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ABSTRACT 
 
 

We propose an estimator for count data regression models where a binary regressor is 
endogenously determined. This estimator departs from previous approaches by using a 
flexible form for the conditional probability function of the counts. Using a Monte Carlo 
experiment we show that our estimator improves the fit and provides a more reliable estimate 
of the impact of regressors on the count when compared to alternatives which do restrict the 
mean to be linear-exponential. In an application to the number of trips by households in the 
US, we find that the estimate of the treatment effect obtained is considerably different from 
the one obtained under a linear-exponential mean specification. 
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1 Introduction

In the empirical analysis of count data, it is not uncommon to find situations where one or more
of the regressors are presumed to be simultaneously determined with the outcome of interest.1

In this situation, the Poisson model will yield biased estimates of the parameters of interest.
Moreover, this model imposes severe restrictions on the shape of the conditional probability
function of the counts. The researcher may want to use a flexible model that accommodates
data generating processes (DGP) that might exhibit excess of zeros, multi-modalities and/or
other non-Poisson characteristics. Partial solutions to the problem of endogeneity bias and
flexible estimation may be found elsewhere in the literature. To our knowledge, a treatment
of both problems remains unexplored except for Kenkel and Terza (2001) who consider the
family of inverse Box-Cox functions for the conditional mean.

In this paper, we propose an estimator that deals simultaneously with a binary endogenous
variable and departures of standard assumptions such as a linear-exponential specification
and/or Poisson or Negative Binomial distribution of the counts. Mullahy (1997) and Wind-
meijer and Santos-Silva (1997) use GMM estimation based on a linear-exponential mean (say
LEF) specification and a set of instruments. The GMM estimators are robust as far as the
true data generating process of the counts shows a LEF for the conditional mean. Alterna-
tively, the Two-Stage Method (TSM) and the Weighted Non-Linear Least Squares (WNLS)
estimators proposed in Terza (1998) require some additional distributional assumptions with
respect to the joint distribution of the unobserved components of the model. However, these
assumptions allow us to incorporate a wider range of functional forms other than a LEF for
the mean. In this paper, we exploit the advantage given by the distributional assumptions
over the unobserved components of the models to gain flexibility in the modelling of the
counts.

Allowing for specifications alternative to the LEF is not irrelevant in practice. Popular
alternatives as the Hurdle model (Pohlmeier & Ulrich, 1995) or finite mixture models (Deb
& Trivedi, 1997) do not exhibit a LEF. Gurmu and Trivedi (1996) find evidence of misspec-
ification of the LEF in a data set with a large frequency of zero counts. When they tried
to solve this problem by adding the squares and the cross-products of the regressors, the fit
deteriorated appreciably.

To solve the problem of flexible estimation, some researchers have proposed to use polyno-
mial series expansions over a baseline probability function. These polynomial expansions have
been introduced in the context of exogenous regressors in Gurmu (1997), Gurmu and Trivedi
(1996), Gurmu, Rilstone, and Stern (1999), Cameron and Johansson (1997), Creel and Farrell
(2001) and Guo and Trivedi (2002). In general these estimators have been shown to work
better than the standard Poisson or Negative Binomial models in terms of goodness of fit
and information criteria under several forms of non-Poissonness. For this reason, we propose
to apply these type of polynomial expansions to get a Polynomial Poisson Full-Information

1See Coulson, Terza, Neslulan, and Stuart (1995), Mullahy (1997), Windmeijer and Santos-Silva (1997),
Vera-Hernandez (1999), Schellhorn (2001), Kenkel and Terza (2001), Deb and Trivedi (2002, 2003), Munkin
and Trivedi (2003) in the case of health economics and Terza (1998) in the case of transportation economics.
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Maximum Likelihood (PP-FIML) estimator to be used within the framework of a binary
endogenous regressor.

Section 2 explains the data generating process of the Terza (1998) model and discusses
three alternative estimators: the TSM, the Weighted Non-Linear Least Squares (WNLS) and
the Poisson/Negative Binomial FIML. Actually, the work of Terza (1998) concentrates on the
TSM and WNLS, while the Poisson/Negative Binomial FIML is only cited but estimation
of these models is not carried out, nor their properties are explored. We contribute to the
literature with the study of the bias that might arise due to misspecification in the Poisson-
FIML and a discussion of the Negative Binomial FIML approach particularly in terms of
identification.

As an alternative to these estimators, we present in section 3 the Polynomial Poisson
Full Information Maximum Likelihood (PP-FIML) estimator. The PP-FIML is based on a
polynomial expansion around a baseline Poisson probability function. Consequently, the con-
ditional expectation of the counts is no longer given by the mean of the Poisson, being instead
a non-linear function of it. This allows a departure from the standard LEF specification. Ad-
ditional considerations on the choice of the degree of the polynomial expansion and on how
to compute a measure of the impact of the binary endogenous on the counts are also included
in section 3.

In section 4, we report the results of a small Monte Carlo experiment with data generating
processes that exhibit over-dispersion, excess of zeros and bi-modality. In general, the PP-
FIML estimator is shown to perform better than the alternative LEF-restricted approaches
in terms of fit and estimation of the treatment effect. Also, as an example of a field-data
application, we use a data set on the demand of trips by households already analyzed in Terza
and Wilson (1990) and Terza (1998). We show that a Poisson with unobserved heterogeneity
fails to generate predictions of zeros and ones and is rejected at 5% confidence level. Instead,
a polynomial expansion of degree 2 is enough to improve the fit significantly, as shown by
a battery of information criteria and goodness of fit tests. We find that the impact of the
endogenous binary regressor on the counts (Treatment Effect) differs significantly between
the PP-FIML and a model which imposes LEF, showing that the inference on the Treatment
Effect under a LEF assumption could contain an important bias in practice.

At the end of the paper, the appendix provides technical details about the computational
specifics of the PP-FIML model as a help for the reader interested in such issues.

2 Counts with an endogenous binary regressor

Assume we have a sample of size N from a count random variable Y and covariates X, d
and Z where d is a binary variable taking values zero or one, X is a vector of regressors and
Z is a vector of other covariates possibly containing at least some or all of the regressors
in X. For each i = 1, . . . , N , the conditional probability function of observation yi is given
by f(yi | x′i, di, εi) where ε is an unobserved random variable with zero mean. We will also
assume that the covariance between d and ε is different from zero which implies that d is
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endogenously determined.
Mullahy (1997)2 assumes a linear exponential specification (LEF) for the conditional mean,

i.e.,

E(yi | x′i, di, εi) = exp(X ′
iβ + γdi + εi), (1)

where β and γ are unknown parameters. He shows that if E(ziεi) = 0 for all i = 1, . . . , n,
then

E [exp(−x′iβ − γdi)yi − 1 | zi] = 0, (2)

where the covariates Z play the role of instrumental variables. Thus, the orthogonality condi-
tion in (2) permits us to define an Instrumental Variables estimator through the Generalized
Method of Moments (GMM) techniques. This GMM estimator does not require additional
distributional assumptions on either ε or Y . Note however that the assumption of a LEF
mean for the counts (see equation 1) is necessary for (2) to hold. Alternative specifications of
the conditional mean would require that a closed-form expression similar to (2) was available,
which is not true in general.

In the context where the only source of endogeneity is given by the binary regressor,
an alternative appears in Terza (1998). This author assumes that the binary variable di is
generated by the following process

di =

{
1 if z′iα + vi > 0
0 otherwise

, (3)

where α is a vector of parameters conformable with the instruments and v is another error
term. It is assumed that conditional on the exogenous variables, the εi and the vi have non-
zero correlation. Assume that ε can be decomposed into two independent random variables,
ε = ε+ ζ such that (ε, v) follows a bivariate normal distribution with zero mean and variance-
covariance matrix

Ω =

[
σ2

ε σερ
σερ 1

]
.

It must be noted that the specification above generalizes the model in Terza (1998) as
we have distinguished between the heterogeneity which is correlated (ε) and uncorrelated (ζ)
by the binary variable (d). Note also that the distribution of (ε, v) will not be completely
characterized until the distribution of the uncorrelated error term ζ is defined. Indeed, Terza
(1998) is a particular case which assumes that ζ is normal. For the moment however, we
only need to assume that ζ has a moment generating function Mζ(s) ≡ E[exp(ζs)] with well-
defined derivatives up to the third order in an open interval containing zero. This amounts

2Windmeijer and Santos-Silva (1997) follow a similar approach.

admin
5



to ensuring that there exists ζ̄ ≡ ∂ ln Mζ(s)

∂s

∣∣∣
s=0

= E(ζ) 3 and σ2
ζ ≡ ∂2 ln Mζ(s)

∂2s

∣∣∣
s=0

= V (ζ).

Proposition 1 (Second Order Normal Approximation). : Say w = (ε, v) and let

w̃ ∼ N

[(
ζ̄
0

)
,

(
σ2

ε + σ2
ζ ρσε

ρσε 1

)]
.

Let Mw(s),Mw̃(s) be the moment generating functions of w and w̃ respectively for any
s = (s1, s2) ∈ R2 . Then,

(i) Mw(s) = Mw̃(s) exp [R(s1)] where R(s1) is a polynomial in s1 such that
lim
s1→0

exp [(R(s1)] = 1 and there exists lim
s1→0

R(s1)/s
3
1 6= 0

(ii) In particular, if ζ follows a normal distribution, then Mw(s) = Mw̃(s).

Proof. First, note that w =

(
ε
v

)
+

(
ζ
0

)
. Therefore,

Mw(s) = E
(
es′w

)
= exp

{
1
2
s′Ωs + ln Mζ (s1)

}
. (4)

Now, consider the Taylor expansion of ln Mζ(·) around zero:

ln Mζ(s1) = ζ̄s1 +
1

2
σ2

ζs
2
1 + R(s1) (5)

where R(s1) is a Taylor polynomial in s1 which means that lim
s1→0

exp [R(s1)] = 1 and that there

exists lim
s1→0

R(s1)/s
3
1 6= 0. Substituting (5) in (4) we prove (i). Finally note that because the

sum of normals is itself normal, the proof of (ii) is trivial.

Proposition 1 defines a second order normal approximation to the (unknown) distribution
of the unobserved heterogeneity vector (ε, v). This approximation is exact in the case of a
normally distributed ζ which is the case in Terza (1998). Otherwise, it will depend on how
far the moments of ζ are from those of a normal, in particular the moments of order higher
than or equal to three. This is what the Taylor rest polynomial R(s1) accounts for. Because
the estimators proposed in Terza (1998) are obtained under the assumption of joint normality
of the vector (ε, v), proposition 1 allows us to interpret the properties of these estimators
through the assumptions on the (unknown) distribution of the error term ζ. We will consider
two useful cases:

3Note also that we have not assumed here a zero mean for ζ. This is left intentionally, as one of the two
cases that we analyze later is one where the expectation of the exponential of the ζ variable has mean equal
to one which does not imply in general that E(ζ) = 0.

admin
6



2.1 Case 1: Normal Error

Terza (1998) uses this assumption jointly with a linear-exponential function for the first order
moment of Y (see equation 1) to build a Two-step Heckman-type estimator (TSM). Because
the TSM estimator uses only the first order moment of the dependent variable, a natural
question is whether TSM could be improved through the use of higher order moments. Thus,
a Weighted Nonlinear Least Squares (WNLS) is also proposed. This estimator loses some
robustness with respect to the TSM as it requires us to assume a Poisson process for Y .

But also under the assumption of a Poisson for Y , a FIML estimator is readily available.
Say σ̃2 = σ2

ε + σ2
ζ and ρ̃ = ρσε/σ̃, then it follows that v = (ρ̃/σ̃)ε + u where u ∼ N (0, 1− ρ̃2),

independent with respect to ε. Say

fP (yi | x′i, di, εi) ≡ exp (−λi) λyi

i

yi!
(6)

where λi = exp (x′iβ + diγ + εi) .

Collect all parameters of interest in θ = (β, γ, α, σ̃, ρ̃). From (6) and (3) we have that

f(yi, di|x′i, zi, θ) =

∫ +∞

−∞
fP (yi|Xi, di, ε)Φ

∗ (ε)di [1− Φ∗ (ε)]1−di dΦ(ε/σ̃) (7)

where Φ(·) denotes the cumulative distribution function of a standard normal and Φ∗ (ε) is

defined as Φ
(
[ziα + (ρ̃/σ̃)ε] /

√
1− ρ2

)
.

Full Information Maximum Likelihood estimation of the model has an important advantage
over its TSM and WNLS alternatives, namely that it is expected to use the information more
efficiently. In general, the Poisson-FIML is inconsistent if the count variable does not follow
a Poisson distribution. The same can be said of the WNLS as it also requires a Poisson
assumption. The TSM, though, retains consistency as long as the first order moment is correct
and the error terms follow a normal joint distribution. For this reason, we will propose in
section 3 a FIML estimator which is expected to be flexible and robust against data generating
processes which include instances where log-linearity of the mean is not fulfilled. From a
computational point of view, FIML requires us to use numerical integration in (7), a minor
difficulty thanks to the availability of numerical integration software packages. See appendix
B on details of computation.

Note that, though consistent estimators of σ̃ and ρ̃ can be found, identification of σε and ρ
is not feasible. The reason is that the unobservability of ε makes it impossible to distinguish
between the heterogeneity induced by ε from the one induced by ζ. In other words, using
data on Y , X, d and Z it is possible to find an estimate of the variance of ζ + ε, but not of
the variance of ζ and ε separately.
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2.2 Case 2: Exp-Gamma Error

Consider now that exp(ζ) follows a Gamma distribution Gamma(η, η) where η > 0. It can
be shown by integration of ζ (see Cameron & Trivedi, 1998) that if Y follows a Poisson
conditional on ε then the distribution of Y conditional on ε is Negative Binomial with mean
λ and variance λ + ηλ2. Consequently, the Negative Binomial (NegBin, henceforth) itself
accounts for the overdispersion induced by the error term ζ, but not for that of ε.

The probability function of the Negative Binomial is defined in this context as,

fNB(yi | x′i, di, εi) ≡ Γ (Yi + η−1)

Γ (η−1) Γ (Yi + 1)
ηYi

(
1

1 + ηλi

)η−1 (
λi

1 + ηλi

)Yi

, (8)

where λi = exp (Xiβ + diγ + εi) and η > 0.

with Γ(·) denoting the Gamma function. Thus, we would use (8) instead of (6) in (7). This,
defines a Negative Binomial FIML (NB-FIML) estimator.

The Negative Binomial law is a popular choice in count data models. Typically, the
Negative Binomial allows for overdispersion without the need of numerical integration. In
our context though, this does not represent an advantage as the Poisson-FIML also allows for
overdispersion and numerical integration is required in both Poisson and NegBin FIML models
anyway. Consequently, the benefits from using a NB-FIML are not expected to increase
dramatically from those of the Poisson-FIML, both in terms of fit and/or computational
effort. Moreover, there is no a priori assessment of why the NegBin should show better fit
than Poisson-FIML for it is not clear why a exp-gamma for the unobserved heterogeneity
should be preferred to any other distribution like Normal, as above. And more importantly,
the identification of the NB-FIML is challenging. The main reason is that the NB-FIML
approach adds a new parameter, η, which determines the variance of ζ. As said above,
the variance of ζ is not identified should ζ follow a Normal law since the sample only gives
information on the variance of ζ + ε together and not separately. In the context of FIML
based on (8) though, identification of η may be achieved but it should be based on the
moments of order higher or equal than three, as the second order moments of the sample
only give information about the joint variation of ε + ζ. Relying on these high order moment
conditions for identification poses a technical challenge to the NB-FIML estimator as the
objective function is likely to be almost flat in a region around the optimum if the high order
sample moments of ζ do not depart substantially from those of a normal.

Finally, the following corollary shows that the Poisson-FIML retains consistency even when
the data have been generated through a NegBin distribution, at least for the most relevant
parameters.

Corollary 1. Assume that exp(ζ) ∼ Gamma(η, η). Say Ψ(k)(·) the digamma function defined

as the Ψ(k)(·) = ∂k ln Γ(·). Then, the Poisson-FIML estimates β̂ = (β̂0, β̂1, . . . , β̂dim(X)) and γ̂
are consistent for (β0 + ln η + Ψ(1)(η), β1, . . . , βdim(X)) and γ respectively.
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Proof. First, because exp(ζ) ∼ Gamma(η, η), then

ln Mζ(s1) = ln Γ(η + s1)− ln Γ(η) + s1 ln η (9)

By proposition 1.i) we have that

Mw(s) = exp

{
1

2
s′Ωs + s1

(
ln η + Ψ(1)(η)

)
+

Ψ(2)(η)s2
1

2
) exp [R(s1)] .

}
(10)

Arranging terms, we find that w follows approximately

N

[
ln η + Ψ(1)(η)

0
,

(
σ2

ε + σ2
ζ ρσε

ρσε 1

)]
. (11)

Therefore, the Poisson-FIML estimate of the constant term β0 is shifted by ln η + Ψ(1)(η),
while the other coefficients β and γ remain unaffected.

Thus, a Poisson-FIML with a constant term provides consistent estimators of the param-
eters affecting covariates even when the data have been generated with a Negative Binomial.

3 Polynomial Poisson FIML (PP-FIML)

In light of the previous discussion, it could be argued that an estimator which did not impose
a priori parametric restrictions in the distribution of the ζ should be preferred to restricting
to a Normal or Gamma specification. But the choice of a distribution for this error term
determines to a great extent the conditional distribution of the dependent variable once
integrated out from f(yi | x′i, di, ε + ζ). Indeed, a Poisson count conditional on a Gamma
ζ leads to Negative Binomial conditional on ε. Then, there are at least two ways in which the
parametric restrictions in our model can be relaxed: one is to keep a simple specification of
Y conditional on ζ (Poisson for instance) while relaxing the assumption on the distribution
of ζ. The other is to keep a simple specification for ζ (Normal for instance) and relax the
assumptions on the conditional distribution of Y . We found the second approach much simpler
to implement since we can benefit from the work by Cameron and Johansson (1997) 4.

Another reason to opt for a polynomial expansion of f(yi | x′i, di, ε + ζ) is that we do not
restrict the mean of the process to be based on a LEF. The estimators proposed in Terza
(1998), i.e., the TSM, the WNLS and the Poisson/NegBin-FIML, assume a LEF function for
the mean, pretty much as the instrumental variables approach in Mullahy (1997) does. Then,
it is reasonable to ask what is the benefit against the “cost” of assuming a normal distribu-
tion for (ε, v) instead of using such a GMM approach which does not requires distributional
assumptions on the unobserved heterogeneity. Our answer here is that assuming normality

4Note that our model differs from Cameron and Johansson (1997) in two ways. First we introduce overdis-
persion through the normal unobserved heterogeneity. The second is that we take into account endogeneity.
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of the unobserved heterogeneity facilitates the task of implementing a “flexible” specification
of f(Yi|Xi, di, εi) and particularly of the mean of the counts.

Assume that, conditional on X,d and ε, Y has a probability function given by a polynomial
expansion around a baseline Poisson. Thus, say a = (a0, a1, . . . , aK) the vector of coefficients
of the polynomial and say θ = (β, γ, α, σ̃, ρ̃, a), then

fPP (yi | x′i, di, εi, θ) ∝
(

K∑

k=1

aky
k
i

)2

fP (yi | x′i, di, εi) , (12)

where fP is defined as in 6. The PP-FIML estimators would then be obtained by maximization
of the FIML objective function

(1/N)
N∑

i=1

ln

∫ +∞

−∞
fP (yi|Xi, di, ε)Φ

∗ (ε)di [1− Φ∗ (ε)]1−di dΦ(ε/σ̃). (13)

Our PP-FIML estimator has several interesting features:

First, by simple algebra on (12), the mean of the count variable conditional on both
observable and unobservable variables is given by

E (yi|x′i, di, ε) =
K∑

j=0

K∑

h=0

aiahmj+h, (14)

where mj stands for the jth non-central moment of the Poisson density with mean λi =
exp (x′iβ + diγ + εi). Thus, a polynomial expansion implies a departure from the standard
LEF specification, allowing for a more flexible modelling. Note that when K = 0, the expres-
sion in (14) reduces to λi, thus nesting the linear exponential case.

Second, it is expected that a polynomial expansion could approximate any model arbi-
trarily well as long as we increase the order of the polynomial.5 However, increasing the
polynomial size arbitrarily when the sample size is fixed may lead to overfitting the data,
which leads to the question of how to fix the size K in applications.

3.1 Deciding on the polynomial size: Specification Test

We propose two sets of rules for deciding on the polynomial size: information criteria and
specification testing. In the literature on polynomial expansions it is common (see Gallant
& Tauchen, 1997; Gurmu & Trivedi, 1996; Gurmu, 1997, or Cameron & Johansson, 1997) to
use information criteria such as the Bayesian Information Criteria (BIC) and/or Consistent
Akaike Criteria (CAIC). If L denotes the log-likelihood and p is the number of parameters to
be estimated, then BIC = −2 ln L + p ln n and CAIC = −2 ln L + p(ln n + 1). Gallant and

5Cameron and Johansson (1997) or Creel (1999) do not provide a proof of this claim but show numeric
simulations. This has been proven in the continuous case by Gallant and Nychka (1997).
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Tauchen (1997) advocate the use of BIC as a parsimonious criterion on the order of the poly-
nomial. The BIC imposes a bigger penalty on the number of parameters than the standard
Akaike, but not as big as that imposed by the CAIC. Considering a penalty on the number
of parameters is interesting, since one would like to avoid overparameterized models.

A disadvantage of the information criteria is that the unconstrained model needs to be
estimated to decide on the polynomial size. Moreover, it is not clear when a difference in
information criteria is statistically significant. We believe that specification test can be useful
for the applied econometrician to decide on the polynomial size, as well as whether or not
is necessary to estimate more complicated models. The FIML approach permits us to define
such a test which is based on Andrews (1988b, 1988a) and compares the expected and the
observed frequencies of the counts. First, we partition the range of the count variable into J
intervals, where c1 ≥ c2 ≥ ... ≥ cJ−1 > 0 are the endpoints of the intervals. The observed
frequency, pj, of the interval j = 1, 2, ..., J is given by

pj =
1

N

N∑
i=1

I[cj≤yi≤cj+1], (15)

where I[.] is the indicator function. Now, the expected frequency p̂j of the jth. interval can

be computed using f(Y, d | x′i, zi, θ̂) as an estimate of the true joint distribution of Y and d,
then marginalizing the count variable

f
(
yi|x′i, zi, θ̂

)
= f

(
yi, 1|xi, zi, θ̂

)
+ f

(
yi, 0|xi, zi, θ̂

)
. (16)

Thus, an estimate of the expected frequency p̂j is given by

p̂j =
N∑

i=1

∑
Y ∈cj

f
(

Y |xi, zi, θ̂
)

(17)

Under the null of a correct specification, ∆j ≡ |pj− p̂j| converges to zero. The goodness of
fit measures used in Gurmu and Trivedi (1996) and Cameron and Johansson (1997) based on
the sum of the differences ∆j can thus be extended to our context of endogenous regressors
as a moment conditions test on ∆j. Numerical integration is needed at some steps of the
implementation to evaluate (17). The interested reader may consult the appendix B on
computational methods at the end of the paper.

3.2 Estimating the impact of regressors

In a LEF model, the coefficients β and γ have a deep structural meaning. Say xij the jth.
regressor in Xi, then, from (1) it follows that
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∂ ln E (yi|x′i, di, εi)

∂ ln xij

= βj and also (18)

ln
E (yi| x′i, di = 1, εi)

E (yi| x′i, di = 0, εi)
= γ.

for all i = 1, . . . , N . Hence, these coefficients are the elasticities of expected value of the
count with respect to covariates. However, in a PP-FIML the coefficients β and γ lose such
a meaning as the expectation E(yi | x′i, d, ε) is no longer linear-exponential (see equation 14).
Since the researcher is often interested in a measure of the impact of covariates in the counts,
the question we want to address is how to recover such a measure with the PP-FIML model.
The idea is that once an estimate of the joint distribution of the count and the dummy is
available, estimates of any moment of Y and/or d conditional on covariates can be computed.
In particular, the quantity E[yi|x′i, Zi, di] can be estimated by

Ê[yi|x′i, Zi, di] =
∞∑

y=1

y
f(y, di|Xi, Zi, θ̂)

f̂(di|Zi, θ̂)
. (19)

The marginal density of d in the previous expression can be computed as follows. Define
Φ̂∗(ε) as in (7) where the unknown parameters are replaced by their corresponding PP-FIML
estimates, then,

f̂(d|z′i, θ̂) =

∫ +∞

−∞

{
dΦ̂∗ (ε) + (1− d)

[
1− Φ̂∗ (ε)

]}
dΦ(ε). (20)

Define the treatment effect as the variation in Ê[Yi|Xi, Zi, di] induced by the change of
treatment from d = 0 to d = 1. An estimate of this quantity is given by

1

N

N∑
i=1

Ê(yi|x′i, z′i, d = 1)− Ê(yi|x′i, z′i, d = 0)

Ê(yi|x′i, z′i, d = 0)
. (21)

for each i = 1, . . . , N . Similar measures can be defined for each of the regressors in the X
vector. As usual, an estimate of the standard deviation of (21) can be computed with a first
order linear approximation of (21) around the true value of the parameters (Delta method).

4 Empirical Results

4.1 A Simulation Exercise

This section provides an illustration of the properties of the PP-FIML estimator using simu-
lated data generated by random sampling from five different specifications or data generating
processes (DGP). The number of simulations used in all experiments is set to 100 and the
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sample size was fixed to 1000 observations per Monte Carlo iteration. In order to prevent
convergence to local optima we used in each run several starting values for a gradient-based
optimization algorithm. In this simulation exercise we fix the polynomial size at 2. The
results for the PP-FIML reported in this simulation exercise are somewhat a lower bound
of what can be get with this technique as they could be improved if we allowed for larger
polynomials. This strategy would entail to look for the better specifications at each Monte
Carlo. This task would be computationally very intensive and time consuming.

Prior to any simulation we draw samples of two independent N(0,1) regressors. One of
them will be excluded from the count equation to ensure that we have enough instruments in
the binary equation. The draws of covariates are kept constant across all the 100 simulations.
Then, for each simulation and for each DGP, we draw a sample of size 1000 of the unobserved
heterogeneity vector (ε, v) from a bivariate normal with mean zero and variance-covariance
matrix Σ. Then, we draw a sample from the probability function f (· |x, d, ε). The definitions
of this probability function and of Σ for each DGP appear in Table 1 in detail.

The five DGP’s are labelled DGP1 trough DGP5. These specifications and their param-
eters have been selected intentionally to yield data with different degrees of overdispersion
and/or excess of zeros. Table 2 shows the ratios between the observed frequencies in the
simulations (numerator) and the frequencies predicted under Poisson (denominator)with the
correct mean evaluated at the average covariates.6 DGP1 is not included in this table as it
is our benchmark model. DGP1 is generated from a Poisson distribution with LEF mean
λ = exp(xβ + γd + ε) and normal unobserved heterogeneity. DGP2 keeps the assumption
of a LEF but data is generated from a Negative Binomial distribution with overdispersion
parameter 1/η ≡ 2. DGP3 simulates a Hurdle Poisson model with a non-LEF mean. Hur-
dle models (Pohlmeier & Ulrich, 1995) are very popular in many applications. They are a
mixture of two processes: one driving the zero and non zero observations and the other one
being a count process truncated at zero. Hurdle models typically show an excess of zeros
and this is confirmed by comparing the frequency of zero and one counts in Table 2 for the
DGP3 column. DGP4 simulates a Hurdle Negative Binomial model. Finally, DGP5 simu-
lates from an equally weighted mixture of Poisson distributions. Mixture models have been
also proposed in the literature as a flexible estimator for count processes. We use a mixture
model to assess the performance of our flexible PP-FIML estimator when the counts have
been generated by other well-known flexible model. Looking at Table 2, it can be noted that
parameters of the mixture have been selected in order to have very different shapes of the
counts depending on the treatment. Under no treatment (d=0), the mixture shows long tails,
while under treatment, it shows a very high proportion of zeros.

The performance of the PP-FIML model will be tested against different alternatives for
each of the DGP’s. In the case of the DGP1 the TSM, the Poisson-FIML and the PP-FIML
yield consistent estimators of the parameters of interest, as the DGP1 maintains the LEF
assumption. Thus, the results for this DGP can be used as a benchmark for comparing all

6Except for the mixture model where the x1 is set to 1. Notice that when x1 equals zero then both parts
of the mixture collapse to a Poisson density.
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three estimators in term of efficiency because, as expected, the bias is very small in all cases.
Table 3 reports the squared errors of the three estimators averaged through simulations. The
reader should pay attention to the upper panel of this table which reports the variance, as
the size of the bias is almost negligible. The Poisson-FIML shows the lowest error, even
lower than the PP-FIML with a polynomial of size 2. Recall that the Poisson-FIML can be
interpreted as a PP-FIML estimator which incorporates the restriction that the coefficients of
the polynomial are zero. Note that the differences between the TSM and the Poisson-FIML
are larger at the parameter (γ) associated with the endogenous binary. Finally, note that
the degree 2 PP-FIML performs poorly for the constant term of the count equation (β0).
According to Cameron and Johansson (1997) the same values of the count mean and variance
are compatible with different combinations of the λ and the first parameter of the polynomial.
This feature does not preclude identification by FIML as higher order moments will differ but
it would affect the precision of the estimation of β0 and the first order parameter of the
polynomial. In any case it could be solved by just adding the appropriate restrictions on the
first coefficient of the polynomial.

The LEF assumption still holds for the DGP2 but the Poisson-FIML and the PP-FIML
are expected to give inconsistent estimates of the parameter for the constant term β0. Given
our corollary 1, they should provide consistent estimates of β1 and γ. As shown in section 2
the bias is given by the expression in corollary 1. Table 4 reports the squared error for all
parameters where the error for the constant term in the FIML approach has been computed
with respect to the “shifted” constant term, i.e., β0 + ln(η) + Ψ(1)(η). Note that the bias of
β1 and γ is not bigger for FIML than it is for TSM. Notice that this provides the empirical
counterpart to our corollary 1. Comparing with DGP1, the results in terms of bias and MSE
of the different estimators are qualitatively similar.

The LEF assumption does not hold for the DGP3, DGP4 and DGP5. In these cases,
all estimators are expected to yield inconsistent estimates of the parameters θ. Therefore,
the comparison should be done on the basis of the ability of these estimators to yield good
inference on the impact of the regressors on the mean of the counts and the treatment effect, as
discussed in the previous subsection. Table 5 performs such an exercise. In Hurdle models, the
estimators obtained under the LEF assumption, i.e., the TSM and the Poisson-FIML provide
a biased estimate of the impact of the binary regressor on the counts, while the bias of the
PP-FIML estimator is almost negligible. In the case of DGP5 mixture of Poisson, the LEF
assumption induces a significant bias on the estimate of the treatment effect overestimating
this quantity by around 19% for the TSM and 8% for the Poisson-FIML. Our PP-FIML
estimator overestimates the treatment by just a 3%. Finally, it must be noted that the
Polynomial Poisson provides a better BIC and CAIC than the Poisson-FIML.

As a summary, the TSM model performed well in DGP1 and DGP2 where the LEF
assumption is verified. We were not expecting TSM to give good estimates of the treatment
effect for DGP3 to DGP5 where this assumption does not hold. Manning and Mullahy (2001)
have found that moment based estimators based on a LEF are prone to overfitting when there
is substantial skewness in the count distribution as it is the case in DGP3 to DGP5 which
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show long tails that produce skewness. The PP-FIML provides better estimates than TSM
and Poisson-FIML for the three designs that do not show a LEF (DGP3, DGP4 and DGP5).

4.2 An Application to Data on Trip Frequency

Terza (1998) used data on the number of trips by households (Tottrips) to specify a model
where vehicle ownership (OwnVeh) is included as a binary regressor. Indeed, it is reasonable
to believe that there may exist unobserved variables such as the personal predisposition (or
aversion) to travel which may be positively (or negatively) correlated with the decision of
purchasing a vehicle. For instance, an individual may like to travel but may detest traffic jams,
and such an aversion will be negatively correlated with the ownership of a vehicle. Thus, the
one would wish to isolate the effect of vehicle ownership accounting for the correlation with the
unobservables while being confident that its estimate will be robust against misspecification
on the first order moment of the distribution of the counts.

Table 6 describes the variables in the data set. Some variables have been scaled with
respect to the original source and they have been divided in two groups attending to their
status: endogenous (number of total trips and vehicle ownership) and exogenous regressors.
The Tottrips variable has a sample variance which is almost five times greater than the sample
mean. Additionally, it also shows a relatively big frequency of zeros. The sample contains
a frequency of zeros which is 17 times greater than would be expected from a Poisson with
mean equal to sample mean.

The choice of regressors for the count and the binary equations must take into account is-
sues of identification regarding exclusion restrictions of the coefficients in the count equations.
The question is then to decide which variables to exclude. This dilemma is not exclusive to
our framework and it is encountered in previous approaches such as, among others, Mullahy
(1997) and Windmeijer and Santos-Silva (1997). Because this application is intended as a
comparative exercise for illustrative purposes, we will adopt the specification in Terza (1998)
and exclude the Adults regressor from the count equation.

The estimation of Nonlinear Least Squares (NLS), the TSM, and WNLS models in Tables
7 and 8 give a first impression of the consequences of endogeneity of the OwnVeh variable. As
mentioned in Section 2, TSM and WNLS correct for endogeneity using a estimator similar to
the one proposed by Heckman (1978) but adapted to this particular count data framework.
Column 1 of table 7 contains the estimates of a PROBIT model of OwnVeh on a set of
regressors. The estimates of the PROBIT part are used in a second stage process (Table 8)
to compute the corrected moment conditions, which define the TSM and WNLS estimators.
The value of the OwnVeh coefficient estimated with TSM and WNLS increases from between
30% to 75% with respect to NLS. This indicates that the sign of the correlation between
the unobserved heterogeneity and the endogenous dummy is negative. The WNLS pursues
a more efficient estimation than TSM at the price of restricting the parametric family of the
conditional counts to be a Poisson. For instance, a test of the significance of some variables
like FullTime may lead to different conclusions under TSM or WNLS.

The fourth column of table 8 contains the estimates of the count equation for the Poisson
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FIML model. A Poisson FIML approach (K=0)7 as shown in section 2 is based on the same
assumptions as the WNLS, namely a Poisson conditional probability function for the counts
in addition to joint bivariate normality and a linear exponential specification for the mean.
The estimates of the coefficients are more similar to the WNLS than to TSM, particularly for
the DistoCbd variable.

The FIML approach allows further diagnostics to be made on both the Poisson assumption
and LEF, by means of comparing the expected and observed frequencies. Table 9 shows the
empirical and expected frequencies for several counts intervals. The K=0 model underpre-
dicts the frequency of zeros and overpredicts the frequency of counts one and two, as usually
happens when the empirical distribution puts an excess of mass in the zero counts. In fact,
the Andrews’ test rejects the null of a correct specification at 1% for the K=0 model. Using an
informal test, Terza (1998) also found evidence of misspecification for the Poisson assumption.
This makes it clear that a model that specifies a LEF and accounts simultaneously for overdis-
persion may not adequately fit a sample with an excess of zeros such as the one at hand (for
another example of this problem, see Gurmu and Trivedi, 1996). Consequently, this provides
motivation for a more flexible specification introducing a polynomial series expansion over a
Poisson baseline density as proposed in section 3. We started with the K=1 specification and
sequentially increased the size of the polynomial. The parameter estimates for the count and
binary equations are shown in the last columns of Table 7 and 8 respectively, while expected
frequencies appear in table 9. In term of goodness of fit, a considerable gain is obtained
by the model with K=2 with respect to K=0 and K=1. As Table 9 shows, the measure of
the distance between observed and predicted frequency decreases considerably and the test
does not reject the null for a size of the polynomial of two or higher. This suggest that the
polynomial terms considerably improve the fit of the model.

This leads to the problem of having to take a decision on where to stop adding new terms
to the polynomial expansion. We used the information criteria in section 3, and the results
are shown in the last rows of Table 8. The BIC favors K=2 with respect to any other model
which is not rejected by the Andrews test. It must be noted, though that the CAIC for K=0
almost matches that of the K=2.

Table 8 also shows that the OwnVeh coefficient differs across models, being 2.796 for TSM
and 2.369 for K=2. It is important to recall that once a LEF specification is not accepted,
these estimates have no direct structural interpretation. Following the discussion in section
3 the researcher should not be interested in the coefficients themselves, rather than on the
way they can affect (cause) the characteristics of the count variable (for instance, its mean).
In order to make comparisons of these mean effects, we used the formula in section 3.1.
Table 10 shows the estimates of the mean effect computed for the OwnVeh variable and other
regressors. The point estimates for the mean effect of the OwnVeh variable are 0.5798 for
TSM and 1.3718 for K=2 in per-unit points. A 95% confidence interval for the latter is
approximately (0.5326,2.211). Although the confidence interval is too wide, the difference

7In the tables, we chose this nomenclature to emphasize that a Poisson distribution is a particular case of
our polynomial expansion with a polynomial size of zero.
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between both estimates is considered important enough to serve as an illustration that a
researcher should consider using a flexible alternative as our PP-FIML model when there is
evidence that a LEF specification is not appropriate.

5 Conclusions

Terza (1998), Mullahy (1997) and Windmeijer and Santos-Silva (1997) provide consistent
estimators for count data in presence of a dummy endogenous variable provided a LEF as-
sumption holds. These estimators can be useful in many applications. However, the literature
with exogenous regressors has shown that the LEF assumption does not always hold. Our
paper builds on Terza (1998) and Cameron and Johansson (1997) to provide an estimator
based on a polynomial expansion of a baseline Poisson process. The literature with exoge-
nous regressors has already shown that flexible models that depart from the linear exponential
specification fit the data better. We extend this idea to the case where a potentially endoge-
nous binary variable is included as a regressor. Our estimator is expected to improve the fit
with respect to LEF based alternatives in those cases where such an assumption does not
hold. Deb, Ming, and Trivedi (2001) argued that some distribution characteristics such as an
excess of zeros or overdispersion are not likely to be captured by estimators which use only
low order moment restrictions. For this reason we base our estimation strategy on Maximum
Likelihood estimation using a flexible form.

A small Monte Carlo experiment shows that, at least for our specific coefficient values, the
Polynomial Poisson does a good job in improving the fit and getting good estimates of the
Treatment Effect parameter even if the true DGP is generated from non-LEF data generating
processes, like a finite mixtures of Poisson or Hurdle models. As an illustration, we use a
data set on the number of trips by households already analyzed in the literature. The results
show that flexible estimation of the conditional probability function of the count helps to
significantly improve the fit with respect to LEF alternatives. In particular, we find that a
model with a polynomial expansion of size two can not be rejected by the data, while a model
based on a LEF specification is. We also find that the estimates of the impact of regressors
on the counts differ, so stressing the need of using a flexible form like the PP-FIML when the
data is suspected of showing non-LEF.

Finally, at the beginning of section 3 we claimed that our approach is far from being
unique. Semiparametric alternatives based on a flexible specification of the distribution of
the error term can be devised. 8

8Newey, Powell, and Walker (1990), page 328, claim that “specification of the regression function and set
of instrumental variables appears to be more important than specification of the error distribution for these
data”. This evidence is further supported in Vella (1995).
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Appendix. Details on Computation

The numerical routine for integration of unobserved heterogeneity in (7) is based on the
Gauss-Hermite quadrature. This is a popular choice when integrating normal variables across
the whole real line. (Judd 1999). The procedure requires to specify the number of points
for quadrature evaluation. We used 26 points of quadrature. Choosing a larger number of
quadrature points did not influence the results.

The objective function of the Poisson-FIML was optimized using the Broyden-Fletchell-
Golden-Shannon (BFGS) algorithm. We never found problems of local optima. Convergence
time is quite low (between 2 and 4 minutes) depending on the initial conditions. Using
TSM starting values improves convergence time substantially. The TSM estimator converges
extremely fast. We have noted that the TSM might exhibit computational instability if the
count takes very large values (i.e. 150). However, we have not pursued an in-depth analysis
of this issue.

The objective function of the PP-FIML was optimized using the BFGS algorithm. We
tried several initial conditions as local optima is a problem often encountered when using
series expansion. In order to choose the initial conditions for the polynomial coefficients, it is
advisable not to choose large numbers. We normally found that large values of the polynomial
coefficients rarely provide an appropriate convergence. In all our results, the coefficients are
not larger than one in absolute values. We found that local optima are an issue for the PP-
FIML. This was particularly true for the DGP generated as mixtures of Poisson. Each run
with the BFGS took approximately between 2 and 10 minutes in a Pentium III, depending
on the polynomial degree and the initial condition.

For the application with real data, we wanted to ensure that the global maxima was
reached, so we decided to implement, as a final step, several runs with a local-robust opti-
mization algorithm like the simulated annealing (SA), which is a search method specifically
designed to deal with the problem of multiple local optima (see Goffe, Ferrier, and Rogers,
1994). We benefitted from the code written by E.G. Tsionas. For the application, the SA al-
gorithm matched the best result obtained using BFGS. All code is available from the authors
on request.
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Name Prob. Funct. Parameter Values

DGP1
y ∼ P (λ)
λ = exp(xβ + γd + ε)

β = (0.5, 0.5); γ = 1
α = (0, 0.5, 0.5)

Σ =

(
0.25 0.25
0.25 1

)

DGP2
y ∼ NB(λ, η)
λ = exp(xβ + γd + ε)

β = (0.5, 0.5) ; γ = 1
α = (0, 0.5, 0.5); η = 0.5

Σ =

(
0.25 0.25
0.25 1

)

DGP3

y∗1 ∼ P (λ1)
y∗2 ∼ P (λ2|y∗2 > 0)

y =

{
0 if y∗1 = 0
y∗2 if y∗1 > 0

λ1 = exp(xβ1 + γ1d + ε)
λ2 = exp(xβ2 + γ2d + ε)

β1 = (−1, 0.5) ; γ1 = 1
β2 = (0.75, 0.5) ; γ2 = 1
α = (0, 0.5, 0.5)

Σ =

(
0.25 0.25
0.25 1

)

DGP4

y∗1 ∼ NB(λ1, η1)
y∗2 ∼ NB(λ2, η2)

y =

{
0 if y∗1 = 0
y∗2 if y∗1 > 0

λ1 = exp(xβ1 + γ1d + ε)
λ2 = exp(xβ2 + γ2d + ε)

β1 = (−1, 0.5) ; γ1 = 1
β2 = (0.75, 0.5) ; γ2 = 1
α = (0, 0.5, 0.5); η1 = η2 = 0.5

Σ =

(
0.25 0.25
0.25 1

)

DGP5

y∗1 ∼ P (λ1)
y∗2 ∼ P (λ2)

y =

{
y∗1 with prob. 0.5
y∗2 with prob. 0.5

λ1 = exp(xβ1 + γ1d + ε)
λ2 = exp(xβ2 + γ2d + ε)

β1 = (−1.5,−2) ; γ1 = 1
β2 = (−0.5, 2); γ2 = 1
α = (0, 0.5, 0.5)

Σ =

(
0.25 0.25
0.25 1

)

TABLE 1: Specifications of the experiments. Each column shows the name
of the DGP in the text, the specification of the conditional probability function
f(y | x,d, ε) and the values given to the parameters in simulations.
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Count d=0 d=1
DGP2 DGP3 DGP4 DGP5 DGP2 DGP3 DGP4 DGP5

0 1.03 1.45 1.28 4.68 1.20 14.14 4.15 212.1
1 0.87 0.25 0.40 0.16 0.80 0.12 0.45 2.84
2 1.10 0.72 0.81 0.21 0.80 0.19 0.38 0.04
3 1.86 2.06 2.17 0.42 1.07 0.30 0.43 0.01
4 3.78 5.89 7.26 0.84 1.78 0.47 0.62 0.02
5 9.95 16.84 29.13 1.67 3.57 0.75 1.06 0.03

TABLE 2: Each entry shows the ratio of the frequency of each count predicted
by a Poisson vs. the observed across all simulations (total sample size 100000).
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Parameter
β0 β1 γ α0 α1 α2 ρσ

Variance
TSM 0.01863 0.00287 0.05179 0.00156 0.00176 0.00221 0.02247
Poisson-FIML 0.00574 0.00097 0.01683 0.00157 0.00180 0.00221 0.00589
PP-FIML 0.02240 0.00179 0.01900 0.00160 0.00178 0.00220 0.00677

Squared Bias (×10−3)
TSM 0.02462 0.01129 0.00210 0.00248 0.01353 0.01871 0.00342
Poisson-FIML 0.00001 0.00029 0.00276 0.00197 0.01608 0.01441 0.01180
PP-FIML 1.02802 0.02378 0.21219 0.00088 0.01654 0.01250 0.01279

TABLE 3: Average Squared Error of Parameter Estimates in DGP1computed over 100
replications. The squared error has been decomposed on variance (upper panel) and squared
bias (lower panel). The squared bias is measured in 1 × 10−3 units. In TSM, the error for
β0 has been computed discounting the shift of σ2/2 (see Terza, 1998).
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Parameter
β0 β1 γ α0 α1 α2 ρσ

Variance
TSM 0.07844 0.00945 0.19823 0.02282 0.00251 0.00232 0.07840
Poisson-FIML 0.02906 0.00510 0.09587 0.00228 0.00251 0.00234 0.03761
PP-FIML 0.17373 0.00646 0.09822 0.00231 0.00252 0.00233 0.03767

Squared Bias (×10−3)
TSM 0.1838 0.04132 1.38812 0.00090 0.01671 0.04607 0.12462
Poisson-FIML 0.3653 0.02165 1.76942 0.00087 0.01761 0.04571 0.50431
PP-FIML 2.5227 0.06332 0.47548 0.00119 0.02020 0.03670 0.31429

TABLE 4: Average Squared Error of Parameter Estimates in DGP2 computed over 100
replications. The squared error has been decomposed on variance (upper panel) and squared
bias (lower panel portion). The squared bias is measured in 1 × 10−3 units. In Poisson-
FIML and PP-FIML, the average squared error for the β0 parameter has been computed
discounting the shift due to Negative Binomial (see corollary 1). In TSM, we discount the
usual (see caption of table 3) σ2/2 for this parameter.
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In Sample Out of Sample
Average Sq. Err. Average Sq. Err. BIC CAIC

DGP3 - Poisson Hurdle
True: 7.3525

TSM 6.8385 1.6835 6.8506 1.6708
Poisson-FIML 6.8436 2.0174 6.8477 2.0336 5463.15 5471.95
PP-FIML 7.3604 1.0627 7.3743 1.0818 5181.63 5191.63

DGP4 - Negative Binomial Hurdle
True: 5.3997

TSM 6.1144 2.9345 6.1090 3.0391
Poisson-FIML 6.1454 1.6687 6.1352 1.7433 4582.51 4606.32
PP-FIML 5.5140 0.8653 5.5230 0.8955 4535.49 4545.49

DGP5 - Poisson Mixture
True: 2.8178

TSM 3.3717 0.7985 3.3717 0.7988
Poisson-FIML 3.0477 0.7031 3.4615 0.7037 5074.88 5082.88
PPFIML 2.7362 0.2111 2.7368 0.2157 5016.77 5026.77

TABLE 5: Average Estimates of the Treatment Effect and Information Criteria.
Number of Monte-Carlo replications, 100. Sample size in sample= Sample size out
of sample= 1000. The treatment effect is computed according to equation (21)
over sample size. Estimates computed across the 100 Monte-Carlo replications.
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Variable Mean Std. Description

Endogenous
Tottrips 4.5511 4.9351 Number of trips by members of the household in 24 hrs.
OwnVeh 0.8492 0.3581 1 if household owns at least one motorized vehicle.

Exogenous
WorkSchl 0.2622 0.3278 % of total trips for work vs. personal.
Hhmem 2.9289 1.6127 Number of individuals in the household.
DistoCbd(a) 0.2887 0.4932 Distance to the central business district in kilometers.
AreaSize 0.3761 0.4848 1 if area is bigger than 2,5 million population.
FullTime 0.9792 0.8475 Number of full time workers in the household.
DistoNod(b) 2.0272 3.1378 Distance from home to the nearest transit node in blocks.
RealInc(c) 0.8042 0.9197 Household income divided by median income of census tract.
Weekend 0.2236 0.4170 1 if 24 hours survey period is Saturday or Sunday.
Adults 2.0797 0.8978 Number of adults in the household 16 years or older.

TABLE 6: Descriptive Statistics of the variables in the data set on household trips.
NOTES : (a) In 1/30 of original units. (b) In 1/5 of original units. (c) In 1/3 of original units.
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Instrument(a) Probit(b) Polynomial Degree
(Z) NLS, TSM

WNLS
K=0 K=1 K=2 K=3 K=4

Constant ∗∗ − 0.633 -0.533 -0.532 -0.496 -0.495 -0.487
0.237 0.354 0.347 0.353 0.354 0.353

WorkSchl 0.152 0.326 0.344 0.325 0.324 0.331
0.265 0.328 0.325 0.320 0.320 0.318

Hhmem 0.003 0.047 0.056 0.053 0.053 0.054
0.068 0.072 0.072 0.071 0.071 0.071

DistoCbd 0.629 ∗0.676 ∗0.672 ∗0.666 ∗0.666 ∗0.667
0.399 0.379 0.375 0.374 0.374 0.372

AreaSize -0.206 -0.247 -0.234 -0.246 -0.245 -0.240
1.242 0.157 0.155 0.156 0.156 0.155

FullTime ∗∗0.871 ∗∗1.014 ∗∗1.003 ∗∗1.009 ∗∗1.009 ∗∗1.001
0.155 0.181 0.175 0.176 0.176 0.174

Adults ∗∗0.381 0.252 0.244 0.225 0.225 0.219
0.145 0.178 0.174 0.176 0.176 0.175

DistoNod 0.048 0.050 ∗0.052 ∗0.050 ∗0.050 ∗0.049
0.033 0.031 0.031 0.030 0.030 0.030

RealInc ∗∗0.472 0.353 0.324 ∗0.346 ∗0.346 ∗0.339
0.177 0.216 0.214 0.206 0.205 0.201

TABLE 7: Estimates of the binary equation for the data set on household trips.
NOTES : (a) Upper row shows point estimate, lower row in small type shows
standard deviation. The superscripts ∗, ∗∗ preceding an entry denote significance
at 5% and 1% respectively. (b) The NLS, TSM and WNLS estimates for the
binary equation are equal to a Probit model.
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Regressor(a) NLS TSM WNLS PP-FIML
(X) K=0 K=1 K=2 K=3 K=4

Constant ∗∗ − 0.600 ∗∗ − 1.445 ∗∗ − 1.005 ∗∗ − 1.404 ∗∗ − 1.383 ∗∗ − 2.313 ∗∗ − 2.497 ∗∗ − 2.930
0.225 0.258 0.181 0.239 0.234 0.382 0.415 0.545

WorkSchl ∗∗ − 0.527 ∗∗ − 0.554 ∗∗ − 0.363 ∗∗ − 0.339 ∗∗ − 0.362 ∗∗ − 0.392 ∗∗ − 0.397 ∗∗ − 0.420
0.143 0.147 0.128 0.137 0.134 0.150 0.152 0.158

Hhmem ∗∗0.166 ∗∗0.148 ∗∗0.134 ∗∗0.154 ∗∗0.145 ∗∗0.180 ∗∗0.184 ∗∗0.191
0.027 0.031 0.028 0.023 0.021 0.028 0.029 0.031

DistoCbd -0.149 -0.268 ∗∗ − 0.057 ∗∗ − 0.062 ∗∗ − 0.068 ∗∗ − 0.078 ∗∗ − 0.080 ∗∗ − 0.092
0.136 0.172 0.024 0.040 0.042 0.047 0.048 0.053

AreaSize -0.034 -0.008 0.038 0.040 0.019 0.048 0.050 0.045
0.097 0.100 0.085 0.086 0.087 0.105 0.108 0.109

FullTime ∗∗0.189 ∗∗0.205 ∗∗0.220 ∗∗0.226 ∗∗0.234 ∗∗0.249 ∗∗0.255 ∗∗0.267
0.048 0.101 0.073 0.065 0.052 0.070 0.072 0.076

DistoNod ∗∗0.002 ∗0.021 0.019 ∗0.022 0.018 ∗0.024 ∗0.025 ∗∗0.027
0.010 0.012 0.013 0.013 0.011 0.014 0.014 0.014

RealIinc 0.041 0.020 0.007 0.025 0.026 0.034 0.036 0.043
0.048 0.052 0.051 0.026 0.023 0.028 0.028 0.030

Weekend -0.155 -0.165 -0.029 -0.098 -0.099 -0.122 -0.125 -0.135
0.112 0.115 0.080 0.093 0.095 0.108 0.111 0.117

OwnVeh ∗∗1.607 ∗∗2.796 ∗∗2.079 ∗∗2.157 ∗∗2.221 ∗∗2.376 ∗∗2.427 ∗∗2.535
0.185 0.613 0.312 0.304 0.280 0.311 0.320 0.360

Polynomial Coefficients
a1 -0.027 0.032 0.110 -0.157

0.001 0.091 0.103 0.302

a2
∗0.174 ∗0.179 0.742

0.104 0.104 0.485

a3 0.012 -0.117
0.011 0.125

a4 0.020
0.022

Variance-Covariance Matrix
ρ ∗∗ − 0.762 ∗∗ − 0.781 ∗∗ − 0.764 ∗∗ − 0.761 ∗∗ − 0.767

0.036 0.041 0.082 0.089 0.117

σ(b) +0.726 +0.761 ++0.895 ++0.921 ++0.975
0.153 0.131 0.130 0.129 0.125

TABLE 8: Estimates of the count equation for the data set on household trips.
NOTES : (a) Upper row shows point estimate, lower row in small type shows standard deviation.
The superscripts ∗ ∗∗ preceding an entry denote significance at 5% and 1% respectively. (b) The
superscripts +, ++ preceding an entry in the last row denote significance of the test σ = 1 at 5%
and 1% respectively.
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Count Sample PP-FIML

Interval Average K=0 K=1 K=2 K=3 K=4

0 0.1854 0.1528 0.1558 0.1840 0.1854 0.1880
1 0.1196 0.1572 0.1572 0.1285 0.1246 0.1170
2 0.1092 0.1343 0.1327 0.1122 0.1133 0.1227
3 0.1248 0.1100 0.1080 0.1038 0.1060 0.1096
4 0.0919 0.0881 0.0864 0.0921 0.0931 0.0891
5-6 0.1161 0.1246 0.1226 0.1398 0.1381 0.1283
7-9 0.1231 0.1048 0.1046 0.1173 0.1139 0.1148
10-14 0.0780 0.0748 0.0771 0.0760 0.0754 0.0828
>14 0.0520 0.0533 0.0556 0.0463 0.0501 0.0476

Abs.diffs.a 0.2514 0.2468 0.1240 0.1122 0.1148
Andrews test 20.917 18.665 6.4407 4.6528 4.2915
P-Value 0.007 0.0167 0.5979 0.7939 0.8299

-(1/N) ∗Log-lik 2.6695 2.6687 2.6573 2.6577 2.6546
Number parameters 21 22 23 24 25
BIC 3214.1 3219.6 3212.8 3219.6 3222.4
CAIC 3235.1 3241.6 3235.8 3243.6 3247.4

TABLE 9: Andrews Test and Fit Criteria of the models for the data
set on household trips.
NOTES : (a) The absolute differences are computed as 1

n

∑J
j=1 | pj−

p̂j |.
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Regressor (X) TSM K=0 K=2

OwnVeh 0.5798 1.8032 1.3718
WorkSchl -0.1453 -0.0872 -0.0865
Hhmem 0.4357 0.4583 0.4467
DistoCbd -0.0776 -0.0179 -0.0187
AreaSize -0.0033 0.0149 0.0152
FullTime 0.1037 0.2224 0.2057
DistoNod 0.0438 0.0479 0.0425
RealInc 0.0161 0.0145 0.0237
Weekend -0.0369 -0.0223 -0.0228

TABLE 10: Estimates of the Mean Effects of the
regressors for the data on trip frequency.

admin
30




