps: the first is to solve

the individual problem for a given aggregate behavior of the economy and the

second is to compute the aggregate law of motion for the given individual

policy rules. We iterate on these two steps until we find a fixed point at

which the individual and aggregate policy rules are mutually consistent.

Step one is straightforward: the individual problem is the typical capital-

accumulation problem with an occasionally binding borrowing constraint,

and it can be solved by the standard numerical methods. We solve the indi-

vidual problem by using a grid-based Euler-equation algorithm similar to that

in Maliar and Maliar (2005, 2006). We extend Maliar and Maliar’s (2005,

2006) algorithm by incorporating a simple polynomial rule for constructing

the grid, which allows us to vary the concentration of capital grid points on

different parts of the domain, thus increasing the accuracy of approxima-

tion on non-linear parts of the policy rules. Our algorithm is also similar to

the grid-based Euler-equation method used by Baxter, Crucini and Rouwen-

horst (1990) for solving the standard one-sector growth model. Furthermore,
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our algorithm is related to the parameterized expectations algorithm used

in Den Haan and Marcet (1990), Den Haan (1997), Christiano and Fisher

(2000), Maliar and Maliar (2003b), and Algan, Allais and Den Haan (2008).

However, the above papers parameterize an expectation term in the Euler

equation and use a polynomial approximation, whereas we parameterize a

capital function and compute a solution on a grid of pre-specified points.1

Step two is non-trivial. Decisions of each heterogeneous agent depend on

the interest rate and wage rate, which in turn depend on the aggregate capital

stock. Since the aggregate capital stock is determined by capital holdings

of all heterogeneous agents, the whole capital distribution becomes a state

variable.2 With a continuum of agents, this distribution is a function, and

therefore, it cannot be used as an argument of the individual policy rules. To

deal with this problem, Krusell and Smith (1998) propose to summarize the

capital distribution by a discrete and finite set of moments.3 They solve the

individual problem by using value iteration, and they compute the aggregate

law of motion by simulating a panel for a large finite number of agents and

1For a general discussion of the Euler-equation methods, see Judd (1998).
2Under the assumption of complete markets, the aggregate behavior of a similar

heterogeneous-agent economy with idiosyncratic and aggregate uncertainty can be de-
scribed by a one-consumer model; see Maliar and Maliar (2003a) for this aggregation
result. In this special case, the state space does not include the whole capital distribution
but only its mean.

3Den Haan (1997) proposes an alternative approach for dealing with this problem,
namely, to parameterize the cross-sectional distribution with a polynomial.
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by running regressions on the simulated data. In this paper, we follow the

stochastic-simulation approach of Krusell and Smith (1998). Consequently,

our solution procedure is a variant of the Krusell-Smith algorithm, specifically

one in which the individual problem is solved by an Euler-equation method

instead of Krusell and Smith’s (1998) value function iteration. Our computer

programs are written in MATLAB in an instructive manner and are provided

on the JEDC web site (see the web pages of the authors for updated versions

of the program).

An important advantage of the stochastic-simulation Krusell-Smith algo-

rithm is that it is simple, intuitive and easy to program. As Algan, Allais

and Den Haan (2008) show, however, stochastic-simulation methods have

two potential shortcomings. First, the introduction of stochastic simulations

produces sampling noise, which makes the policy rules to depend on a specific

random draw. Second, the simulated endogenous data are clustered around

the mean, which implies that the accuracy of the approximation on the tails is

low. They argue that replacing a stochastic simulation with a non-stochastic

one can enhance the accuracy and speed of the algorithm. Therefore, it is

of interest to assess the accuracy of the stochastic-simulation version of the

Krusell-Smith algorithm and to compare it with a non-stochastic-simulation
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version.

We find that, despite the above shortcomings, the stochastic-simulation

Krusell-Smith method produces sufficiently accurate solutions.4 This is true

even under our relatively small panel of 10, 000 agents and relatively short

simulation length of 1, 100 periods. For example, in an accuracy test where

the model was simulated on a random realization of shocks of 10, 000 pe-

riods, the average and maximum errors in our aggregate capital series were

0.050% and 0.156%, respectively. Furthermore, we consider a non-stochastic-

simulation Krusell-Smith algorithm where simulations are performed on a

grid of pre-specified points, as is described in the appendix in Den Haan

(2008).5 We find that the benchmark stochastic-simulation version of the

Krusell-Smith algorithm with a panel of 10, 000 agents has approximately

the same cost as the non-stochastic-simulation version with a grid of 1, 000

points and produces solutions of comparable (or even higher) accuracy. Thus,

4An exception is very large errors produced by our method in a dynamic Euler-equation
accuracy test, see Table 14 in Den Haan (2008). A typo in our program is responsible
for these large errors. After we corrected the typo, the errors became considerably lower,
namely, in Table 14, the capital (scaled) average and maximum errors should be equal
to 0.0319% and 0.0926%, respectively, and the consumption average and maximum errors
should be equal to 0.0091% and 0.4360%, respectively.

5This non-stochastic simulation procedure is close to the one considered in Rios-Rull
(1997). A different non-stochastic-simulation procedure is proposed by Young (2008),
who was the first to combine the Krusell-Smith algorithm with non-stochastic simulation.
Algan, Allais and Den Haan (2008) perform a comparison of Rios-Rull’s (1997), Young’s
(2008) and their own procedures.
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Table 1. Euler-equation errors for a simulation of 10,000 periods on a random 
realization of shocks.  
 
 100 grid points, T=1,100  300 grid points, T=1,100 100 grid points, T=10,100 

Average Maximum Average Maximum Average Maximum 
Algorithm 1 0.0065% 0.1569% 0.0059% 0.0965% 0.0095% 0.1449% 
Algorithm 2 0.0067% 0.1546% 0.0060% 0.0966% 0.0066% 0.1563% 

 



in our case, the introduction of non-stochastic simulation does not lead to

substantial improvements.

2 The individual problem

In this section, we describe an Euler-equation algorithm for finding a solution

to the individual problem described in Den Haan, Judd and Juillard (2008).

This is the standard capital-accumulation problem with an occasionally bind-

ing borrowing constraint. The Euler equation, the budget constraint, the

borrowing constraint and the Kuhn-Tucker conditions, respectively, are

c−γ − h = βE
n
(c0)

−γ
(1− δ + r0)

o
, (1)

k0 = (1− τ)wlε+ μw (1− ε) + (1− δ + r) k − c, (2)

k0 ≥ 0, (3)

h ≥ 0, hk0 = 0, (4)

where variables without and with primes refer to the current and future pe-

riods, respectively (we omit the individual superscripts for the sake of nota-

tional convenience). Here, c is consumption; k is capital; ε is an idiosyncratic

shock that determines an employment status, with ε = 1 and ε = 0 repre-

senting the employed and unemployed states, respectively; h is the Lagrange
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multiplier associated with the borrowing constraint (3); r, w, μ and τ are

the interest rate, wage rate, unemployment-benefit rate and labor-income tax

rate, respectively; β ∈ (0, 1) is the discount factor; δ ∈ (0, 1] is the deprecia-

tion rate of capital; γ > 0 is the utility-function parameter; and l is the time

endowment.

The interest rate, wage and labor-income tax rate are given by

r = αa

µ
K

lL

¶α−1
, w = (1− α) a

µ
K

lL

¶α

, τ =
μu

lL
,

where a is an aggregate productivity shock, which can take two values 1−∆a

and 1 + ∆a; u = u (a) is the unemployment rate, which takes two values

depending on the aggregate productivity shock, u (1−∆a) and u (1 +∆a);

K and L ≡ 1 − u are the aggregate capital and labor, respectively; and

α ∈ (0, 1) is the share of capital in production.

Our objective is to compute the individual policy rule for choosing the

next-period capital stock k0. We restrict attention to a first-order recursive

Markov equilibrium for which the individual policy rules are time-invariant

functions of a current state. In an economy without aggregate uncertainty,

∆a = 0, the individual state variables are k and ε, and the individual policy

rule for capital is k0 = k0 (k, ε). This economy is first considered in Huggett

(1993) and Aiyagari (1994) and can be studied using standard dynamic pro-
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gramming methods. In an economy with aggregate uncertainty, the state

space also includes the aggregate productivity shock a and the capital hold-

ings of all heterogeneous agents. With a continuum of agents, the distribution

of capital is a function, and therefore, it cannot be used as an argument of

the individual policy rule. Following Krusell and Smith (1998), we charac-

terize the capital distribution by a set of moments m.6 We must therefore

find a time-invariant policy rule for the future capital k0 = k0 (k, ε,m, a) that

satisfies conditions (1)− (4).

Using the budget constraint (2), we eliminate current and future con-

sumption from the Euler equation (1) to obtain

ek0 = µ
1− μu

lL

¶
wlε+ μw (1− ε) + (1− δ + r) k (5)

−

⎧⎨⎩h+ βE

⎡⎣ 1− δ + r0³³
1− μu0

lL0

´
w0lε0 + μw0 (1− ε0) + (1− δ + r0) k0 − k0 (k0)

´γ
⎤⎦⎫⎬⎭

−1/γ

,

where h ≡ h (k, ε,m, a), k0 ≡ k0 (k, ε,m, a) and k0 (k0) ≡ k0 (k0 (k, ε,m, a)).

We choose the relevant intervals for k ∈ [0, kmax] and m ∈ [mmin,mmax],

and we discretize these intervals to construct a grid of points for (k, ε,m, a).

We subsequently solve equation (5) on the grid using the following iterative
6For the given economy, Krusell and Smith (1998) show that the mean of the capital

distribution contains essentially all the information, which is relevant for the individual
decision making. This results is referred to in the literature as "approximate aggregation".
We shall emphasize that approximate aggregation is a numerical result that needs not hold
for other economies, and that in general, many moments in the state space might be needed
for accurate solutions.
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procedure.

• Step I. Fix some initial capital function, k0 (k, ε,m, a), on the grid. We

set the initial capital function at k0 (k, ε,m, a) = 0.9k for all k, ε,m, a.

• Step II. For each grid point (k, ε,m, a), substitute the assumed capital

function k0 (k, ε,m, a) in the right-hand side of (5), set the Lagrange

multiplier equal to zero, h (k, ε,m, a) = 0, and compute the new cap-

ital function,
∼
k0 (k, ε,m, a) in the left-hand side of (5). For each point

on the grid for which
∼
k0 (k, ε,m, a) does not belong to [0, kmax], set

∼
k0 (k, ε,m, a) equal to the corresponding boundary value.

• Step III.Compute the capital function for the next iteration
≈
k0 (k, ε,m, a)

using the following updating formula:

≈
k0 (k, ε,m, a) = η

∼
k0 (k, ε,m, a) + (1− η) k0 (k, ε,m, a) , (6)

where η ∈ (0, 1] is an updating parameter.

Iterate on Steps II and III until the maximum difference between
≈
k0 (k, ε,m, a)

and k0 (k, ε,m, a) is less than a given degree of precision, which in our case

was set at 10−8.
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We now discuss several issues related to the algorithm. By construc-

tion, the capital function k0 (k, ε,m, a) satisfies conditions (1)− (3) and the

complementary slackness condition in (4). However, we still need to check

that the Lagrange multiplier h (k, ε,m, a) is non-negative for each grid point

(k, ε,m, a). Notice that since γ > 0, the term {h+ βE [·]}−1/γ in (5) is de-

creasing in h. Given that the unconstrained solution obtained under h = 0

violates the borrowing constraint and that capital on the left side of (5)

must increase to satisfy the borrowing limit, we can preserve the equality

sign in (5) only by increasing the Lagrange multiplier. Hence, our method

guarantees that the Lagrange multiplier is always non-negative.

Regarding the upper bound kmax, note that there is an ergodic set for k,

which indicates that there exists a value kergmax such that the agent chooses k
0

inside the interval [0, kergmax] at all grid points. However, using kergmax as kmax

leads to a grid that is too big, in the sense that the upper values of such

grid have an extremely low probability of occurring in simulations. We can

therefore save on computational costs by using a kmax that is smaller than

kergmax but is still sufficiently large as to never be reached during simulations.

In our numerical analysis, we used kmax = 1000, and we found ex post that
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the simulated individual capital series never reached even the level of 500,

which indicates that kmax = 1000 is acceptable.

Furthermore, as is indicated in Step 2, we bound k0 by kmax whenever it

exceeds the grid, which ensures that the individual capital is always inside

the interval [0, kmax]. Alternatively, we can extrapolate the individual policy

rule outside the interval [0, kmax]. Since the latter alternative is more costly,

and the properties of the policy rule in the region near kmax play a minor

role in the solution, we adhere to the former, simpler alternative.

Concerning the number of grid points and their placement, it has been

known since Huggett (1993) and Aiyagari (1994) that individual policy rules

in problems with borrowing constraints have kinks near the borrowing con-

straints, but are close to linear at higher levels of capital. To accurately

approximate the individual policy rule at low levels of capital, many grid

points are thus necessary, while an accurate approximation at high levels of

capital requires relatively few grid points. To take into account the above

regularity, we propose the following simple polynomial rule for the placement

of grid points

zj =

µ
j

J

¶θ

kmax for j = 0, 1, ..., J, (7)

where J + 1 is the number of grid points with J ≥ 1, and θ > 0 is a degree
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of the polynomial. The rule (7) is normalized so that z0 = 0 and zJ = kmax.

If θ = 1, we obtain grid points that are distributed uniformly in the interval

[0, kmax]; if θ is increased, the concentration of grid points in the beginning of

the interval increases while the concentration of grid points toward the end

of the interval decreases.

To determine the degree of the polynomial θ that leads to the most accu-

rate solution for a given number of grid points, we first compute an "accurate"

solution by considering 100, 000 grid points uniformly placed in the interval

[0, kmax]. We then compute "approximate" solutions by considering 100 grid

points, placed according to rule (7) using various values of θ. We then exam-

ine the average and maximum percentage errors between the capital choices

under the "accurate" and "approximate" solutions. We find that the smallest

errors are obtained under the polynomial degree θ = 7: the average error was

0.0002% in this case, and the maximum error was 0.09%. We thus choose a

100-point grid with θ = 7, as the benchmark. We also investigate the rela-

tionship between the solution’s accuracy and the number of grid points, and

we find that increasing the number of grid points from 100 to 400 augments

the accuracy of the solution by about one order of magnitude.

We find that the properties of the solution can significantly depend on a
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specific interpolation procedure used for evaluating the decision rules off the

grid. To compute the capital function off the grid, we try both a linear and

cubic polynomial interpolation. In our case, the cubic polynomial interpola-

tion is about three times slower than the linear interpolation but produces

considerably more accurate solutions. Given restrictions on computational

cost, we therefore face a trade-off between a linear interpolation with many

points and a cubic interpolation with fewer of points. After running a number

of experiments, we conclude that the cubic interpolation with fewer points is

superior to the linear one with a large number of points, especially in areas

where the policy rules are non-linear.

3 The stochastic-simulation algorithm

In this section, we discuss a version of the stochastic-simulation Krusell-Smith

algorithm for solving the model with aggregate uncertainty. We parameterize

the Aggregate Law of Motion (ALM) for a set of moments of the capital

distribution, m, by the following flexible functional form

m0 = f (m, a; b) , (8)

where b is a vector of the ALM coefficients. Subsequently, we compute b by

using the following iterative procedure.
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Algorithm 1 (stochastic simulation).

• Step I. Fix an initial vector of coefficients b. Generate and fix time

series of length T for the aggregate shocks. Fix the initial distribution

of capital across N heterogeneous agents. For each agent, generate and

fix a time series of length T for the idiosyncratic shocks.

• Step II. Given b and ALM (8), compute a solution to the individual

problem as described in Section 2.

• Step III. Use the individual policy rules computed in Step II to simu-

late the economy T periods forward by explicitly solving for the capital

holdings of each agent i = 1, ..., N , and by calculating the set of statis-

tics mt for each t = 1, ..., T .

• Step IV. Regress the time series for the statistics mt+1 as calculated

in Step III on the functional form f (mt, at; b), and call the regression

coefficients
∼
b.

• Step V. Compute the ALM coefficients for next iteration by using up-
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dating:

≈
b = λ

∼
b + (1− λ) b, (9)

where λ ∈ (0, 1] is an updating parameter.

Iterate on Steps II − V until the average squared difference between
≈
b

and b is less than a given degree of precision, which we set 10−8.

In our experiments, we take m to be either the first moment (mean) or

the first and second moments (mean and variance) of the capital distribution.

We assume that for each aggregate state, ALM (8) is a linear function of mo-

ments. For the mean, we consider a grid of four uniformly distributed values

in the interval from 75% to 125% of the capital mean of the ergodic distrib-

ution, and for the variance, we consider a grid of four uniformly distributed

values in the interval from 10% to 500% of the capital variance of the ergodic

distribution. In fact, the above ranges of the grid values are substantially

larger than those implied by the ergodic distribution. This is because the

moments can deviate significantly from their ergodic values on initial itera-

tions when the solution is inaccurate, whereas our interpolation procedure

requires the moments to always be inside the grid. A more accurate -and
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more expensive- alternative would use narrower grids for the moments and

apply extrapolation outside the grids.

In the benchmark case, we consider an economy populated byN = 10, 000

agents, and we set the length of simulations at T = 1, 100. In order to simu-

late the economy forward, we use a MATLAB interpolation routine "interpn"

under the "cubic" interpolation option. The effect of initial conditions van-

ishes slowly over time, so that the solution to the model effectively depends

on the initial assumption of capital distribution. To ensure that our initial

distribution of capital comes from an ergodic set, we first solve the model

by assuming a uniform distribution, then re-compute the solution using the

resulting terminal distribution as a starting point. To further mitigate the

effect of initial condition, we discard the first 100 periods when re-estimating

ALM (8) in Step IV . We report the results only for the one-moment solution,

because the series produced by the one- and two-moment ALM parameteri-

zations are practically indistinguishable.

For the one-moment solution, the ALM for the bad and good aggregate

states are, respectively,

ln (Kt+1) = 0.123815 + 0.965565 ln (Kt) ,
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and

ln (Kt+1) = 0.137800 + 0.963238 ln (Kt) .

Both regressions have R2 in excess of 0.9999; however, Den Haan (2007)

shows that R2 is not a sensible measure in the context of the ALM accuracy,

and that solutions with high R2 values may still be inaccurate according to

more appropriate accuracy measures.7

Den Haan (2007) proposes a powerful accuracy test which compares

two aggregate capital series: the first is obtained by simulating a panel of

agents using the individual policy rules, and the second is produced by the

ALM. For a simulation of 10, 000 periods on a random realization of shocks,

our stochastic-simulation method generates average and maximum error of

0.050% and 0.156%, respectively. These errors are relatively low; see Den

Haan (2008, Table 16) for the results of this test for other computational

methods. To illustrate the errors produced by our algorithm, we plot the

first 1, 000 periods for the two simulated capital series in Figure 1, and we

see that they are practically indistinguishable.

7Den Haan and Rendahl (2008) report that two solutions to the model, both of which
have R2 in excess of 0.999999, differ substantially in terms of the mean aggregate capital
stock predicted. We have similar findings: the stochastic-simulation Krusell-Smith algo-
rithm considered in this section yields a capital-distribution mean of 39.357, while the
non-stochastic-simulation Krusell-Smith algorithm described in the next section (and also
characterized by R2 in excess of 0.9999) yields a mean of 39.037.
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As a further accuracy check, we repeat the above test under a peculiar

sequence of the aggregate productivity shock, in which the economy remains

in a bad state for the first 100 periods, then shifts into in a good state for

the next 100 periods. Even though this peculiar realization of shocks is

very different from the one used in computing the solution, the average and

maximum errors are still very low: 0.062% and 0.146%, respectively. For this

experiment, the aggregate capital series generated by the individual policy

rule and by the ALM are shown in Figure 2. Overall, the solutions produced

by this algorithm are sufficiently accurate even under our computationally

undemanding choices such as N = 10, 000 and T = 1, 100.

4 Stochastic versus non-stochastic simulation

In this section, we compare the stochastic- and non-stochastic-simulation ver-

sions of the Krusell-Smith method. To this purpose, we replace the procedure

for simulating a panel of agents in our benchmark Krusell-Smith algorithm

with a procedure for simulating the evolution of capital distribution on a grid

of pre-specified points, as described in the appendix of Den Haan (2008). We

outline the non-stochastic-simulation method below.

Algorithm 2 (non-stochastic simulation).
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• Step I. Fix an initial vector of coefficients b. Generate and fix a time

series of length T for the aggregate shocks. Fix the initial distribution

of capital for the employed and unemployed agents on an equally spaced

1, 000-point grid over the interval [0, 100], i.e., κ0 = 0 and κj = 0.1j,

j = 1, ..., 1000.

• Step II. Identical to Step II of Algorithm 1.

• Step III. Use the individual policy rules computed in Step II to simu-

late the economy T periods forward by computing the evolution of the

capital distribution on the grid, as described in Den Haan (2008), and

by calculating the set of statistics mt for each t = 1, ..., T .

• Steps IV − V. These are identical to Steps IV-V of Algorithm 1.

Iterate on Steps II − V until the average squared difference between
≈
b

and b is less than a given degree of precision, which we set in this case as

10−8.

Den Haan (2008) proposes to compute the next-period capital distribution
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on the grid by solving the following non-linear problem at each grid point:

k0
¡
xε,jt , ·

¢
= κj, (10)

where xε,jt is the current level of capital of agents with an employment status

ε ∈ {0, 1} such that the future capital choice is equal to the grid point κj. We

solve (10) by using the interpolation twice. Specifically, for each t = 1, ..., T :

1) for given mt and at, we interpolate the policy rules for employed and

unemployed agents to obtain k0 (k, 1,mt, at) and k0 (k, 0,mt, at), respectively;

2) we define the inverse functions of k0 (k, 1,mt, at) and k0 (k, 0,mt, at)

(i.e., we view k0 as an argument, and we view k as a function of k0), and we

use interpolation to restore the values of the inverse functions at each grid

point κi.8

We take the initial capital distribution on the grid from Den Haan, Judd

and Juillard (2008). To make this algorithm comparable to the stochastic-

simulation algorithm, we use the same simulation length of T = 1, 100, and

we discard the first 100 periods when re-estimating ALM (8) on Step IV .

The two interpolation steps, which are components of Algorithm 2 but are

absent under Algorithm 1, are costly. As a result, the computational costs

8A similar interpolation approach is used in Maliar and Maliar (2006) to solve for
an equilibrium interest rate in Hugget’s (1993) and Aiyagari’s (1994) model extended to
include quasi-geometric (hyperbolic) consumers.
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associated with the non-stochastic simulation is higher than the computa-

tional costs of the stochastic simulation. Specifically, we find that running

Algorithm 1 with a panel of 10, 000 agents costs approximately the same as

running Algorithm 2 with a grid of 1, 000 points, and the results are of similar

accuracy. Presumably, we can reduce the cost of non-stochastic simulation

by solving the non-linear problem (10) with a procedure that is more efficient

than our double interpolation.9

Under Algorithm 2, the ALM for the bad and good aggregate states are,

respectively,

ln (Kt+1) = 0.122146 + 0.965942 ln (Kt) ,

and

ln (Kt+1) = 0.136272 + 0.963582 ln (Kt) .

The R2 values of these two regressions were both in excess of 0.999999, and

both were also higher than the R2s produced under Algorithm 1. Again,

however, this does not necessarily mean that Algorithm 2 produces more

accurate solutions than Algorithm 1.

To determine the relative accuracy of Algorithm 2, we perform the same

9Young (2008) proposes a different variant of a non-stochastic simulation procedure
where the current capital is assumed to be on the grid and the next-period capital is
obtained from the capital policy function. This procedure does not require an inverse and
is consequently much faster.
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two accuracy tests on Algorithm 2 that were applied to Algorithm 1. For a

simulation of 10, 000 periods with a random realization of shocks, Algorithm

2 produces an average error of 0.044%, which is smaller than the error of

0.050% generated under Algorithm 1. However, the maximum error under

Algorithm 2 is 0.187%, which is somewhat larger than Algorithm 1’s error of

0.156%. We do not provide a figure for the series obtained under Algorithm

2 as a result of this test, as such a figure is visually identical to Figure 1

which was obtained under Algorithm 1.

For a simulation of 200 periods with a peculiar shock sequence (100 peri-

ods of bad shocks and 100 periods of good shocks), Algorithm 2 produces av-

erage and maximum ALM errors of 0.087% and 0.182%, respectively. These

are again somewhat larger than the corresponding errors generated by Algo-

rithm 1 which are 0.062% and 0.146%. In Figure 3, we plot the aggregate

capital series generated by the individual policy rule and by the ALM under

Algorithm 2. A comparison of Figures 2 and 3 shows that unlike Algorithm

1, which generates the largest errors toward the end of the simulation, Al-

gorithm 2 generates the largest errors around the middle of the simulation,

toward the end of the bad period.

As an additional accuracy check, we compute the average and maximum
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Euler-equation errors for a simulation of 10, 000 periods on a random realiza-

tion of shocks (see Table 1). In the benchmark case, Algorithm 2 produces

slightly larger Euler-equation errors than Algorithm 1 does (see column 1).

We also investigate the dependence of the Euler-equation errors on the ac-

curacy of the individual policy rule by increasing the number of capital grid

points in the individual problem from 100 to 300 (see column 2), and we

study the dependence of the Euler-equation errors on the simulation length

by increasing T from 1, 100 to 10, 100 (see column 3). As the table shows,

these two modifications have little effect on the magnitudes of the errors. We

perform additional sensitivity experiments by varying the number of agents

in Algorithm 1 and the number of grid points in Algorithm 2, and we find

that the Euler-equation errors are not significantly affected.
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