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COALITION FORMATION AND STABILITY

José Alcalde and Antonio Romero-Medina

ABSTRACT

This paper studies a class of NTU coalition formation games in
which every player's payoff depends only on the members of her coalition. We
identify four natural conditions on individuals' preferences and show that,

under each condition, stable (core) allocations exists.
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1. Introduction

In many economic situations, individuals carry out activities by forming coalitions.
In this paper we deal with a family of NTU games, namely coalition formation
games that are, using the terminology from Dréze and Greenberg [6], hedonic in
the sense that every player’s payoff depends only on the members of her coalition.
In this framework, we define four conditions called Union Responsiveness, Inter-
section Responsiveness, Singularity and Essentiality. Fach one of them guarantees
the non-emptiness of the core of the coalition formation games.

Formally, a NTU game can be described by a function which selects, for each
non-empty coalition, a set of outcomes that can be reached by the agents belong-
ing to it. Once a coalition is formed, the agents in that coalition are involved
in a bargaining process to determine their outcome. Whenever the bargaining
processes, one for each possible coalition, are known by the agents before any
coalition were formed, we can describe NTU games in a easier and more natu-
ral way. That is, defining a function that associates a single allocation to each
coalition. Henceforth, if agents’ preferences are defined over the set of allocations
we can describe an ordering for each agent, whose domain is the set of coalitions

she might belong to. Therefore, we could assume that each agent’s preferences



depend on the set of people belonging to the coalition to which she belongs. In
that sense, the resulting problem becomes a pure hedonic preferences model.

In this framework, Banerjee et al. [3] have shown that there are no core-
wise stable coalition partition even when strong restrictions, such as additive
separability or anonymity, are imposed on individuals’ preferences even when
united with appropriately defined versions of single-peaked preference conditions.

Conditions under which the core is non-empty in hedonic coalition formation
games have been studied by several authors. In this sense, Banerjee et al. [3]
introduce a condition, they call the top coalition property, which is a natural
extension of Alcalde’s [1] P-reciprocity for the room-mate problem. These authors
show that, if agents’ preferences satisfy the top coalition property, or a weaker
version of it, the core of the coalition formation problem is non-empty.

Bogomolnaia and Jackson [5] also focus on conditions under which a coalition
formation problem has stable allocations. These authors identify two proper-
ties, they call ordinal balanceness and weak consecutiveness, and show that when
agents’ preferences satisfy any of the two conditions, the core of the related coali-
tion formation game is non-empty.

The conditions introduced by Banerjee et al. [3] and by Bogomolnaia and

Jackson [5] do not impose restrictions on each agents’ preferences, but on the



preferences profile. i.e. preferences’ domains cannot be expressed as a Cartesian
product of agents’ preferences. For this reason, the analysis of whether some of
these conditions are satisfied or not by agents’ preferences becomes a problem that
can be as difficult to solve as the (direct) study of the existence of core allocations.

The conditions proposed in this paper are described in each agent’s prefer-
ences, rather than in the preferences profiles. This fact produces two interesting
features. First, it is very easy to evaluate whether or not agents’ preferences
satisfy our conditions. Hence, it would be possible to design efficient algorithms
selecting stable allocations and decide whether these algorithms can be used in
a given preferences profile. Second, when conditions are stated on each agent’s
preferences, it is easy to study whether the introduction of a new agent into the
problem introduces instabilities. Note that, if conditions are stated on agents’
preference profiles, rather than on individuals’ preferences, the analysis of this
problem is not limited to the new agent but to the complete profile. This fact will
greatly hinder efforts to carry out any comparative static analysis over a certain
profile.

Let us conclude this Introduction by briefly describing the conditions intro-
duced in this paper: Union Responsiveness, Intersection Responsiveness, Singu-

larity and Essentiality.



The Union Responsiveness Condition (URC) is a very monotonic condition:
From each agent’s point of view, “more is better” except if she is in her top. If
every agent’s preferences satisfy this simple idea we can guarantee the existence
of core allocations in the coalition formation game.

The idea behind the Intersection Responsiveness Condition (IRC) is the fol-
lowing: given two coalitions with a non-empty intersection the coalition formed by
the agents on the intersection is better than the worse of the two previous coali-
tions. We provide a non-constructive proof of the existence of stable allocations
when the agents’ preference satisfies the IRC.

Singularity reflects the idea of extreme-minded agents. These agents’ prefer-
ences can be illustrated by the sentence: “if I do not obtain what I want, I will
not cooperate at all.”

The last condition we introduce in this paper is called Essentiality. The con-
dition models economic situations where, for each individual, there is a group of
agents that belong to any coalition she considers acceptable. In addition, given
two possible coalitions that contain her group of essential agents she prefers the
one that contains fewer non-essential members.

The rest of the paper is organized as follows. Section 2 introduces the model,

identifies the problem to be analyzed, and presents a formal definition for Union



Responsiveness, Intersection Responsiveness, Singularity and Essentiality, four
conditions that guarantee the existence of stable coalition structures. To conclude
this section, we prove the independence of the above conditions (Proposition 2.6).
The results of the paper can be found in Section 3. Conclusions and open questions

are addressed in Section 4. Finally, formal proofs are gathered to the Appendix.

2. The Framework and Main Definitions

Consider a set N of agents, IN = {l,...,7,...,n}, who have to form coali-
tions. Each agent 7 is endowed with preferences >~; which can be represented
by a linear order over the set . := {t C N:ie 71} A coalition structure
T = {rt,...,77 ..., 7'} is a partition of the set of agents. Given a partition
T and an agent 7, let 7; denote the element on 7 which 7 belongs to. Finally, and
for notational convenience, let ms extend agents’ preferences to be defined over
the set of coalition structures in the following natural way: T =, T if, and only
if, 7; 7 T

Our objective in this paper is to analyze, for each coalition formation problem,
{N, -}, the set bf allocations that are expected to hold, taking into account

agents’ preferences. The core describes when an allocation is considered stable

and, therefore, is expected to be the consequence of agents’ collective decisions.



Definition 2.1. Let {N, -} be a coalition formation problem, and T be a coali-

tion structure for such a problem. We say that

1. T is Pareto efficient if there is no coalition structure 7' # T, such that

T" =; T, for each agent i for which 7; # ;.

2. T is stable, or is in the core of {N, >}, if there is no set of agents S, ()

S C N, such that, for eachi € S, S =; 7.
3. A set S of players blocks allocation T whenever S »; T; for alli € S.

4. T is individually rational if it is not blocked by any individual, i.e., T; 7=; {i}

for each agent 1.

Unfortunately, as we said before, the set of stable allocations can be empty
for some instances. The usual way to escape the emptiness of the core in some
families of cooperative games comes from the analysis of specific environments
guaranteeing the existence of stable (in the sense of core) allocations. The interest
of such an approach needs some further justification in two particular ways. The
first one is the richness of the domain restriction; the second one is mostly related
to interpretative questions.

In the remaining of this section we fintroduce some domain restrictions on



agents’ preferences that will guarantee the existence of stable coalition structures
satisfying fthe two requirements above, in a sense that we will made precise.
We will say that a set of preferences for agent ¢, say P;, is rich if it fulfils the

following two conditions:

(a) Foreach S € >, there are preferences 7~;€ P; such that S is the 77,-maximal

on ) .;and

(b) for keach two set S, S € ., such that SN .S # {i}, S\S' # {i}, and
S'\S +# {i}, there are preferences >—; and ! belonging to P; such that

SNS = S=; 8, and SNS .8 =L S.

The first condition establishes that any set of agents could be the best group
of colleagues for agent 7. The second one specifies that the maximal of an agent’s
preferences does not necessarily determine how the other groups are ordered.

Next we proceed to introduce formal definitions. First of all, let us introduce
some additional notation. Given a subset of individuals S, and an agent 7 € .S,

Ch; (S) denotes 4’s choice on S, i.e. =; —maximal on 25N Y.

Definition 2.2. We say that agent i’s preferences 7-; satisfy the Union Respon-
siveness Condition, URC in short, if for each agent i and two coalitions S, 5" € >,
such that S’ ¢ S and S" # Ch; (S), S »; S’ holds.
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The fulfillment of the following Intersection Responsiveness Condition by agents’
preferences is also sufficient to guarantee the existence of stable allocations. (See

Theorem 3.2.)

Definition 2.3. We say that agent 4’s |preferences ~; satisfy the Intersection

~t

Responsiveness Condition, IRC in short, if for any pair of coalitions, S and S’ in

Zi’ S >‘1 AS” ImpljeS S ﬁ AS” i_.ﬂ S’.l

Singularity, the third condition we propose, has an interpretation that is dual
to URC. Under URC, the grand coalition N is one of the two best options for
each agent. On the other hand Singularity imposes that the stay-alone option,

{i}, is one of the two best options for agent .

Definition 2.4. We say that agent i’s preferences 7, satisfy Singularity if for

~t

each coalition S € ),

S +; {i} limplies S = Ch; (N) .

Finally, we introduce a formal definition of Essentiality.

! Let us remember that we are assuming that >, is a linear ordering. Therefore, this condition
should be read that S NS’ »; 8" whenever SN .S’ £ 8.



Definition 2.5. We say that coalition 75 € Y. is essential for i if, and only if,
agent i’s preferences, ~;, satisly that
(i) if 7¢ = {i}, then {i} =; S for any S # {i}, and
(1) if ¢ £ {i}, then
(a) {i} =; S if, and only if, S is not a superset of 7¢, i.e. T7¢\\S # (), and
(b) for any two coalitions S and S’ in ), if 7§ C S C §' then S =; §'.
We say that agent i’s preferences satisfy FEssentiality whenever a coalition
exists which is essential for her. Finally, we say that i is self-sufficient if {i} is

essential for her.

These conditions above defined are logically independent, i.e. none of the four

conditions is implied by the others, as Proposition 2.6 shows.

Proposition 2.6. Union Responsiveness, Intersection Responsiveness, Singular-

ity and Essentiality are independent conditions.

Proof. To prove this statement, we will provide agents’ preferences that
satisfy some of the above mentioned properties, but do not satisfy the remaining

three.

[1] Preferences satisfying URC and not verifying IRC, nor Singularity, neither
Essentiality.
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Let us consider an individual, say 1, which exhibits the following preferences

for a three-agent problem.

{1,2,3} 1 {1,2} 1 {1,3} 1 {1}

In this case, agent 1’s preferences satisfy URC. Nevertheless, these preferences
do not satisfy IRC because {1,2} »1 {1,3}, {1,3} =1 {1} and {1,2} N {1,3} =
{1}. Note that IRC should imply that {1} >y {1,3}. Clearly, these preferences
do not satisfy Singularity. Moreover, there is no set of agents who are essential

for 1.

[2] Preferences satisfying IRC and not verifying URC, nor Singularity, neither

Essentiality.

Let us consider an individual, say 1, which exhibits the following preferences

for a four-agent problem.

{1,2.‘4} 1 {1,2} 1 {1} 1 {1,4} 1 {1,3.,4} 1 {1,3} 1 {1,2,3} 1 {1,2,374}.

In this case, agent 1’s preferences satisfy IRC. Nevertheless, these preferences
do not satisfy URC because {1,2} =1 {1}, {1} > {1,2,3} and {1,2} C {1,2,3}.

11



So, these preferences do not fulfill URC. Clearly, these preferences do not satisfy

Singularity. Moreover, there is not set of agents who are essential for 1.

[3] Preferences satisfying Singularity and not verifying URC, nor IRC, neither

Essentiality.

Let us consider an individual, say 1, which exhibits the following preferences

for a four-agent problem.

{1./2} ~1 {1} ~1 {173,4} ~1 {1,4} ~1 {172,3} ~1 {173} ~1 {1,2,3,4}.

These preferences satisfy Singularity. Nevertheless, they do not satisfy IRC
because {1,3,4} = {1,2,3}, and {1,2,3} = {1,3} = {1,3,4} n{1,2,3}. On
the other hand, it is easy to check that these preferences do not satisfy URC, nor

essentiality.

[4] Preferences satisfying Essentiality and not verifying URC, nor IRC, neither

Singularity.

Let us consider an individual, say 1, which exhibits the following preferences

for a four-agent problem.

{]4} ~1 {]34} ~1 {]24} ~1 {]234} ~1 {1} ~1 {]2} ~1 {]23} ~1 {]3}

12



In this case, agent 1’s preferences satisfy Essentiality. Note that the set {1,4}
is essential for agent 1. Nevertheless, these preferences do not satisfy IRC because
{1,3,4} 1 {1,2,3}, {1,2,3} = {1,3} and {1,3} = {1,3,4}n{1,2,3}  {1,2,3}.
Note that IRC will imply that {1,8} > {1,2,3}. Moreover, these preferences do
not fulfill URC. Let us observe that Chy ({1,2,3,4}) = {1,4} # {1,2,4}, and
{1,2,4} C {1,2,3,4}. Therefore, URC should imply {1,2,3,4} =1 {1,2,4},
which is not the case for the above preferences. Finally, it is easy to see that these

preferences do not satisfy Singularity. W

3. Existence of Stable Coalition Structures

In this section we show how each one of the conditions we have introduced in
Section 2 separately guarantees the existence of stable allocations. The main

proofs of our results can he found at the Appendix.

Theorem 3.1. Suppose that preferences 7; of each agent i satisfy the Union

~t

Responsiveness Condition. Then there is at least one stable coalition structure T .

We next deal with the analysis of agents satisfying the Intersection Respon-

siveness Condition.
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Theorem 3.2. Let {N, 7} be a coalition formation problem whose agents’ pref-
erences satisfy the Intersection Responsiveness Condition. Then the set of stable

coalition structures is non-empty.

Next theorem, whose immediate proof is omitted, points out that frameworks
whose agents’ preferences fullfil the property called Singularity have always a

unique stable allocation.

Theorem 3.3. Let {N, 7} be a coalition formation problem. Assume that each
agent’s preferences satisfy Singularity. Then, the unique stable coalition configu-

ration for such a |problem is T°, where for each agent, say i,

{i} otherwise

Finally the following Theorem presents our results when the Essentiality con-

dition is satisfied.

Theorem 3.4. Let {N, 7} be a coalition formation problem. Assume that each
agent’s preferences satisfy Essentiality. Then, there is a stable coalition configu-

ration for such a |problem. Moreover, the set of stable allocations is a singleton.
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4. Final Remarks

In this paper we have introduced some natural conditions that appear in social
environments; and we have shown that each one of them can guarantee the exis-
tence of stable allocations in coalition formation games. These conditions can be
interpreted in economic terms and it makes it easier to decide whether they can be
applied to a particular economic situation. Moreover, our conditions are imposed
on individual preferences. This simplifies the process of checking whether the
restrictions are satisfied or not for a given preference profile. This circumstance
is particularly interesting if a new agent is added to a profile of preferences that
already satisfies one of the conditions because we can check if the new profile does
it as well simply by checking the preferences of the new agent.

On technical grounds we have ised both constructive and non-constructive
techniques to prove our results. The non-constructive proof provided for the
case of agents’ preferences satisfying the Intersection Responsiveness condition is
inspired by the arguments given in Sotomayor [7] for the case of marriage markets.

The fact that the restrictions are imposed on agents’ preferences, not on pref-
erence profiles, allows us to consider as an extension of our results the possibility

of carrying out the analysis of dynamic aspects in our model. Some of them can be
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stated straightforwardly. A first approach can be taken by assuming that agents
can leave a coalition freely, i.e. agents do not sign a contract requiring that all
the agents in a coalition, when formed, are committed to it. In such a case, the
analysis of stability can be done following a study of comparative statics. Such a
study is simple in our case. A second approach, which becomes more difficult to
study, can be stated by assuming that, once a coalition is formed, it can accept
new agents but no agent can leave that coalition. In such a case, we need to state
which procedure a coalition will employ to decide whether or not to accept new
agents. This problem can be dealt with by combining our results with those of
Barbera et al. [4], that study the problem of how clubs decide the acceptance of
new members in a dynamic setting.

A second extension of the analysis is the study of agents’ strategic behavior
when faced with rules for selecting stable allocations. A first approach can be
found in Alcalde and Revilla [2]. These authors study the case in which agents’
preferences satisfy Essentiality. They prove the existence of a strategy-proof mech-
anism in which agents declare their essential coalition and select the (unique)

stable allocation.
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APPENDIX

Coalition Formation and URC

This Appendix will provide a positive answer to the existence of stable allocations
in problems whose agents exhibit preferences satisfying URC. An interesting fea-
ture of the proof that we provide is that it is constructive; i.e., we give a procedure
to build stable allocations for any problem in which the Union Responsiveness
Condition is fulfilled.

Previous to give a formal proof for Theorem 3.1, we will introduce two prop-

erties induced by URC:

>, restricted on

~

(a) If =, satisfies URC on 2V N Y, then for any S € >,

~t

25N Y. satisfies URC; and

(b) If 7-; satisfies URC on ), then the grand coalition is either the maximal

element for 2, or the second best element.

Proof of Theorem 3.1.
We prove the result by induction on the number of players in the game. First,
let us observe that our result is true for the two-agent case. Now, let us assume

that the result be true for all games where ~; satisfly URC and the number of

~t
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players is less or equal to n — 1 and consider a game with |N| = n. Let us consider
the coalition structure 7 = [N], in which the socicty forms the unique coalition.
If 7 is stable, the desired result follows. Otherwise, there should be a coalition,
say S! such that for every i € S, St =, N. It follows that Ch;(N) = S* for each
i € S'. By the induction hypothesis, there exist a stable coalition structure 77 for
the set of agents N\S!. It is straightforward to see that the coalition structure

(S, T") is stable for the game which has player set N. H

Coalition Formation and IRC

We provide a non-constructive proof of the existence of stable allocations. In fact,
our proof has some similarities with that presented in Sotomayor [7] for two-sided
matching markets.

We first introduce a property which describes how the concepts of Pareto
efficiency and stability are related under TRC. In particular, we will see that
Pareto efficiency and an internal stability property together characterize, in this

framework, stability.

Proposition 4.1. Let {N, -} be a coalition formation problem, and T an alloca-
tion for this problem. If agents’ preferences satisfy the Intersection Responsiveness
Condition, then T is stable for {N, =} if, and only if,

19



(i) T lis Pareto efficient, and

(ii) For each coalition 77 in T and lfor any set of agents ) £ S C 77, there is an

agent i € S such that 77 ~; S.

Proof. Note that, if either of the two conditions above are not satisfied by 7,
this allocation is not stable for { N, = }. If fact, if Pareto efficiency is not satisfied,
any allocation 7' Pareto dominating 7 will give us a coalition (which is formed
in 77 but it is not in 7)) blocking 7. Moreover, if Condition (¢¢) is not satisfied,
there is a coalition, say 77, containing a set S such that S blocks 7.

On the other hand, let us consider an allocation 7 satisfying conditions (7)
and (i) above. Suppose that 7T is not stable. Then, a blocking coalition T' exist.
Thus, for each agent ¢ € T, T' ; 7;. Since T is Pareto efficient, there is an agent
2 € T such that 7; N T # 7;. Then, by Definition 2.3, TN 7; >}, 7; holds for each

agent h € T N 7;, which contradicts Condition (7i) above. B

Lemma 4.2. Let {N, 7} be a coalition formation problem, and F (>) be the
set of allocations satisfying Condition (ii) in Proposition 4.1. If allocation T is

Pareto efficient in F () then it is Pareto efficient for the problem {N, =~ }.

Proof. Let us assume that 7 is Pareto efficient restricted to F' () but is
not efficient for {N, =}. Then, there should be an allocation, say 7 which Pareto

20



dominates 7T, i.e. 7; 7—; 7; for bll ¢ € N and 7; »; 7; for some agent 7. Since
T € F () there is no agent ¢ for which 7; C 7;. Therefore, it should be the case
that (a) there is an agent 4 such that {7; 4 7; N 7; # 7; or (b) 73 D 7; for all 7.

If case (a) holds, assume that, for agent i, 7; # 7; N 73 # 73 In such a case,
for each agent 7 € 73, T; >; 7;. Applying Definition 2.3, we have 7; N 7; »; 7; for
each i € 7; N 73, which contradicts the fact that 7 € F (7).

If case (b) holds, since 7 is efficient restricted to F (=), then T ¢ F (=).
Hence, there is an agent 7 and coalition S C 7; such that § =; 7; for all i € §.
Assume that there is an agent h € S for which SN T; # T; (otherwise, an
allocation can be built in F' () Pareto dominating 7 which satisfies the property
described above). So, for all agent h in SN 7;, SN 7; =5 7, which contradicts
the fact that 7 wasin F (’7). W

Proof of Theorem 3.2.

Let us note that F' () is non-empty. In fact, the allocation 7 where 7; = {i}
for each 7 in N is always in F (7). Moreover, since F'(77) is finite, there should
be an allocation 7 which is Pareto efficient in F (7). By Lemma 4.2 7T is Pareto
efficient. So, 7 satisfies conditions (i) and (ii) in Proposition 4.1 and, hence, it is

stable. W
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Coalition Formation and Essentiality

Before introducing a formal proof for Theorem 3.4, let us construct a function
which will help us to understand how to find stable allocations in problems whose
agents satisfy Essentiality. Let E : 2V — 2V be the function which associates

with each set of individuals, 7' C N, the set of agents,

E(T)=Ujer {S C N | S is essential for i} .

Note that, under Essentiality, a coalition structure 7 is individually rational
if, and only if, (a) for each individual ¢, such that ; # {i}, E({7}) C 7;, and
(b) there is no self-sufficient agent, say ¢, such that 7, # {i}. This statement
gives us an idea of how to build individually rational allocations. In fact, imagine
that there is no self-sufficient agent, then any coalition structure 7 such that
E(77) = 77, for each 7, € T not being a singleton, satisfies individual rationality.
Thus, loosely speaking, a fixed point for F (-) can be understood as a coalition that
is not blocked by an individual. This property suggests the concept of autonomous

coalitions.

Definition 4.3. We say that a coalition T is autonomous for problem {N, -} if

!

E(T) =T and there is no coalition T C T, T # 0, such that E(T') =T .

22



Note that any two different autonomous coalitions are disjoints, i.e., if S and
T are two autonomous coalitions for {N, =}, S # T, then SNT = (). Since
the function F (-) has fixed points, in particular F (N) = N, the use of such a
function and the idea of autonomous coalitions can be used to show the existence
of stable structures for any problem satisfying Essentiality.

We are now ready to prove the statement of Theorem 3.4.

Proof of Theorem 3.4 Let {N, 7~} be a coalition formation problem
whose agents’ preferences satisfy Essentiality, and let 7 be the coalition structure
which consists of the autonomous coalitions and the remaining agents as single-
tons. Suppose that 7 is not stable. Then there exists a blocking coalition T. If
|T'| = 1 thenlet T'= {i}. Then ¢ is in a non-singleton autonomous coalition, which
is a contradiction. Thus, |T| > 1. If " D S, where S is an autonomous coalition,
then for all 2 € S, S =; T, which is a contradiction. If TN S # § for some au-
tonomous coalition S, and T" A S, where S is an autonomous coalition, then there
exists 2 € T'N.S such that 7¢ \ T # (), which implies that S >; T, a contradiction.
Therefore, for all autonomous coalitions .S, TN.S = (). In this case, however, there
exists i € T such that 7¢ \ T # [}, which implies that {i} =; T'. Since this is a
contradiction, 7 is stable. This proves the sufficiency of Essentiality.

In order to prove that the above stable coalition is unique, let 7 be a stable
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coalition structure. Let § C N be an autonomous coalition. If S is a singleton
then S € T, so assume that |[S| > 1. Let S C N such that S ¢ S’ and SN S’ £ 0.

Then there exists i € SN .S’ such that 76\ 1S" % @. Thus, if S’ € T and |S| > 1

then 7 is blocked by {i}. If S’ € T and S’ = {i} for some ¢ € N, then it follows
that for all j € S, {j} € T, since T is stable, and then T is blocked by S. Next,
let S C N such that S € S’. Then, if S’ € {T then T is blocked by S. This
implies that S € 7. Since this argument holds for all autonomous coalitions S,
all autonomous coalitions are in 7.

Let N’ denote the union of all autonomous coalitions. Let ¢ € N such that
i € N\ N'. Then either (1) 7¢ NN’ £ @, or (2) there exists j € N\ N', j # i, such
that 7 € 7, or both. If (1) does not hold then (2) holds, and the above possibilities
are also true for all j’s in (2). Given that there is a finite number of agents, we
can repeat this argument until we find an agents ' € N for which (1) holds, since
otherwise the set of agents that are examined contains an autonomous coalition,
which is a contradiction. Then {i'} € T. Now let N' := N'U {i'}, and repeat the
above argument, as many times as necessary, to show that all agents that are not
in an autonomous coalition are in 7 as singletons. This prove that the unique
stable coalition structure is the one consisting bof the autonomous coalitions and

the remaining singletons. W

24





