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ABSTRACT 
 

 In this paper we analyze incentives to invest in capacity prior to a 

sequence of Cournot spot markets with varying demand. We compare 

equilibrium investment in the absence and in presence of the possibility to trade 

on forward markets. We find that the possibility to trade forwards reduces 

equilibrium investments. 
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1 Introduction

In the course of the liberalization of electricity markets one of the major

objectives has been the implementation of a market design that enhances

competition. In this context, the role of forward markets in mitigating market

power has been discussed extensively. The debate was initiated by Allaz

(1992) and Allaz and Vila (1993), who show that the strategic use of forward

markets enhances competition in a Cournot oligopoly. The literature on

electricity market design adopted this model, arguing that the introduction

of forward markets could decrease spot prices and thereby enhance efficiency.1

In this debate, incentives to invest in capacity under different market

designs have long been ignored. On several recent occasions, however, short-

ages of transmission and/or generation capacity provoked serious breakdowns

of electricity power supply. For example in California, wholesale electricity

prices during the Summer of 2000 were nearly 500% higher than they were

during the same months in 1998 or 1999. Some customers were required

to involuntarily curtail electricity consumption in response to supply short-

ages.2 In 2003, a great blackout in the United States and Canada knocked

out power to 50 million people over a 9,300-square-mile area stretching from

New England to Michigan.3 Those events demonstrated that the reliability

of energy provision — and thus, the general functioning of energy markets

— depends crucially on the existence of sufficient capacities at high levels

of demand. Consequently, investment incentives have to be considered when

evaluating the attractiveness of a market design. Moreover, a market design

that enhances competition in a model where capacity choices are not taken

into account, does not necessarily have the same effect when one accounts

for capacity choices upfront.

For both reasons, investment incentives recently have become a mayor

1See for example Newbery (1998) and Le Coq and Orzen (2002).
2See the discussion in Joskow (2001) and Borenstein (2002).
3CBSnews.com, August 15, 2003 at

http://www.cbsnews.com/stories/2003/08/15/national/main568422.shtml
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topic in the debate on electricity market design. Investment prior to price

competition has been analyzed by von der Fehr and Harbord (1997).4 They

show that from a social welfare point of view, investments in generation ca-

pacity are too low, even if the spot market is perfectly competitive. Grimm

and Zoettl (2005) show the same for capacity choices prior to Cournot com-

petition at the spot markets. Murphy and Smeers (2003) analyze a capacity

expansion model where at the production stage players compete on a se-

quence of Cournot markets with varying demand. They show that capacities

are higher and prices are lower if capacity choices are observable prior to pro-

duction. In a follow–up paper, Murphy and Smeers (2004) show that if firms

can choose their capacities prior to a single Cournot spot market, the intro-

duction of forward markets is ineffective. In equilibrium, equal capacities are

chosen in the cases with and without forward trading. Hence, equilibrium

quantities are the same.5

In this paper, we analyze capacity investments prior to a continuum of

subsequent Cournot spot markets with different demand realizations. We

compare the resulting two stage game to a market design where forwards

can be traded prior to each spot market. We find that capacity investments

generally decrease upon the introduction of forward markets.

Let us finally mention the connection of our model with a broader liter-

ature on commitment devices in Cournot oligopoly. Note that forward con-

tracts as analyzed by Allaz and Vila have the same impact on the Cournot

outcome as the delegation of output decisions to managers or the delegation

of sales to retailers, as analyzed among others by Vickers (1985) and Fersht-

man and Judd (1987). In all those models, the (owner of the) firm uses an

incentive scheme to commit the intermediary to a more aggressive behavior,

which in equilibrium leads to higher quantities and lower price. Our result

4Those authors do not analyze price setting behavior a la Bertrand but consider an auc-

tion like mechanism. Capacity choices prior to Bertrand competition have been analyzed

extensively following the contribution by Kreps and Scheinman (1983).
5This result has the same flavor as the well known result by Kreps and Scheinkman

(1983).
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applies to all those models: If capacity investments are an issue in the mar-

ket under consideration, we have to expect lower capacities if the firms have

access to strategic devices.

The paper is organized as follows: In section 2 we state the model. In

section 3 we analyze the game without forward contracts. Section 4 analyzes

the game in the presence of forward markets and compares the results of the

two scenarios. Section 5 concludes.

2 The Model

We analyze a duopoly where firms have to make a capacity choice before they

compete on a continuum of successive spot markets. Prior to production, but

after capacities have been chosen, they have the possibility to trade forward

contracts, by which they commit to sell a certain quantity on a specific spot

market at a fixed price. The situation we have in mind is captured by the

following three stage game:

At stage one each firm i, i = 1, 2, invests in capacity xi ∈ R+, i = 1, 2, at

a unit cost k (firms are assumed to be symmetric with respect to their cost

of investment).

At stage two, having observed the capacity choices x = (xi, x−i),
6 for

each spot market t ∈ [0, T ] firms have the possibility to sell any quantity up

to their capacity on the forward market at a fixed price. Forward contracts

f(t) = (fi(t), f−i(t)) are sold in an arbitrage-free market.7

At stage three firms face the capacity constraints inherited from stage one

and hold the forward positions from stage two. They simultaneously choose

outputs for each spot market t ∈ [0, T ], denoted by y(t) = (yi(t), y−i(t)).

Demand at time t, P (Y, t), has the functional form8 P (Y, t) = at − Y (t),

6We denote by −i the firm other than i.
7Since we analyze the case of demand certainty we are interested in forward contracts

as a strategic device, as introduced by Allaz and Vila (1993).
8The majority of the contributions to the topic we analyze concentrate on the case of

linear demand. Examples are Fershtman and Judd (1987), Vickers (1985), Allaz and Vila
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where Y (t) = yi(t) + y−i(t) is the aggregate quantity produced by the two

firms at time t, a ≥ 0, and t ∈ [0, T ].9 Both firms have the same marginal cost

of production which is assumed to be constant. Without loss of generality

we normalize marginal cost to zero.

Firm i’s profit from operating in the time interval [0, T ] if capacities and

forwards are given by x and f(t) and firms have chosen feasible10 production

schedules y(t), is given by

πi(xi, y) =

∫ T

0

[at− (yi(t) + y−i(t))] yi(t)dt− kxi. (1)

The game we consider is a three stage game with observability after each

stage. We look for subgame perfect Nash equilibria in pure strategies. The

assumption that spot market quantities for the entire interval [0, T ] have to

be chosen simultaneously prior to t = 0 is made for expositional simplicity.

All results are still true if firms can choose production schedules for the

subsequent time interval at finitely many points within the time interval

[0, T ].

3 Equilibrium without Forward Contracts

In this section we analyze the game without the possibility to trade forward

contracts. This is equivalent to exogenously fix forwards at f(t) = 0 for all t.

Thus, we have a two stage game where firms invest at stage one and decide

upon quantities at stage two. We derive the subgame perfect equilibrium

of the game by backward induction, that is, we first solve for the equilibria

at stage two and then derive equilibrium capacity choices given that firms

anticipate equilibrium play at stage two.

(1993), or Murphy and Smeers (2004).
9The demand realizations are ordered from low to high for tractability reasons. How-

ever, as it is easy to show, the result holds also for any other ordering of demand realiza-

tions.
10That is, fi(t) ≤ yi(t) ≤ xi for all t ∈ [0, T ], i = 1, 2.
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Stage II First note that for given investment levels x we can solve the

maximization problem of firm i pointwisely. That is, firm i’s profit as given

by (1) is maximized whenever the integrand is maximized at each t ∈ [0, T ].11

Thus, an equilibrium y∗(x, t) satisfies simultaneously for both firms and for

each t ∈ [0, T ]

y∗i (x, t) ∈ arg max
y

{[
at− (y + y∗−i(t))

]
y
}

s.t. 0 ≤ y ≤ xi.

The above considerations imply that an equilibrium of the game at stage

two, (y∗i (x, t), y∗−i(x, t)), is given by the equilibrium outputs of the capacity

constrained Cournot games at each t ∈ [0, T ].

It is easy to show that the firms’ unconstrained reaction functions at time

t have the from ỹBR
i (y−i, t) = at−y−i

2
and that the unconstrained Cournot

equilibrium is that both firms produce ỹ∗i (t) = at
3
, i = 1, 2. Suppose now

that firm i’s investment is (weakly) lower than firm −i’s. Depending on how

much the firms have invested at stage one relative to the demand realization

at time t, we have to distinguish three cases.

(CN) No firm is constrained if xi ≥ ỹ∗i (t) = at
3
, i = 1, 2, i. e. each firm’s

unconstrained Cournot quantity is lower than its maximal possible out-

put given the capacity choices. Obviously, this is the case whenever

0 ≤ t ≤ 3xi

a
, i = 1, 2. In this interval the equilibrium of the sec-

ond stage corresponds to the unconstrained Cournot Nash equilibrium

(denoted EQCN):

t ∈
[
0,

3xi

a

)
⇔ y∗i (x, t) =

at

3
, i = 1, 2.

Equilibrium profits are

πCN
i (x, t) =

(
at

3

)2

, i = 1, 2.

11Any function ŷ(t) that differs from y∗(t) at a finite number of points also maximizes

π. However, note that this does not affect the optimal investment.
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(Ci) Firm i is constrained if t > 3xi

a
and therefore xi ≤ at

3
. In this case

firm i cannot play its unconstrained Cournot output, but will produce

at capacity. As long as firm −i is not yet constrained, it will play

its best response to firm i producing xi, that is ỹBR
−i (xi, t) = at−xi

2
.

This implies that firm −i is unconstrained for all t ≤ 2x−i+xi

a
. Thus,

if t ∈ (3xi

a
, 2x−i+xi

a
], in equilibrium the low-capacity firm i produces at

capacity, but firm −i does not (denoted EQCi).

t ∈
[
3xi

a
,
2x−i + xi

a

)
⇔ [

y∗i (x, t), y∗−i(x, t)
]

=

[
xi,

at− xi

2

]
.

Equilibrium profits are

πCi
i (x, t) =

(
at− xi

2

)
xi, πCi

−i(x, t) =

(
at− xi

2

)2

.

(CB) Both firms are constrained for demand realizations higher than

t = 2x−i+xi

a
. In this case in equilibrium both firms produce at capacity

(denoted EQCB).

t ∈
[
2x−i + xi

a
, T

]
⇔ y∗i (x, t) = xi, i = 1, 2.

Equilibrium profits are

πCB
i (x, t) = (at− xi − x−i) xi, i = 1, 2.

As we already mentioned in section 2 the results do not change if we allow

the firms to choose production schedules at a finite number of points in time.

This is obvious since due to uniqueness of the equilibrium at each t, only

playing y∗i (x, t) satisfies subgame perfection.

Figure 1 illustrates the results for a particular demand realization t.

Stage I For a given t, figure 1 shows which type of equilibrium exists for

each given pair of investment levels, x. Building on these results we can now

7



Figure 1: Nash equilibria at stage two of the market game without forward

contracts.

derive firm i’s profit from investing xi, given that the other firm invests x−i

and quantity choices at stage two are given by y∗. A firm’s profit from given

levels of investments, x, is the integral over equilibrium profits at each t given

x on the domain [0, T ]. For each t, firms anticipate equilibrium play at stage

two, which gives rise to one of the three types of equilibria, EQCN , EQCi,

or EQCB. Note that any x > 0 gives rise to the unconstrained equilibrium

if t is close enough to zero. An increase of t corresponds to a dilation of

all regions outwards with center zero. Thus, a pair of investment levels that

initially gave rise to an EQCN leads to an equilibrium where one firm is
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constrained (either EQCi if x−i > xi or EQC−i if if xi > x−i) for a higher

t. As t increases even more, x finally is located in the region where both

firms are constrained (EQCB). For investment levels where both firms are

constrained in the highest demand scenario the profit function is given by12

πU
i (x, y∗) =

∫ 3x−i
a

0

πCN
i dt +

∫ 2xi+x−i
a

3x−i
a

πC−i
i dt +

∫ T

2xi+x−i
a

πCB
i dt− kxi (2)

=
(aT − x−i)(aT − x−i − 2xi)xi

2a
+

x3
−i + 2x3

i

3a
− kxi

for xi ≥ x−i and xi ≤ aT−x−i

2
(denoted region U), and

πD
i (x, y∗) =

∫ 3xi
a

0

πCN
i dt +

∫ xi+2x−i
a

3xi
a

πCi
i dt +

∫ T

xi+2x−i
a

πCB
i dt− kxi (3)

=
(aT − xi)(aT − 2x−i − xi)xi

2a
+

xi x
2
−i

a
− kxi.

for xi ≤ x−i and x−i ≤ aT−xi

2
(denoted region D).

Notice that for xi = x−i we obtain πU
i = πD

i , implying that the profit

function πi(x, y∗) is continuous for all x. Given y∗(x, t) we can now derive

the equilibrium of stage one which yields the subgame perfect equilibrium of

the two stage game.

Proposition 1 The market game where firms first invest in capacity and

then engage in quantity competition in a continuum of spot markets has a

unique subgame perfect Nash equilibium. In equilibrium firms invest

x∗i =
1

3

(
aT −

√
2ak

)
, i = 1, 2.

They produce the unconstrained Cournot best reply quantities at stage two

whenever this is possible, and at capacity otherwise.

Proof: see Appendix A.

12For investment levels where one firm is unconstrained at the highest demand realiza-

tion the last integral has to be dropped and the upper limit of the second integral has to

be substituted by T (regions U
I

and D
I

in figure 2). If both firms are unconstrained at

the highest demand realization the two last integrals have to be dropped and the upper

limit of the first integral has to be substituted by T (regions U
II

and D
II

).
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Figure 2: Best replies, equilibrium, and the isoinvestment line INF for the

market game without forward contracts.

Since the main objective of the paper is to compare the level of total

investment with and without forward markets, we define

INF = {x ∈ R2
+ : xi + x−i =

2

3
(aT −

√
2ak)}. (4)

The isoinvestment line INF contains all investment levels xi, x−i leading to

the same total investment as the equilibrium of the the market game without

forward contracts we analyzed in this section. Best reply functions at stage

one and the isoinvestment line are depicted in figure 2.
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4 Equilibrium with Forward Contracts

If we include forward markets, we have to analyze the three stage game al-

ready described in section 2, where prior to production but after investments

have been made, forwards can be traded.

The impact of forward markets on Cournot competition has already been

analyzed by Allaz and Vila (1993). In section 4.1 we extend the analysis

to the presence of capacity constraints. In section 4.2 we will use the sub-

game perfect equilibria of the parameterized subgames starting at stage two

in order to characterize equilibrium investments at stage one (prior to a con-

tinuum of Cournot markets) and compare them to equilibrium investments

in the market game without forward markets.

4.1 Forward Trading in the Presence of Capacity Con-

straints

Stage III In each subgame starting at stage three, firms have observed

investment levels x = (xi, x−i) and the quantities traded forward, f(t) =

(fi(t), f−i(t)). Again, firm i’s profit as given by (1) is maximized whenever

the integrand is maximized at each t ∈ [0, T ]. Thus, an equilibrium of stage

three satisfies simultaneously for both firms and for each t ∈ [0, T ]13

y∗i (x, f, t) ∈ arg max
y≥0

{(at− y− y∗−i)(y− fi(t))} s.t. fi(t) ≤ y ≤ xi. (5)

Note that y∗i (t) only depends on the forwards traded for period t, f(t).

Now we solve for the equilibrium of stage three. As a first step we ignore

the capacity constraint and derive the best reply of firm i to a given quantity

produced by −i,

ỹBR
i (y−i; f, t) =

at + fi − y−i

2
, i = 1, 2. (6)

13With a slight abuse of notation, we use the same symbols as in the case without

forward contracts.
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Thus, the equilibrium of the unconstrained market game at stage three is

ỹ∗i (f, t) =
at + 2fi − f−i

3
, i = 1, 2.

From equations (5) and (6) immediately follow the capacity constrained best

reply-functions,

yBR
i (y−i; x, f, t) = min

{
ỹBR

i (y−i; f, t), xi

}
, i = 1, 2.

It is straightforward to show that for each (x, f, t) the equilibrium14

{y∗i (x, f, t), y∗−i(x, f, t)} of stage three is unique. Depending on the values

of x, f , and t, none of the firms, one of them, or both are capacity con-

strained in equilibrium. We now become specific on equilibrium quantities

and profit functions in each of those cases:

(CN) No firm is constrained if for both firms the unconstrained Cournot

quantities given f are lower than capacity. This holds true, whenever

xi > ỹ∗i (f, t), i = 1, 2. (7)

We denote by FCN(x, t) the set of all f for which both inequalities in

(7) are satisfied at (x, t). For all f ∈ FCN(x, t), equilibrium quantities

at stage three are y∗i (x, f, t) = ỹ∗i (f, t), i = 1, 2, and equilibrium profits

are

πCN
i (x, f, y∗, t) =

(at− fi − f−i)(at + 2fi − f−i)

9
. (8)

(Ci) Only firm i is constrained if firm i’s unconstrained Cournot quan-

tity given f exceeds its capacity, but firm −i is not constrained in

equilibrium. This holds true, whenever

xi ≤ ỹ∗i (f, t) and x−i ≥ ỹBR
−i (xi; f, t). (9)

We denote by FCi(x, t) the set of all f for which both inequalities

are satisfied at (x, t). For all f ∈ FCi(x, t), equilibrium quantities at

14Nash equilibrium in pure strategies.
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stage three are y∗i (x, f, t) = xi, y∗−i(x, f, t) = ỹBR
−i (xi; x, f, t) ≤ x−i.

Equilibrium profits are

πCi
i (x, f, y∗, t) =

xi(at− f−i − xi)

2
. (10)

πCi
−i(x, f, y∗, t) = =

(at− xi)
2 − f 2

−i

4
. (11)

(CB) Both firms are constrained if they cannot play their unconstrained

best reply given the other firm produces at capacity. This holds true,

whenever

xi ≤ ỹBR
i (x−i; f, t), i = 1, 2.

We denote by FCB(x, t) the set of all f for which both inequalities are

satisfied at (x, t). For all f ∈ FCB(x, t), equilibrium quantities at stage

three are y∗i (x, f, t) = xi. Equilibrium profits are

πCB
i (x, f, y∗, t) = (at− xi − x−i)xi, i = 1, 2. (12)

Stage II Now we derive all subgame perfect equilibria of the parameterized

subgames starting at stage two. Again, given investment levels and equilib-

rium play at stage three, we can solve pointwisely for the equilibria at stage

two for each t ∈ [0, T ].

It is important to notice that uniqueness of the equilibrium

at stage three implies that for each investment level x, the sets

FCB(x, t), FCi(x, t), FC−i(x, t), and FCN(x, t) partition the set F = [0, xi]×
[0, x−i] of all feasible levels of forward trades given x. For each set, we can

now characterize the subgame perfect equilibria (f ∗, y∗). Within each set,

any equilibrium leads to unique quantities y∗ at stage three, that may, how-

ever, be supported by various quantities of forward contracts traded at stage

two. Lemmas 1 to 3 state the equilibrium quantities, as well as the values

of x for which an equilibrium exists in the different regions. The proofs are

relegated to appendix B.

Lemma 1 (No firm is constrained)
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(i) If f ∗(x, t) ∈ FCN(x, t), then y∗i (f
∗(x, t), x, t) = 2at

5
, i = 1, 2 (denoted

EQCN).15

(ii) EQCN exists, if and only if xi ≥ (1− 2
√

2
5

)at =: at
c2.3

≈ at
2.3

, i = 1, 2.

Lemma 2 (One firm is constrained)

(i) If f ∗(x, t) ∈ FCi(x, t), then y∗i (f
∗(x, t), x, t) = xi and

y∗−i(f
∗(x, t), x, t) = at−xi

2
(denoted EQCi).

(ii) EQCi exists if and only if xi < at
2

and x−i ≥ at−xi
2

.

Lemma 3 (Both firms are constrained)

(i) If f ∗(x, t) ∈ FCB(x, t), then y∗i (f
∗(x, t), x, t) = xi, i = 1, 2 (denoted

EQCB).

(ii) EQCB exists if and only if xi ≤ at−x−i

2
, i = 1, 2.

Lemmas 1 to 3 enable us to determine which of the four possible equilibria

exist for each given investment levels x. Note for example that for high

investment levels (xi ≥ at
c2.3

, i = 1, 2), the unconstrained equilibrium exists

(lemma 1). However, if investments of bidder i are in that region but low

enough ( at
c2.3

≤ xi ≤ at
2
), also EQCi exists (lemma 2). Thus, for all xi ∈

[at
2
, at

c2.3
] both equilibria exist, provided x−i is high enough.

Figure 3 summarizes the results of lemmas 1 to 3. The figure shows

(given a particular demand realization t) for each possible combination of

investment levels, which of the four possible types of equilibria exist.

In order to analyze all subgame perfect equilibria of the game it is nec-

essary to determine the profit functions for all different choices of equilibria

at stages two and three. This, however, seems to be impossible since, in re-

gions with multiple equilibria, for each t another equilibrium of the subgame

starting at stage two can be chosen. Moreover, the selection of equilibria of

15That is, any equilibrium in the unbounded region yields the solution found by Allaz

and Vila (1993).

14



Figure 3: Subgame perfect equilibria of the parameterized subgames starting

at stage two.

the continuation game may depend on the history of the game, that is, on x.

Let us define

Definition 1 (σ-subgame perfect equilibrium, SPE(σ)) A σ-sub-

game perfect equilibrium is a subgame perfect equilibrium of the three stage

game where in every small interval [t, t+ δ], δ → 0, the equilibrium preferred

by firm i has share σ and the equilibrium preferred by firm −i has share

1− σ.

In the following we consider only the SPE(σ) of the market game with

15



forward contracts. This excludes any equilibrium where the choice of equi-

libria at stages two and three depends on choices of x, or on t. We make this

restriction mainly for tractability reasons. However, with the parametriza-

tion chosen it should be possible to approximate a huge variety of plausible

operational markets. Let us give two examples for equilibria that are cov-

ered by this formulation: (1) The equilibrium preferred by one of the firms is

always played (e.g. because that firm has the commitment power to enforce

this). (2) The equilibrium is chosen randomly with probabilities σ, 1− σ at

each t where multiple equilibria exist.

As we mentioned in section 2, we do not need the assumption that firms

decide on y(t) prior to t = 0. We can also allow for the choice of production

schedules prior to a finite number of time intervals. Note that the spot market

equilibrium y∗(x, f, t) is unique for all t and thus, is the only equilibrium play

satisfying subgame perfection if production schedules are chosen repeatedly

(but forwards for all t are chosen prior to t = 0). In general this does not hold

true for the choice of forward quantities. Here multiplicity of equilibria leaves

scope for credible threats that may support outcomes other than f ∗, y∗ for

some t ∈ [0, T ]. However, the σ-subgame perfect equilibria we consider in the

following do not allow for conditioning on past equilibrium outcomes. Thus,

all equilibria covered by this concept are also equilibria of the game where

forwards are chosen repeatedly prior to a finite number of time intervals.16

4.2 Equilibrium Investments

Stage I Now that we have determined the equilibria of the subgames start-

ing at stage two for all possible capacities, we can turn towards solving the

subgame perfect equilibria of the market game with forward contracts. Fig-

ure 3 depicts the areas of existence of the different types of equilibria for a

16Finally note that conditioning on past outcomes does not make sense in the present

model since demand realizations are ordered. Thus, the evolution of the game over time

is meaningless. The model would have to be substantially modified in order to analyze

those issues.
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given value of t. A firm’s profit from given levels of investments, x, is the

integral over equilibrium profits at each t given x on the domain [0, T ].

Note that (as in the case without forwards) any x > 0 gives rise to

the unconstrained equilibrium if t is close enough to zero. An increase of t

corresponds to a dilation of all regions outwards with center zero. Observe

furthermore that in the three slices L, M , and R (see figure 3), different

types of equilibria exist and that also their sequence is different. Thus, the

exact form of the profit function depends on the location of the investment

levels x.

Suppose for example that we want to determine bidder i’s profit

πi(x, f ∗, y∗) from a given pair of investment levels x, where xi > 2x−i. That

is, we have to integrate parameterized equilibrium profits of the subgames

starting at stage two from t = 0 to t = T given that x is located in region

L (see figure 3). In case both firms are constrained at the highest demand

realization, the profit function looks as follows:

π
L
i (x, f∗, y∗, d) =

∫ 2x−i
a

0

πCN (x, f∗, y∗, t)dt + σ

∫ c2.3x−i
a

2x−i
a

πCN (x, f∗, y∗, t)dt (13)

+ (1− σ)
∫ c2.3x−i

a

2x−i
a

πC−i(x, f∗, y∗, t)dt +
∫ 2xi+x−i

a

c2.3x−i
a

πC−i(x, f∗, y∗, t)dt

+
∫ T

2xi+x−i
a

πCB(x, f∗, y∗, t)dt− kxi.

Starting from t = 0, any x > 0 lies in the region where only EQCN exists.

Thus, the relevant profit for low values of t is πCN(x, f ∗, y∗, t) as given by

equation (8). That region is left when x−i = at
2

(see figure 3), or equivalently,

t = 2x−i

a
. This explains the upper limit of the first integral.

As t becomes larger than 2x−i

a
we enter into a region where multiple

equilibria (of type EQCN and EQC−i) exist. Obviously, different selections

of equilibria of the continuation games played at each t in such a region

yield different equilibrium capacity choices at stage one. The parameter σ

determines which of the equilibria of the subgame starting at stage two is

selected at the operating stages. Firm i prefers EQCN and thus, receives

share σ of the corresponding profit πCN
i . The other firm prefers EQC−i
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which is why firm i receives share 1− σ of the corresponding profit πC−i
i .

As t increases beyond c2.3x−i

a
, first only EQC−i exists and finally, for high

values of t, both firms are constrained, i. e. they play EQCB. This explains

the fourth and fifth integral of equation (13).17

Note that in the remaining regions, M and R the profit function looks

different since the sequence of the areas of existence of the different types

of equilibria is different (see figure 3). In appendix C we derive the profit

functions for all three regions. We obtain a parameterized profit function

πi(x, f ∗, y∗, σ) that is continuous at all x, but not everywhere differentiable.

From this profit function we derive a continuous but not everywhere differ-

entiable upper bound for firm i’s best reply function x̄BR
i (x−i, f

∗, y∗, σ).

Now we can compare investment levels in the two market games (with

and without forward trading) by comparing x̄BR
i (x−i, f

∗, y∗, σ) with the isoin-

vestment line INF in the market without forward contracts defined by equa-

tion (4). If the best reply function lies below the isoinvestment line for all

xi ≥ x−i, no equilibrium of the game with forward contracts can yield higher

total investment than the game without forward contracts. The result is

summarized in the following

Lemma 4 The best reply function of firm i at stage one, xBR
i (x−i, f

∗, y∗, σ),

yields xBR
i (x−i) + x−i < xj + x−j for all (xj, x−j) ∈ INF whenever

xBR
i (x−i, f

∗, y∗, σ) ≥ x−i.

For a detailed proof see appendix C.

Figure 4 illustrates the lemma. It depicts the isoinvestment line INF in

the case without forward markets, as well as (in the region above the 45-

degree line) the upper bound of firm i’s best reply in the presence of forward

markets, x̄BR
i (x−i, f

∗, y∗, σ). As the latter always lies below the isoinvestment

line in absence of forward trading, we can conclude:

17Capacity choices in region L (see figure 4)lead to a situation where both firms are

constrained at the highest demand realization. This is the case described here. For

investment levels in region L, x is never inside the region CB, such that the last integral

(or the two or four last integrals) have to be dropped. See also footnote 10.
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Figure 4: The upper bound of firm i’s best reply function, xBR
i (x−i, f

∗, y∗, σ),

and the isoinvestment line INF .

Theorem 1 Every SPE(σ) of the market game with forward contracts gives

rise to strictly less total investment than the unique equilibrium of the game

without forward contracts.

5 Concluding Remarks

In this paper we analyzed a market game where firms choose capacities prior

to a sequence of Cournot markets. We compared the game with and without

the possibility to trade on forward markets prior to the production stages.
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The analysis was considerably complicated by the fact that multiple equilibria

exist in the market game with forward contracts. In order to be able to

compare equilibrium investments with and without the possibility to trade

forwards, we considered a class of parameterized subgame perfect equilibria

of the game, SPE(σ). This allowed us to approximate many reasonable

operational markets in the case that forward contracts can be traded. We

found that every SPE(σ) of the market game with forward contracts yields

lower equilibrium investment than the game without forward contracts.

This result contributes to an ongoing policy debate on the desirability of

forward trading in electricity markets. We have shown in a companion paper

[Grimm and Zoettl (2005)] that equilibrium capacity choices of firms prior to

Cournot competition are too low both, compared to the socially optimal level

(assuming that also quantities at the production stage are chosen optimally)

and to the optimal capacity levels given Cournot quantities are chosen at the

production stage. Thus, a further reduction of capacities due to the intro-

duction of forward markets puts into question the welfare increasing effect

of forward markets due to lower spot prices. On the one hand, with forward

trading production will be higher and prices will be lower in low demand

scenarios when firms are unconstrained. In high demand scenarios, however,

production is lower (and prices are higher) in the presence of forward mar-

kets since capacities are lower. A welfare comparison is a possible extension

of this paper but will be complicated by the multiplicity of equilibria of the

market game with forward contracts.

Apart from the welfare effect as it could be calculated from our model, low

generation (and transmission) capacities often put the general functioning of

energy markets at risk. Thus, capacity investment incentives under a certain

market design are an important issue by themselves. In many countries, a

further reduction of generation capacity is considered undesirable in the long

run.

The model we propose could be reinterpreted in terms of demand uncer-

tainty. In this case the model also covers the case of investment decisions
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prior to a single Cournot market with uncertain demand at the last stage.18

In this interpretation, the real state of the world is revealed directly after

the investment decision. Forward contracts and quantities are traded under

complete information about the demand scenario. An interesting extension

of this model is the case where on the spot market firms still face demand

uncertainty. This, however, would imply supply function bidding (Klemperer

and Meyer (1989)) at the last stage, which presumably further complicates

the analysis.
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A Proof of Proposition 1.

In section 3 we have already analyzed the last stage of the game, where firms

decide on production levels. At the first stage, firms choose capacities, an-

ticipating optimal production decisions at the second stage. In the following

we first derive the firms’ best response functions at stage one (part I), Then

(part II) we solve the equilibrium of the game and show uniqueness.

Part I First we determine the best response function of firm i.

(a) Region U = {x ∈ R2
+ : xi ≥ x−i and xi ≤ aT−x−i

2
}: In this region firm

i has the higher capacity and both firms are capacity constrained at the
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highest possible demand realization. The first order condition of firm i’s

maximization problem (see equation (2) for firm i’s profit function πU
i ) is

satisfied at

xmax,min
i (x−i) =

aT − x−i ∓
√

2ak

2
,

where xmax
i (x−i) = aT−x−i−

√
2ak

2
is the local maximum and xmin

i the local

minimum.

As firm i increases its quantity, the upper bound aT−x−i

2
is reached before

the profit function attains its local minimum at xmin
i . Since the (cubic) func-

tion πh
i increases towards ∞ only for values of xi above this local minimum,

we obtain that πU
i attains its maximum in region U at

xU
i (x−i) =

aT − x−i −
√

2ak

2
(14)

for 0 ≤ x−i ≤ xU−out
−i , where xU−out

−i = aT−
√

2ak
3

is the value of x−i where

xU
i (x−i) hits the righthandside border of region U (given by xi = x−i, see

figure 2).

Region D = {x ∈ R2
+ : xi ≤ x−i and xi ≤ aT−2x−i}. In this region firm i has

the higher capacity and both firms are constrained at the highest demand

realization, i. e. x−i ≤ aT−xi

2
. Firm i’s profit function in this case is given by

equation (3). By the same reasoning as above we obtain for the maximum

of πD in region D

xD
i (x−i) = max

{
0,

2aT − 2x−i −
√

6ak + a2T 2 − 2aTx−i − 2x2
−i

3

}
(15)

for xD−in
−i ≤ x−i ≤ xD−out

−i , where xD−in
−i = aT−

√
2ak

3
and xD−out

−i =

min{aT
2

, aT+
√

12ak+a2T 2

6
}. Again, xD−in

i (xD−out
i ) is the value of x−i where

xD
i (x−i) hits the lefthandside (righthandside) border of region D given by

xi = x−i and x−i = aT−xi

2
, respectively (see figure 2).

Region D
I

= {x ∈ R2
+ : xi ≥ aT − 2x−i and xi ≤ aT

3
}: We finally consider

the case that firm i has the higher capacity and firm −i always has excess
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capacity even at the highest demand realization, whereas firm i is constrained

at least in the highest demand scenario .

In this region, the profit of firm i is given by equation (3), however, EQCB

cannot occur in this case. Since in region D
I

it holds that 2x−i+xi

a
> T , we

have to drop the last integral and substitute the upper limit of the second

integral by T . We obtain

πD
I

i (x, y∗) =
∫ 3xi

a

0

(
at

3

)2

dt +
∫ T

3xi
a

(
at− xi

2

)
xi dt− kxi

=
xi(a2T 2 + x2

i − 2a(2k + Txi))
4a

+
xi x2

−i

a
− kxi.

The function πD
I

i attains its maximum19 at

xD
I

i (x−i) = max{0, 2aT −√12ak + a2T 2

3
} (16)

for xD
I−in

−i ≤ x−i, where xD
I−in

−i = min{aT
2

, aT+
√

12ak+a2T 2

6
} is the intersection

point of xD
I

i (x−i) and the lefthandside border of region D
I
.

Remark 1 For k ≥ aT 2

4
it is always optimal for both firms to choose capac-

ities such that at the highest demand realization T we obtain a spot market

equilibrium where both firms are constrained. On the contrary for k ≤ aT 2

4
,

whenever x−i is big enough, no matter how big the capacity installed by firm

−i is, it is always optimal to build up the constant amount 0 < xD
I

i < aT
3

.

(b) It is important to notice that the equations (14), (15) and (16) form

a continuous line. Also recall that the overall profit function is continuous.

Thus, the continuous function given by equations (14), (15), and (16) deter-

mines the profit maximizing capacity choices over all three regions

U ∪D ∪D
I

:=

{
x ∈ R2

+ :
xi ≤ aT−x−i

2
for 0 ≤ x−i ≤ aT

3

xi ≤ aT
3

for x−i ≥ aT
3

}
(17)

19Again the the first order condition is satisfied at the local maximum and the local

minumum. Since we reach the upper bound of region D
I

however before the local minimum

is reached the solution to the first order condition gives the global maximum in region D
I
.
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(c) It remains to show that deviations outside the region U ∪D∪D
I

are not

profitable for firm i, i. e. that equations (14), (15), and (16) determine the

locus of arg maxxi≥0 πi(xi, x−i).

We have to distinguish three different cases:

(I) Region U
I

= {x ∈ R2
+ : x−i ≤ aT

3
and xi > aT−x−i

2
}: The profit of firm

i is given by equation (2), dropping its last integral,

πU
I

i (x, y∗) =
∫ 3x−i

a

0

(
at

3

)2

dt +
∫ T

3x−i
a

(
at− x−i

2

)2

dt− kxi (18)

πU
I

i (x, y∗) is a linear function in xi and attains its maximum at the

lowest possible value, making a deviation into this region undesirable.

(II) Region U
II

= {x ∈ R2
+ : x−i ≥ aT

3
and xi > x−i}: The profit of

firm i is given by equation (2), dropping its last two integrals. This

profit depends on xi only through the term −kxi. Thus, it attains its

maximum at the lowest possible value of xi, making a deviation into

this region undesirable.

(III) Region D
II

= {x ∈ R2
+ : xi ≥ aT

3
and xi < x−i}: The profit of firm

i is given by equation (3), dropping its last two integrals. The profit

depends on xi only through the term −kxi. Thus, the function attains

its maximum at the lowest possible value of xi, making a deviation into

this region undesirable.

Summing up, the best response function of firm i is given by

xBR
i (x−i) =





xU
i (x−i) for 0 ≤ x−i ≤ aT−

√
2ak

3

xD
i (x−i) for aT−

√
2ak

3
≤ x−i ≤ min{aT

2
, aT+

√
12ak+a2T 2

6
}

xD
I

i (x−i) for min{aT
2

, aT+
√

12ak+a2T 2

6
} ≤ x−i

(19)

for the parameter values a > 0, T > 0, and k ∈ [0, aT 2

2
].20

20Investment in the market is profitable only if k < aT 2

2 . At higher cost it would not

even be profitable to invest for a monopolist (x−i = 0).
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Part II Now we can determine all equilibria (x∗i , x
∗
−i) of the market game

without forward contracts. We assume without loss of generality that xi ≥
x−i. (x∗i , x

∗
−i) is an equilibrium if and only if (x∗i , x

∗
−i) is a fixed point of the

best reply correspondence, i. e. it satisfies the following two equations:

xi =
aT − x−i −

√
2ak

2
⇔ x−i = aT − 2xi −

√
2ak =: g(xi), (20)

x−i = max

{
0,

2aT − 2xi −
√

6ak + a2T 2 − 2aTxi − 2x2
i

3

}
=: h(xi). (21)

At xi = x−i = aT−
√

2ak
3

both equations are satisfied and thus, we have a

symmetric equilibrium. For xi > x−i however, g(xi) decreases with slope −2,

whereas h(xi) changes at the smaller rate

dh

dxi

= −2

3
+

aT + 2xi

3
√

6ak + a2T 2 − 2aTxi − 2x2
i

(
> − 2

3
∀ a, T, k

)
,

for all xi such that h(xi) > 0 and remains constant otherwise. Thus, for

xi > x−i no further equilibrium exists. We conclude that

xi =
aT −

√
2ak

3
, i = 1, 2

is the unique subgame-perfect equilibrium of the market game without for-

ward contracts. The result is illustrated in figure 2.

B Proofs of lemmas 1 to 3

B.1 Proof of Lemma 1:

Part I We first show that any equilibrium EQCN , if it exists, is given by

f ∗i (·) = 1
5
at, y∗i (·) = 2

5
at, i = 1, 2.

Suppose that (f̆ ∗, y̆∗) is an equilibrium and that f̆ ∗ ∈ FCN(x, t). Thus,

we know from section 4.1 that at the third stage we have the unique solution

y̆∗i (x, f̆ ∗, t) =
at+2f̆∗i −f̆∗−i

3
, i = 1, 2. Since FCN(x, t) is an open set, f̆ ∗i is a

maximizer of πi(x, fi, f̆
∗
−i, y̆

∗, t) in some neighborhood of f̆ ∗i .
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Since the profit function of the game without capacity constraints

π∞i (f, y̆∗, t) = πi(xi = ∞, x−i = ∞, f, y̆∗, t) is concave in fi (compare equa-

tion (8) and Allaz and Vila (1993)), f̆ ∗i is also the global maximizer for all

fi ≥ 0. Consequently, (f̆ ∗, y̆∗) is the unique equilibrium of the unrestricted

game, which according to Allaz and Vila (1993) has the unique solution

(f ∗i = 1
5
at, y∗i = 2

5
at).

Part II Conditions for existence of the equilibrium f ∗i (·) = 1
5
at, y∗i (·) = 2

5
at,

i = 1, 2:

(a) First note that (f ∗i , f ∗−i) = (1
5
at, 1

5
at) ∈ FNC(x, t) if and only if xi > 2

5
at,

i = 1, 2.

(b) However, depending on the capacity choices at stage one, fi = 1
5
at might

not be the profit maximizing choice of firm i given that firm −i chooses

f−i = 1
5
at. Recall that for fi = 1

5
at, i = 1, 2, none of the firms is constrained

at the production stage. Now observe that, given that firm −i chooses f−i =
1
5
at, by varying the number of forward contracts traded, firm i can provoke

a situation where either of the two firms is constrained. The corresponding

profits and forward contracts traded are as follows:

πi(fi, f
∗
−i, ·) =





πC−i
i (·) = (at−x−i)

2−f2
i

4 for 0≤ fi ≤ 7
5at− 3x−i (FC−i)

πCN
i (·) = ( 4

5 at−fi)(
4
5 at+2fi)

9 for 7
5at− 3x−i≤ fi ≤ 3

2xi − 2
5at (FCN )

πCi
i (·) = xi(

4
5 at−xi)

2 for 3
2xi − 2

5at≤ fi ≤xi (FCi)

Note that the above profits correspond to the profits that have been

derived in section 4.1 for the cases CN (no firm is constrained) and Ci, C− i

(firm i/−i is constrained). Furthermore note that if condition (a), xi ≥ 2
5
at,

i = 1, 2, is satisfied, the region where none of the firms is constrained cannot

disappear. That is, given that firm −i chooses f−i = 1
5
at, firm i can always

sell forwards such that both firms are unconstrained at stage three.

Now observe that the unconstrained equilibrium quantities at stage three,

y∗i (x, fi, f
∗
−i, t) =

at+2fi−f∗−i

3
, i = 1, 2, imply that if firm i trades less forwards,

its quantity sold at stage three decreases, whereas the quantity sold by firm

−i increases. Thus, if firm −i’s capacity is sufficiently low, a low quantity of

forwards traded by firm i can provoke a situation where firm −i is capacity
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constrained at stage three. This happens if firm −i’s capacity x−i is lower

than its unconstrained equilibrium quantity ỹ∗−i(x, fi, f
∗
−i, t) =

at+2f∗−i−fi

3
(see

equation (9)). Solving for the corresponding value of fi yields fi ≤ 7
5
at−3x−i.

Thus, for fi ∈ [0, 7
5
at − 3x−i], (fi, f

∗
−i) ∈ FC−i(x, t). Obviously, firm i can

only provoke this situation if x−i is low enough, i. e. x−i ∈ [2
5
at, 7

15
at].

A similar reasoning explains the case that (fi, f
∗
−i) ∈ FCi(x, t). Obviously,

this case can only occur if firm i’s capacity is low enough, i. e. xi ≤ 4
5
at.

It is easy to check that the above profit function πi is continuous. Thus,

since πCi
i is a constant, deviation upwards, fi > f ∗i , is never profitable.

Furthermore, πi has two local maxima, one at f ∗i = 1
5
at and another one

at f 0
i = 0. Obviously f ∗ is an equilibrium if and only if f ∗i is the global

maximum of πi(fi, f
∗
−i) which is the case iff

πCN
i (f ∗i , f ∗−i) =

2

25
(at)2 ≥ 1

4
(at− x−i)

2 = πC−i
i (f 0

i , f ∗−i)

⇔ x−i ≥ at(1− 2

5

√
2) =:

at

c2.3

(
≈ at

2.3

)

We conclude that (f ∗i (·) = 1
5
at, y∗i (·) = 2

5
at), i = 1, 2, is a SPE of the param-

eterized subgames starting at stage two if and only if xi ≥ at
c2.3

, i = 1, 2.

B.2 Proof of Lemma 2:

Part I If there exists an equilibrium (f ∗, y∗) such that f ∗ ∈ FCi(x, t), then

by construction it holds that y∗i = xi. The profit of firm −i in this case is

given by21

πCi
−i(xi, f−i, y

∗, t) =
(at− xi)

2 − f 2
−i

4
,

which is maximized at f ∗−i = 0. Thus, in any equilibrium EQCi it holds that

f ∗−i = 0, which implies that firm −i’s equilibrium output at stage three is

given by y∗−i(f
∗
−i) = at−xi

2
. This proves part (i) of the lemma.

Part II Let f ∗i = xi, f ∗−i = 0, and f ′i ∈ [0, xi). We now show that if

(f ′i , f
∗
−i, y

∗), (f ′i , f
∗
−i) ∈ FCi(x, t), is an equilibrium EQCi, then also (f ∗, y∗),

21see equation 11.
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f ∗ ∈ FCi(x, t), is an equilibrium EQCi.

We have already shown in part I that, given firm i produces at capacity,

firm −i always chooses f ∗−i = 0.

Now consider deviations of firm i. Since (f ′i , f
∗
−i, y

∗) is an equilibrium,

deviations fi 6= f ′i cannot be profitable. In particular, deviations fi ∈ (f ′i , xi]

leave firm i’s payoff unchanged, since increasing the quantity contracted for-

ward leaves firm i constrained at stage three.

This implies that whenever (f ′i , f
∗
−i, y

∗), (f ′i , f
∗
−i) ∈ FCi(x, t), is an equi-

librium EQCi, then so is (f ∗i , f ∗−i, y
∗).

Part III The findings of part I and II imply that whenever at least one

equilibrium EQCi of the parameterized subgames starting at stage two exists,

(f ∗i , f ∗−i, y
∗) = (xi, 0, y

∗) is an equilibrium EQCi (part II) and that all such

equilibria give rise to the same quantities at the production stage (part I).

We now establish necessary and sufficient conditions for the existence of at

least one equilibrium EQCi.

(a) First, we check whether (f ∗i , f ∗−i) = (xi, 0) ∈ FCi(x, t). In order to do

so, we substitute (f ∗i , f ∗−i) = (xi, 0) into the inequalities (9). As it turns

out, f ∗ ∈ FCi(x, t) whenever it holds that

xi ≤ at and x−i ≥ at− xi

2
.

In order to establish that (f ∗, y∗) is indeed an equilibrium it remains

to show that none of the firms wants to deviate from its quantity of

forwards sold given the other firm’s choice.

(b) Let us first consider deviations of firm −i. Since f ∗−i = 0, only deviation

upwards is possible. Note that since fi = xi firm i is committed to sell

its whole capacity at stage three (yi = xi) and as we have already

shown in part I, the best firm −i can do is to stick to f ∗−i = 0.

(c) Now we consider deviations of firm i. Since f ∗i = xi, only deviation
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downwards is possible, which can lead to (fi, f
∗
−i) ∈ FCN .22 Given that

f ∗−i = 0, firm i’s profit function is

πi(fi, f
∗
−i, ·) =

{
πCi

i (·) = xi(at−xi)
2 for 3xi−at

2 ≤ fi ≤xi (FCi)

πCN
i (·) = (at−fi)(at+2fi)

9 for 0≤ fi ≤ 3xi−at
2 (FCN )

It is easy to check that πi is continuous at fi = 3xi−at
2

. Furthermore note

that πCi
i (fi, f

∗
−i) is a constant and πCN

i (fi, f
∗
−i) is a quadratic function

reaching its maximum at fi = at
4
. This implies that a deviation of firm

i such that (fi, 0) ∈ FCN(x, t) is profitable if and only if

at

4
≤ 3xi − at

2
⇔ xi ≥ at

2
.

Summing up, we obtain that (f ∗; y∗i , y
∗
−i) = (f ∗; xi,

at−xi

2
), i = 1, 2, is a SPE

of the parameterized subgames starting at stage two if and only if x−i ≥ at−xi

2

[from (a)] and xi < at
2

[from (c)].

B.3 Proof of Lemma 3:

Part (i) is satisfied by construction since f ∗ ∈ FCB(x, t). In order to prove

part (ii), take any f̆i > 0, f̆−i > 0 such that (f̆i, f̆−i) ∈ FCB(x, t).

Given f̆−i, firm i’s profit function πi(fi, f̆−i, ·) is23

πi(fi, f̆−i, ·) =

{
πC−i

i (·) = (at−x−i)
2−f2

i

4 for 0 ≤ fi ≤ 2xi + x−i − at (FC−i)

πCB
i (·) = (at− xi − x−i)xi for 2xi + x−i − at ≤ fi ≤ xi (FCB)

Notice that πi is continuous at fi = 2xi+x−i−at and that πCB
i is constant

in fi. It is easy to see that deviation to fi = 0 is always profitable for firm

i whenever it leads to (fi = 0, f̆−i) ∈ FC−i. Such a deviation is impossible

22Note that for x1 ≤ 1
3at (which is the unconstrained Cournot quantity) deviation into

FCN is impossible.
23Notice if firm i reduces fi such that (fi, f̆−i) exits FCB , then for all values of fi firm −i

will remain constrained, since firm −i has even stronger incentives to increase it’s output

at stage three.
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however if 2xi + x−i − at ≤ 0. Accordingly (f̆i, f̆−i) is an equilibrium if and

only if

2xi + x−i − at ≤ 0 ⇔ xi ≤ at− x−i

2
, i = 1, 2.

C Proof lemma 4

The proof proceeds as follows. In part I we consider the set of investment

levels where xi ≥ x−i and both firms are constrained at the highest demand

realization. Within this set we derive the investment level xi of firm i that

maximizes firm i’s profit given an investment level x−i of firm −i. In part

II we show that the function derived in part I is an upper bound for the

best response of firm i to a given investment level of firm −i. Finally, in

part III we show that the upper bound of firm i’s best response always lies

below the isoinvestment line (equation(4)) that contains all investment levels

that yield the same total capacity as the market game in absence forward

markets. Throughout the proof we consider only investment levels such that

xi ≥ x−i, since this is sufficient to prove the lemma.

Part I As a first step, we consider the region where firm i’s investment is

higher than firm −i’s and both firms are constrained at the highest demand

realization, that is xi(x−i) ∈ U = {x ∈ R2
+ : xi ≥ x−i and xi ≤ aT−x−i

2
}.

Within this region, we derive the investment level xi of firm i that maximizes

firm i’s profit given an investment level x−i of firm −i. We have to proceed

in three steps, since firm i’s profit function looks differently in the three

subregions L, M , and R (see figure 3).

Region L = {x ∈ R2
+ : xi ≥ 2x−i and xi ≤ aT−x−i

2
}: Firm i’s profit

function πL
i (x, f ∗, y∗, σ) is given by equation (13). Note that differentiation of

πL
i (·) leads to the same first order condition as differentiation of πU

i (equation

(2)) in the case without forward contracts (see appendix A). This is because

all terms depending on xi coincide for the two profit functions. Thus, πL
i (·)
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attains its maximum at

xL
i (x−i) =

aT − x−i −
√

2ak

2
(22)

for 0 ≤ x−i ≤ xL−out
−i , where xL−out

−i = 1
5
(aT −

√
2ak) is the value of x−i

where xL
i (x−i) intersects with the righthandside border of region L, given by

xi = 2x−i.

For values xi > xL
i (x−i), πL

i is decreasing in xi since the local minimum

is located above the upper bound of region L given by xi = aT−x−i

2
. Thus,

for x−i > xL−out
−i , the maximizer xL

i in region L is given by its lower bound

xL
i (x−i) = 2x−i.

Region M = {x ∈ R2
+ : 2x−i ≥ xi ≥ c2.3

2
x−i and xi ≤ aT−x−i

2
}: The

profit of firm i in region M is given by24

π
M
i (x, f∗, y∗, σ) =

∫ 2x−i
a

0

πCN (·)dt + σ

∫ c2.3x−i
a

2x−i
a

πCN (·)dt + (1− σ)
∫ c2.3x−i

a

2x−i
a

πC−i(·)dt

+
∫ 2xi

a

c2.3x−i
a

πC−i(·)dt + σ

∫ xi+2x−i
a

2xi
a

πCi(·)dt + (1− σ)
∫ xi+2x−i

a

2xi
a

πC−i(·)dt

+
∫ 2xi+x−i

a

xi+2x−i
a

πC−i(·)dt +
∫ T

2xi+x−i
a

πCB(·)dt− kxi;

The first order condition of firm i’s maximization problem is satisfied at

x
Mmax
i (x−i) =

1
2 + σ

(
aT −

√
φ(x−i, σ, k)−

(
1− 5σ

4

)
x−i

)
,

x
Mmin
i (x−i) =

1
2 + σ

(
aT +

√
φ(x−i, σ, k)−

(
1− 5σ

4

)
x−i

)
,

where φ(x−i, σ, k) = 2ak + 1
2
σ

(
2ak − a2T 2 + 7aTx−i −

(
11− 5σ

8

)
x2
−i

)
.

Starting at xi = 0, for a given x−i, πM
i increases until xMmax

i (x−i), then

decreases until xMmin
i (x−i), and from there on increases to infinity. Thus,

xMmax
i is the maximizer of πM

i in region M , whenever xMmax
i 6= xMmin

i and

xMmax
i ∈ M , whereas xMmin

i lies outside that region (in this case, πM
i is

quasiconcave in region M). Unfortunately, this is not always the case. We

24The profit in region M is derived analogously to the profit in region L, see equation

(13).
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start the analysis of arg max
xi≤aT−x−i

2

πM
i by characterizing the case where

the above holds true.

As a first step note that the locus where xMmax
i and xMmin

i coincide can

be derived (setting φ(x−i, σ, k) = 0) as

{
xS ∈ R2

+ : xS
i =

1

2 + σ

(
aT −

(
1− 5σ

4

)
xS
−i

)}
.

For values x−i ≤ xS
−i, πM

i is monotonically increasing in xi with a point of

inflection at xS
i . Thus, if xS ∈ M , the maximizer of πM

i coincides with the

upper bound of region M for x−i ≤ xS
−i. Moreover, for all x−i > xS

−i, xMmin
i

might be inside region M such that πM
i is not even quasiconcave in region M .

As it turns out, whether xS is in region M depends on the cost of investment,

k. Furthermore, xMmin
i is outside region M whenever xS is outside region

M .

Let us first determine the value of k for which xS coincides with the

lefthandside border of region two. Calculating the point of intersection

of xS with the lefthandside border given by xi = 2x−i and inserting the

value obtained for x−i into φ(x−i, σ, k) yields that φ = 0 at k = kS :=
8σ+9σ2

2(20+3σ)2
aT 2. Since kS is increasing in σ, xS lies outside region M for all σ if

k ≥ 17
2(23)2

aT 2 := aT 2

c62
≈ aT 2

62
.

We now show that πM
i is quasiconcave in xi in region M for all σ ∈ [0, 1]

if k ∈ [aT 2

c62
, aT 2

2
].25 This is the case if xMmin

i (x−i) is above region M for all

x−i. In order to verify this, notice that xMmin
i (x−i) crosses the lefthandside

border of region M given by xi = 2x−i at

xminM−in
−i =

aT +
√

2ak − aσ
50

(aT 2 − 2k)

5 + σ
10

(
≥ aT

5
∀ k, σ

)
.

This is above the upper bound of region M given by xi = aT−x−i

2
, which

intersects the line xi = 2x−i at x−i = aT
5

. Since xMmin
i increases in x−i and

since the upper bound of region M, xi = aT−x−i

2
, decreases in x−i, we obtain

that xMmin
i is always above region M for σ ∈ [0, 1] and for k ∈ [aT 2

c62
, aT 2

2
].

25Recall that at cost k > aT 2

2 even a potential monopolist would not enter the market.
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Thus, for k ∈ [aT 2

c62
, aT 2

2
] the maximum of πM

i in region M is given by

x
M
i (x−i) =

1
2 + σ

(
aT −

√
φ(x−i, σ, k)−

(
1− 5σ

4

)
x−i

)
(23)

for xM−in
−i ≤ x−i ≤ xM−out

−i , where

x
M−in
−i =

aT −√
2ak − aσ

50 (aT 2 − 2k)
5 + σ

10

,

x
M−out
−i =

aT −
√

2ak + 0.056aσ(aT 2 − 2k)
(1 + c2.3)− 0.18σ

,

are the values of x−i where xM
i intersects with the lefthandside and

righthandside border of region M given by xi = 2x−i and xi = c2.3

2
x−i, re-

spectively.

Notice that (22) and (23) do not form a continuous line, since xL−out
−i <

xM−in
−i . Since πM

i is quasiconcave in region M , the values of xi that maximize

πM
i for x−i < xM−in

−i are given by the lefthandside border of region M .

For k ∈ [0, aT 2

c62
], xS lies inside region M . Thus, for x−i ≤ xS

−i, xMmax
i coin-

cides with the lefthandside border of region M . For values x−i > xS
−i, xMmin

i

might be inside region M , which makes corner solutions possible. Lemma 4

can also be shown to hold true for k ∈ [0, aT 2

c62
]. However, the proof requires a

much heavier mathematical burden and is therefore be abandoned to a sup-

plement that can be downloaded at http://merlin.fae.ua.es/grimm/grimm-

publications.html.

Region R = {x ∈ R2
+ : c2.3

2
x−i ≥ xi ≥ x−i and xi ≤ aT−x−i

2
}: The profit of

firm i in region R is given by

π
R
i (x, f∗, y∗, σ) =

∫ 2x−i
a

0

πCN (·)dt + σ

∫ 2xi
a

2x−i
a

πCN (·)dt + (1− σ)
∫ 2xi

a

2x−i
a

πC−i(·)dt

+σ

∫ xi+2x−i
a

2xi
a

πCi(·)dt + (1− σ)
∫ xi+2x−i

a

2xi
a

πC−i(·)dt

+
∫ 2xi+x−i

a

xi+2x−i
a

πC−i(·)dt +
∫ T

2xi+x−i
a

πCB(·)dt− kxi.
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The first order condition of firm i’s maximization problem is satisfied at

x
Rmax
i (x−i) =

1
2− 9

25σ

(
aT −

√
ψ(x−i, σ, k)−

(
1− σ

4

)
x−i

)

x
Rmin
i (x−i) =

1
2− 9

25σ

(
aT +

√
ψ(x−i, σ, k)−

(
1− σ

4

)
x−i

)
,

where ψ(x−i, σ, k) = 2ak + σ
50

(−18ak + 9a2T 2 + 7aTx1 − (91− 133σ
8

)x2
1).

Similar to the analysis of region L, we can show that we always reach the

upper bound of region R, xi = aT−x−i

2
, before the local minimum xRmin

i of

πR
i is reached.26

Thus, in region R, πR
i attains its maximum at

x
R
i (x−i) =

1
2− 9

25σ

(
aT −

√
ψ(x−i, σ, k)−

(
1− σ

4

)
x1

)
(24)

for xR−in
−i ≤ x−i ≤ xR−out

−i , where

xR−in
−i =

aT −
√

2ak + 0.056aσ(aT 2 − 2k)

(c2.3 + 1)− 0.18σ
,

xR−out
−i =

aT −
√

2ak + 11
450

aσ(aT 2 − 2ak)

3− 11
150

σ

are the values of x−i where xR
i intersects with the lefthandside and righthand-

side border of region R given by c2.3x−i

2
and xi = x−i, respectively. Notice

that xM−out
−i = xR−in

−i .

Summing up we can now state the maximizer over all three regions. Since

πi is continuous at all x, we obtain that the maximizer xL∪M∪R
i (x−i) of πi in

the Region L ∪M ∪R = {x ∈ R2
+ : xi ≥ x−i and xi ≤ (aT−x−i)

2
} is given by

xL∪M∪R
i (x−i) =





xL
i (x−i) for 0 ≤ x−i ≤ xL−out

−i

2x−i for xL−out
−i ≤ x−i ≤ xM−in

−i

xM
i (x−i) for xM−in

−i ≤ x−i ≤ xR−in
−i

xR
i (x−i) for xR−in

−i ≤ x−i ≤ xR−out
−i

(25)

26This can be checked for by evaluating the following inequality for all k, σ:
aT+

√
2ak+0.056aσ(aT 2−2k)

3.30−0.18σ > aT
c2.3+1 , where the LHS is the x′−i satisfying x

Mmin
i (x′−i) =

2x′−i and the RHS is the x′′−i satisfying aT−2x′′−i

2 = 2x′′−i. Furthermore x
Rmin
i (x−i) is

increasing in x−i, whereas the upper limit of Region R is decreasing in x−i.
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Part II In order to establish that xL∪M∪R
i (x−i) is an upper bound for the

best reply function of firm i it remains to show that deviations outside the

region L ∪M ∪R are not profitable.

a) We first analyze deviation upwards, i. e. xi ≥ aT−x−i

2
.

For xi ≥ 2x−i the profit function is given by (13), adjusting, however, the

limits of integration. Analogously to appendix A, part I(c), we have to drop

the last integral if xi ≥ aT−xi

2
and x−i ≤ aT

c2.3
, drop the last two integrals if

aT
c2.3

≤ x−i ≤ aT
2

, and drop the last four integrals if aT
2
≤ x−i. That is, region

L divides into three different regions in the case of forward markets.

In all three cases the resulting profit of firm i depends on xi only through

the linear expression −kxi, which makes it optimal for firm i to choose the

lowest possible value of xi in each region. Thus, a deviation into the region

where one of the firms is unconstrained at the highest demand realization is

undesirable.

It can also be shown for regions M and R, that firm i never wants

to deviate upwards into that region. However, profit functions look by

far more complicated in regions M and R. The analysis of those cases is

therefore be relegated to the technical supplement that can be found at

http://merlin.fae.ua.es/grimm/grimm-publications.html.

b) Finally we consider a deviation downwards, i. e. xi ≤ x−i.

If deviation downwards for 0 ≤ x−i ≤ xR−out
−i should be profitable then the

curve given by (25) is an upper bound of firm i’s best reply function, which

is sufficient to prove the lemma.

Finally, for xR−out
−i < x−i it can be verified that it is never optimal for

firm i to choose xi = x−i . In region IV, which is given by {x ∈ R2
+ :

x−i ≥ xi ≥ 2
c2.3

x−i and x−i ≤ aT−xi

2
}, the derivative of πIV

i at xi = x−i is

given by
dπIV

i

dxi
|xi=x−i

= 450−11d
100a

x2
−i − 3Tx−i + aT 2

2
− k, which is negative for

x−i ∈ [xR−out
i

, aT
3

].27 Similarly it can be verified that the same holds true

also for x−i > aT
3

. Thus, we can conclude that for xR−out
i

< x−i it is never

27Recall that aT
3 is the value of the upper bound of the region where both firms are

constrained at the highest demand realization given xi = x−i.
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optimal for firm i to choose xi = x−i.

Part III Now we can show that the best reply function of firm i, xBR
i , is

always below the isoinvestment line INF for all xi ≥ x−i

An upper bound for the best reply function of firm i is x̄BR
i = xL∪M∪R

i (x−i)

as given by (25). Furthermore, we have shown that for x−i > xRout
−i the best

reply has to be below the 45-degree-line.

In order to show that the upper bound of firm i’s best reply,

x̄BR
i (x−i, f

∗, y∗, d), given by (25) lies below INF , we first show that the (con-

tinuous) function x̄BR
i (x−i, f

∗, y∗, d) is convex in all differentiable parts.28

Thus, in order to compare x̄BR
i and INF it is sufficient to compare the points

of intersection of x̄BR
i and INF with the straight lines that separate the three

regions (see figure 4). We now show that at each intersection point with one

of the separating lines, the sum of investments on the best reply function in

the presence of forward contracts, x̄BR
i (x−i) + x−i is lower than the sum of

investments on the isoinvestment line.

The four separating lines that have to be checked are (1) x−i = 0, (2)

xi = 2x−i, (3) xi = c2.3x−i

2
, and xi = x−i. At x−i = 0 it holds that x̄BR

i (0) =
aT−

√
2ak

2
< aT−

√
2ak

3
, where the last expression is the total investment in the

market without forward contracts. Along the remaining separating lines, we

now compare the values of x−i where x̄BR
i intersects with each of the three

lines and the intersection points of INF with those lines. We get

(2) along xi = 2x−i: xM−in
−i < 2

9
(aT −

√
2ak),

(3) along xi = c2.3/2x−i: xM−out
−i < 4

3(c2.3+2)
(aT −

√
2ak),

(4) along xi = x−i: xR−out
−i < 1

3
(aT −

√
2ak),

where the last terms are the intersection points of the separating line and

INF . It can be shown29 that inequalities (2) to (4) above are satisfied for the

28We obtain d(x
L
i )2

d2x−i
= 0, d(x

M
i )2

d2x−i
> 0, and d(x

R
i )2

d2x−i
> 0.

29Notice that by differentiation it can be verified that x
M−in
−i , x

M−out
−i , and x

R−out
−i are
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parameter space k ∈ [aT 2

c62
, aT 2

2
], σ ∈ [0, 1], a > 0, and T > 0, which proves

the lemma for k ∈ [aT 2

c62
, aT 2

2
]. For k ∈ [0, aT 2

c62
] see the supplement than can

be downloaded at http://merlin.fae.ua.es/grimm/grimm-publications.html.

monotone in σ. Furthermore each inequality can be divided by aT (replacing k = aT 2k′).

Then, inserting the maximizing values of σ, verification of conditions (2) to (4) is reduced

to a one variable problem.
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