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In this paper, we vindicate the relevance of the notion of success or satisfaction for the 

normative assessment of voting rules. We provide arguments in support of this view and 

emphasize the conceptual and analytical differences between this notion and that of 

decisiveness. The conclusions are illustrated in the case study provided by three different 

voting rules that have been proposed for the Council of Ministers of the European Union. 
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1 Introduction

When a set of individuals makes decisions by means of a voting rule that specifies for which

configurations of votes a proposal is accepted, the question of the ”power” or ”voting

power” that the voting rule confers to each voter arises. This issue is at the basis of

a considerable piece of literature, both theoretical and applied. In particular a variety

of ”power indices” intended to assess different variations of the notion of ”power” under

different conditions have been proposed1.

Since Shapley-Shubik’s (1954) interpretation of their index2 as the probability of be-

ing ”pivotal” or decisive in the make of a decision, the notion of decisiveness has de

facto been widely accepted by many scholars as the right formalization of the notion of

”voting power”. Banzhaf (1965) and Coleman (1971, 1986), in spite of their right criti-

cism of Shapley-Shubik’s index, also assume the notion of decisiveness at the basis of their

indices3. These indices, as well as others, have been often applied with normative purposes

to different situations from the real world, and have been the basis of different norma-

tive recommendations about the ”right” voting rule in a variety of actual committees of

representatives.

In spite of this dominant view, some authors have raised doubts as to the relevance

of this interpretation of ”power” as decisiveness, especially for normative purposes, sug-

gesting as more relevant to this effect the notion of ”satisfaction” or ”success”. That is,

focussing on the likelihood of having the result one voted for irrespective of whether one’s

vote was crucial for it or not. Rae (1969) is the first to propose a measure of success

for symmetric voting rules, and Dubey and Shapley (1979) extend this ”Rae index” to

arbitrary voting rules. Later, a few authors have paid attention to the notion of success,

as Brams and Lake (1978), Barry (1980) (from whom we take the term of ”success” that

we use here), Straffin, Davis, and Brams (1981), and more recently König and Bräuninger

(1998)4.

Nevertheless, as Benôit and Kornhauser (2002) remark, ”although a voter’s satisfac-

tion is arguably more important than a voter’s power, the former concept has received

comparatively little attention from game theorists.” Moreover, it must be said that the

1See, e.g., Felsenthal and Machover’s (1998) monography, or a recent synthesis in Laruelle and Valen-

ciano (2004a).
2Their index is the result of applying the Shapley (1953) value to the simple game that results from

the voting rule by assigning ’worth’ 1 to the ’winning coalitions’ and 0 to the losing ones.
3This is also the case with Penrose’s (1946) pioneer measure.
4In a recent paper Barberà and Jackson (2004), in a different framework, address the issue of the

”efficient” voting rule, for which, under certain assumptions, the aggregated expected utility of the voters

is maximized.
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two concepts have been often confused or at least insufficiently separated. Possibly, this is

partly due to the relationship pointed out by Dubey and Shapley (1979). They showed that

there exists an affine-linear relation between the ”Rae index” and the Banzhaf index5. This

no doubt has contributed to overlooking the question of success in the literature, where

success is often either ignored or considered a sort of appendix or secondary ingredient of

decisiveness, commonly considered as the substantial notion.

The purpose of this paper is to vindicate the relevance of the notion of success or

satisfaction for the assessment of voting rules with normative purposes, and emphasize the

conceptual difference between this notion and that of decisiveness. To this end we examine

some analytical relations and their generality, and some differences of consequence in

practical quantifications within the setting introduced in Laruelle and Valenciano (2004a).

The conclusions are illustrated in a case study: the three voting rules that have been

recently considered for EU’s Council of Ministers6: Nice’s voting rule, the one proposed by

the Convention and the one finally adopted at the European Council of June 2004. This

application is a small step towards filling a gap that seems to exist in the literature, where

most studies apply indices of decisiveness and hardly pay any attention to the question

of success. We show that the conclusions of a comparison between these three voting

rules based on the point of view of success may differ from the conclusions based on the

decisiveness point of view. We pay a special attention to what seems to be an important

concern of the Member States: the probability of being imposed a proposal to which they

oppose.

2 Success versus decisiveness: analytical discussion

2.1 Background and notation

We consider voting rules to make dichotomous choices (acceptance and rejection) by a

voting body. Let N = {1, 2, .., n} denote the set of seats. If any vote different from ’yes’

is assimilated into ’no’, there are 2n possible vote configurations. Each vote configuration

can be represented by the set S ⊆ N of ’yes’ voters. The cardinal of S will be denoted by

s. An N -voting rule is fully specified by the set W of winning vote configurations, that

is, those which lead to the acceptance of a proposal. We assume the set W satisfies the

following conditions: (i): The unanimous ’yes’ leads to the acceptance of the proposal:

5More precisely, they show this to be so for the ”raw” (i.e., Banzhaf index as defined originally) and a

natural extension of Rae measure of success for arbitray voting rules.
6Many studies have been devoted to the European Union Council of Ministers and in particular to

the Nice rule (see, for instance, Laruelle and Widgrén (1998), Felsenthal and Machover (2001), Lane and

Maeland (2002), Leech (2002), Laruelle, Mart́inez and Valenciano (2004)).
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N ∈W ; (ii): The unanimous ’no’ leads to the rejection of the proposal: ∅ /∈W ; (iii): If a
vote configuration is winning, then any other configuration containing it is also winning:

If S ∈W , then T ∈W for any T containing S; (iv): If one vote configuration leads to the

acceptance of a proposal, the opposite configuration will not: If S ∈W then N\S /∈W .
We assume that a set of (N -labelled) voters uses a voting ruleW as a ’take-it-or-leave-

it’ committee. That is, a committee that can only accept or reject proposals submitted

to it by some external agency7. As in Laruelle and Valenciano (2004a) we assume that a

second input describes the voting situation: a probability distribution over the set of all

possible vote configurations. The most natural choice for normative purposes seems to be

assuming all vote configurations being equally probable. Nevertheless, we introduce the

basic notions in terms of an arbitrary probability distribution, which can be interpreted

as a ”common prior” about the voters voting behavior. As we will see this provides a

wider perspective that allows for a better understanding of the concepts involved and

their relationships.

Let p denote a probability distribution over the set of vote configurations, and let p(S)

denote, for each S ⊆ N , the probability of S being the vote configuration. For a given
p and a given W, several features can be evaluated ex ante. First, the ease or difficulty

to pass proposals, can be evaluated by the probability of a proposal being accepted or

rejected, given by

α(W,p) := Prob (the proposal is accepted) =
S:i∈S

p(S), (1)

and ᾱ(W,p) :=Prob (the proposal is rejected) = 1− α(W,p).

A voter’s probability of being decisive (i.e., having the result one voted for and being

crucial for it) is given by

Φi(W,p) := Prob (i is decisive) =
S:i∈S∈W
S\i/∈W

p(S) +
S:i/∈S/∈W
S∪i∈W

p(S), (2)

while the likelihood of being successful (having the result one voted for) for a voter i is

given by

Ωi(W,p) := Prob (i is successful) =
S:i∈S∈W

p(S) +
S:i/∈S/∈W

p(S). (3)

In spite of the obvious difference of meaning between the notions of success and that

of decisiveness, in view of the dominant confusion alluded to in the introduction it seems

7This limitation implicit in the traditional approach to the assessment of voting situations based on the

sole voting rule is systematically minimized (if not completely ignored) in the power index literature. The

case of a ’bargaining commitee’ with the capacity to negotiate the outcome under a voting rule requires a

different treatment, and is addressed in Laruelle and Valenciano (2004b).
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convenient providing additional arguments for a clear distinction. To this end we examine

in the next subsections some relationships and their very particular character, as well as

some relevant differences.

We will deal also with the following ’interim’ evaluations (i.e., conditional expectations8

updated with the private information of each voter’s own vote) for which we use the

following notation:

Φi+i (W,p) : = Prob (i is decisive | i votes ’yes’) ,
Φi−i (W,p) : = Prob (i is decisive | i votes ’no’) ,
Ωi+i (W,p) : = Prob (i is successful | i votes ’yes’) ,
Ωi−i (W,p) : = Prob (i is successful | i votes ’no’) .

We will also denote

γi(p) := Prob (i votes ’yes’) =
S:i∈S

p(S). (4)

2.2 Some especial relationships

As commented in the introduction, the notion of decisiveness has been widely accepted as

the right formalization of the notion of ”voting power” or ”voting influence”. Whatever

the relevance of this interpretation of power, it can be argued that it seems more relevant

from the voters’ point of view the likelihood of having the result they voted for irrespective

of their being crucial for it or not.

Despite of the clear conceptual difference, the notions of success and decisiveness are

still largely conflated and seen as the two faces of a same coin. The confusion arises from

certain particular relations that hold exclusively for the special distribution of probability

that assigns the same probability to all vote configurations. Namely,

p∗(S) :=
1

2n
for all configuration S ⊆ N .

This distribution of probability is the underlying assumption of different power indices pro-

posed in the literature (see Laruelle and Valenciano, 2004a). This is the case of the Banzhaf

(1965) index (Bzi(W )), the Rae (1969) index (Raei(W )), Coleman’s (1971) indices to pre-

vent action (ColPi (W )) and to initiate action (Col
I
i (W )), and König-Brauninger’s (1998)

inclusiveness index (KBi(W )), respectively given by:

Bzi(W ) = Probp∗(i is decisive) = Φi(W,p
∗)

8The conditional probability Prob(A | B) = Prob(A∩B)
Prob(B)

only makes sense if Prob(B) = 0.
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Raei(W ) = Probp∗(i is successful) = Ωi(W,p
∗)

ColPi (W ) = Probp∗(i is decisive | the proposal is accepted)
ColIi (W ) = Probp∗(i is decisive | the proposal is rejected)
KBi(W ) = Probp∗(i is successful | the proposal is accepted).

Dubey and Shapley (1979) established the well-known relation between the Banzhaf

index and their extension of Rae’ index9

2Raei(W ) = 1 +Bzi(W ),

which10 in the current notation can be restated like this

2Ωi(W,p
∗) = 1 + Φi(W,p∗). (5)

It is also well-known that the Banzhaf index can also be expressed as the probability

of being decisive conditional to voter i voting ’yes’ or voting ’no’:

Bzi(W ) = Probp∗(i is decisive | i votes ’yes’)
= Probp∗(i is decisive | i votes ’no’).

In other terms

Φi(W,p
∗) = Φi+i (W,p

∗) = Φi−i (W,p
∗). (6)

Relation (5), though it does not justify the confusion, has no doubt contributed to

overlooking the notion of success or satisfaction, often considered as just a sort of appendix

or secondary ingredient of decisiveness because of it. According to Dubey and Shapley

(1979, p. 124): ”It was not noticed for several years that this ’Rae index’ is nothing but

the Banzhaf index in disguise.” More recently, Hosli and Machover (2004) commenting

about the ”likelihood of a member’s vote being critical and the likelihood of that member

being successful in securing desired outcomes”, claim that ”as a matter of fact these two

concepts of voting power, far from being opposed to each other, are virtually identical, and

differ only in using a different scale of measurement.” But as we argue in 2.3, equation

(5), though correct, has been considerably misleading.

9Note that we have divided Dubey and Shapley’s equation (53) by 2n.
10Much more recently, Lane and Maeland (2000) also show a similar relation between König and

Bräuninger’s (1998) ”inclusiveness” index and Coleman’s (1971) ”power to prevent action”. Namely,

2KBi(W ) = 1 + Col
P
i (W ).

This is equation (28) in Lane and Maeland (2000), though they did not seem to be aware that what they

define as the individual probability of blocking is Coleman’s index to prevent action.
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On the other hand, relation (6) conveys the idea that there is no difference between

the ”approval power” and the ”blocking power”. As Straffin (1982 p. 267-268) puts it:

”(..) we mentioned ’blocking coalitions’ which could prevent a proposal from passing, even

though they might not be able themselves to pass a proposal. This would suggest that

in addition to studying ’approval power’ as we have here, we should also study ’blocking

power’.” But he concludes that the Banzhaf (or Shapley-Shubik’s) index can serve to

”effectively measure both kinds of power.”11 Again in this respect, as will be discussed in

2.3, equation (6) has also been a source of misunderstanding. Moreover, along with (5),

relation (6) may induce a somewhat unconscious but definitely wrong conclusion: that a

relation similar to (6) holds for success. But as we will presently see this is false.

2.3 Some relevant differences

In order to achieve a deeper understanding of the meaning of the relations mentioned

in 2.2, we examine the possibility of generalizing them within the setting given in 2.1.

As we will see, these mathematical relations do not hold in general, but arise only due

to the extreme symmetry of the particular probability distribution p∗. This provides

additional arguments in support of a clear differentiation between the notions of success

and decisiveness.

To this purpose it will be of use the only relation that, apart from the evident

Φi(W,p) ≤ Ωi(W,p), is really a genuine and general relationship between these two notions.
This is Barry’s (1980) equation: ’Success’ = ’Decisiveness’ + ’Luck,’ which remains valid

in a much more precise and general version. Namely, for any rule W and any arbitrary p,

we have

Ωi(W,p) = Φi(W,p) + Λi(W,p), (7)

where Λi(W,p) denotes Barry’s ”luck” (though perhaps a more suitable term should be

”irrelevance”, or strictly speaking ”success without decisiveness”), given by

Λi(W,p) := Prob (i is successful and not decisive) .

If there existed a linear relation extending (5), success and decisiveness would just be

two faces of a same coin. But in general,

2Ωi(W,p) = 1 + Φi(W,p).

Moreover relation (5) is exceptional in the following sense: it holds only when all vote

configurations are equally probable, as the following proposition shows.

11Unlike Φi+i (W,p
∗) and Φi−i (W,p

∗), Coleman’s ”power to initiate action” and ”power to prevent action”,

though based on the notion of decisiveness, differ. For this reason Coleman’s indices have been sometimes

used to distinguish what is indistinguishable from the interim a priori decisiveness point of view.
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Proposition 1 Relation 2Ωi(W,p) = 1+Φi(W,p) holds for every W if and only if p = p∗.

Proof. Sufficiency12: For allW , all p and all i, we have from the generalization of Barry’s

equation (7),

Ωi(W,p) = Φi(W,p) + Λi(W,p)

= Φi(W,p) +
S:i∈S∈W
S\i∈W

p(S) +
S:i/∈S/∈W
S∪i/∈W

p(S)

= Φi(W,p) +
T :i/∈T
T∈W

p(T ∪ i) +
T :i∈T
T /∈W

p(T \ i)

= Φi(W,p) +
T∈W

p(T ∪ i))−
T :i∈T
T∈W

p(T ∪ i) +
T /∈W

p(T \ i)−
T :i/∈T
T /∈W

p(T \ i).

For the distribution p = p∗, as p∗(T ∪ i) = p∗(T ) = p∗(T \ i) = 1/2n, the last equation can
be re-written as:

Ωi(W,p
∗) = Φi(W,p

∗) +
T∈W

1/2n −
T :i∈T
T∈W

1/2n +
T /∈W

1/2n −
T :i/∈T
T /∈W

1/2n

= Φi(W,p
∗) + α(W,p∗)− Ωi(W,p∗) + 1− α(W,p∗),

which yields (5).

Necessity: Assume 2Ωi(W,p) = 1 + Φi(W,p) holds for every W . We will prove that

for any T of any size t (1 ≤ t ≤ n) it holds p(T ) = p(T \ i). We will proceed by inverse
induction on the size t. Let W = {N} . In this case

Ωi(W,p) = p(N) +
S:i/∈S

p(S) and Φi(W,p) = p(N) + p(N \ i).

Thus in this case the assumed relation implies

2p(N) + 2
S:i/∈S

p(S) = 1 + p(N) + p(N \ i). (8)

Now consider W = {N,N \ i}. In this case we have

Ωi(W,p) = p(N) +
S:i/∈S

p(S)− p(N \ i) and Φi(W,p) = 0,

and substituting in the assumed equality yields

2p(N) + 2
S:i/∈S

p(S) = 1 + 2p(N \ i). (9)

12The sufficiency of this condition is well known, but we prove it in order to see explicitly what role

plays the assumption p = p∗.
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From (8) and (9) we obtain p(N) = p(N \ i) and

S:i/∈S
p(S) =

1

2
. (10)

Thus the claim is proved for t = n. Now assume that p(S) = p for any S of size s ≥ t, for
some t (t ≥ 1). We show that for any T of size t it holds p(T \ i) = p. Fix any such T and
consider W = {S : T ⊆ S}. For all i ∈ T , we have

Ωi(W,p) =
S:T⊆S

p(S) +
S:i/∈S

p(S) and Φi(W,p) =
S:T⊆S

p(S) +
S:T\i⊆S
i/∈S

p(S).

Then the assumed relation along with (10) yields

S:T⊆S
p(S) =

S:T\i⊆S
i/∈S

p(S).

Which, using the induction assumption (p(S) = p for all S such that s ≥ t), becomes

n− t
0

+ ...+
n− t
n− t p = p(T \ i) + n− t

1
+ ...+

n− t
n− t p.

Therefore p = p(T \ i). Thus the claim is proved and consequently p(S) = 1
2n , for all

S ⊆ N .
A similar result holds for the following special relationship between the interim variants

of success and decisiveness13. But note that in this case, the relation is not linear affine

any more, but the probability to pass a proposal enters the relation.

Proposition 2 The following relations

Ωi+i (W,p) = α(W,p) +
1

2
Φi+i (W,p)

and

Ωi−i (W,p) = ᾱ(W,p) +
1

2
Φi−i (W,p),

hold for every W if and only if p = p∗.

Proof. Sufficiency: For all W , all p and all i, we have

Ωi+i (W,p) =
1

γi(p) S:i∈S∈W
p(S) =

1

γi(p)
(
S:i∈S∈W
S\i/∈W

p(S) +
S:i∈S∈W
S\i∈W

p(S))

13The same can be said about the relation between König-Brauninger index and the Coleman’ power to

prevent action alluded to in footnote (9).
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= Φi+i (W,p) +
1

γi(p) T :i/∈T∈W
p(T ∪ i)

= Φi+i (W,p) +
1

γi(p)
(
T :T∈W

p(T ∪ i)−
T :i∈T∈W

p(T ∪ i)).

Now for p = p∗, as p∗(S) = 1/2n for all S, and γi(p
∗) = 1/2 for all i

Ωi+i (W,p
∗) = Φi+i (W,p

∗) +
1

1/2
(
T :T∈W

p∗(T )−
T :i∈T∈W

p∗(T )

= Φi+i (W,p
∗) + 2α(W,p∗)− Ωi+i (W,p∗).

That is,

Ωi+i (W,p
∗) = α(W,p∗) +

1

2
Φi+i (W,p

∗).

The other equality is obtained similarly.

Necessity: Assume that for a given p both relations hold for any rule W . Then,

taking into account that both Ωi(W,p) and Φi(W,p), are the averages of their respective

interim variants, by multiplying both equations by 1/2 and adding them up, equation

2Ωi(W,p) = 1+Φi(W,p) is obtained. But, in view of Proposition 1, this implies p = p
∗.

In sum: relation (5) between Rae’s and Banzhaf’s indices do not extend to their natural

extensions for arbitrary priors different from p∗. In other terms, it has more to do with the

very especial character of this probability distribution than with any general relationship

between these two notions.

Now we turn our attention to relation (6), that provides three alternative interpreta-

tions of the Banzhaf index, either as the unconditional probability of being decisive or as

the interim evaluations (conditional to a voter voting ’no’ or voting ’yes’, respectively)

of this probability. A first natural question that arises is whether relation (6) can be

generalized to any p. The answer is negative, as in general,

Φi(W,p) = Φ
i+
i (W,p) = Φ

i−
i (W,p).

In fact, as proved in Laruelle and Valenciano (2004a), relation (6) holds only if every voter

votes ’yes’ or ’no’ with a certain probability independently from the others14.

In view of (5) the question of whether a similar relation to (6) holds for success, at

least for p∗ or some other special distribution arises. The answer again is negative. In

general,

Ωi(W,p
∗) = Ωi+i (W,p

∗) = Ωi−i (W,p
∗).

14Therefore, in particular the relation does not hold for the p for which Φ(W,p) becomes the Shapley-

Shubik index. Or the other way round, the Shapley-Shubik index can be interpreted also as interim eval-

uation of the probability of being decisive (either as Φi+i (W,p) or Φ
i−
i (W, p)), but for different probability

distributions.
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A voter’s probability of getting a proposal accepted when the voter favors the proposal may

differ from the probability of getting the proposal rejected when the voter votes against

it, even under the assumption that all voting configurations are equiprobable.

Example: For the unanimity rule W = {N}, it holds

Ωi+i (W,p
∗) =

1

2n−1
, while Ωi−i (W,p

∗) = 1.

This perfectly reflects the intuition that under the majority rule, the likelihood of

getting a proposal accepted when a given voter favors the proposal will be quite small (the

larger the number of seats, the smaller the probability), while the proposal will surely be

rejected whenever a voter votes against it, no matter the number of seats (any voter has

a veto right).

More generally, the three evaluations of success coincide only for the trivial case in

which all voters vote always unanimously, as the following proposition shows.

Proposition 3 The relation Ωi(W,p) = Ω
i+
i (W,p) = Ω

i−
i (W,p) holds for any voting rule

if and only if all voters vote always unanimously. That is, with a certain probability γ

(0 < γ < 1) all voters vote ’yes’, and with probability 1− γ all vote ’no’.

Proof. First note that the two conditional probabilities make sense only if the case

where any voter i votes ’yes’ (or ’no’) with probability zero is excluded. Thus, we assume

0 < γi(p) < 1, for all i. Assume that Ωi(W,p) = Ω
i+
i (W,p) holds for every W . Let

W = {N} . In this case

Ωi(W,p) = p(N) +
S:i/∈S

p(S) and Ωi+i (W,p) =
p(N)

γi(p)
.

This yields that necessarily p(N) = γi(p) or γi(p) = 1 But as γi(p) < 1, it must be

p(N) = γ, and p(∅) = 1−γ, for some γ (0 < γ < 1).On the other hand, it is straightforward

that for this trivial voting behavior the equality of the three evaluations holds.

This is a relevant difference between success and decisiveness, as it is often the case

that voters (or the analyst) are differently concerned with the prospect of getting the

result they want depending on which is the sense of the decision: acceptance or rejection.

Especially when rejection means keeping the status quo there may exist a bias in either

sense, giving priority to one or another form of success. Thus the assessments based on

either interim measures of success may differ not only at the quantitative level. They may

rank differently voting rules, which may be relevant for the comparison of voting rules, as

will be illustrated in the EU case study in section 3. This nuance is completely lost by

Banzhaf’s decisiveness index.
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3 Case study: Three voting rules for the EU Council

A relevant case study that has been once and again approached from the power indices

point of view is the European Council of Ministers. Most decisiveness indices have been

applied (see, for instance, Hosli (1993), Widgrén (1994), or Brückner and Peters (1996)),

but to the best of our knowledge the only application of an index of success is by König

and Bräuninger (1998). Practitioners have often raised objections about the power indices

approach. Part of this criticism is right (e.g., some applications of some power indices lack

any clear sense), other times is based on a misinterpretation of the meaning of this ap-

proach, and concerns the assumption that all vote configurations have the same probability

(p = p∗)15, which is a natural assumption from a normative point of view when the goal

is to assess the voting rule itself. But practitioners have also pointed out a more serious

criticism that, it has to be admitted, has been usually ignored by scholars in spite of its

serious motives: why to pay so much attention to decisiveness, where success seems a more

important issue for the involved voters? As Moberg, in a comment on the Banzhaf index

and the Intergovernmental Conference of Nice, puts it: ”(...) it is very doubtful that this

concept of power is relevant in EU politics. There is hardly any indication that Member

States were actually seeking power in that sense in IGC 2000. Instead they were trying to

make sure that they could safeguard their essential national interests, together with other

like-minded countries, whether they had a pivotal position or not.” (Moberg, 2002, p.

261). He also distinguishes between ”blocking power” (”it means a country contribution

to a blocking minority”) and ”partner in qualified majorities”. Also, in a recent paper,

Hosli and Machover (2004) recognize that too little attention has been paid to blocking

power in its own right.

This line of thought seems to suggest that attention should shift from decisiveness to

other issues involved in a voting situation. Namely, the probability of a proposal being

accepted (α), the probability of a proposal being accepted given that voter i votes in its

favor (Ωi+i ), and the probability of a proposal being rejected given that voter i votes against

it (Ωi−i ). Member States that are worried for their sovereignty will surely be interested in

minimizing the probability of being imposed a proposal that they reject, that is to say,

1 − Ωi−i , or equivalently, to maximizing Ωi−i . More pro-integration members may value
more the probability of a proposal being accepted α, and in particular having the proposal

accepted once they vote in its favor, that is, maximizing Ωi+i may also matter.

Here we compare three rules that have been proposed for the enlarged Council of 25

15For instance, Moberg (2002, p. 261): ”the vast majority of the millions of theoretically conceivable

coalitions are highly unlikely.”
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Member States, which are, along with their populations16 (popi, in thousands): Germany

(82165), United Kingdom (59623), France (58747), Italy (57680), Spain (39442), Poland

(38654), Netherlands (15864), Greece (10546), Czech Republic (10278), Belgium (10239),

Hungary (10043), Portugal (9998), Sweden (8861), Austria(8092), Slovakia (5399), Den-

mark (5330), Finland (5171), Ireland (3775), Lithuania (3699), Latvia (2424), Slovenia

(1988), Estonia (1439), Cyprus (755), Luxemburg (436), and Malta (380).

The first rule that we consider is the Nice rule (WNi), a rule based on the re-weighting

proposed in the Intergovernmental Conference that concluded in Nice, December 2000.

The second rule (the Convention rule (WCv)) was suggested by the Convention set up

after the summit of Laeken in 2001. The third rule (the Constitution rule (WCs)) is the

rule that was finally adopted in the recent European Council in Brussels.

The first two voting rules require the support of two majorities in order to pass a

decision. In both cases the first majority is a simple majority of Member States. The

second is a weighted majority. In the Nice rule, the weights are not proportional to the

populations as it is the case with the Convention rule. Formally, the three rules are

respectively:

1. The Nice rule:17

WNi = S ⊆ N :
i∈S
wi ≥ 232 and s ≥ 13 ,

where the vector of weight is:

w = (29, 29, 29, 29, 27, 27, 13, 12, 12, 12, 12, 12, 10, 10, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 3).

2. The Convention rule:

WCv = S ⊆ N :
i∈S
popi ≥ 0.60

i∈N
popi and s ≥ 13 .

3. The Constitution rule:

WCs = S ⊆ N :
i∈S
popi ≥ 0.65

i∈N
popi and s ≥ 15 or s ≥ 22 .

16Source EUROSTAT (2000), quoted from Galloway (2001).
17Here we ignore the ”population safety net” that stipulates: ”When a decision is to be adopted by the

Council by a qualified majority, a member of the Council may request verification that the Member States

constituting the qualified majority represent at least 62% of the total population of the Union. If that

condition is shown not to have been met, the decision in question shall not be adopted.” In fact the results

that we obtain with or without this clause differ very little.
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For normative purposes, deliberately ignoring any information beyond the rule itself,

the natural choice of p to compare the three rules is p∗. This particular distribution of

probability will allow us to make quantitative comparisons.

First, let us consider the ease (respectively, difficulty) of accepting proposal. Com-

puting the probability of a proposal being accepted (respectively, rejected). That is,

computing α(W,p∗) (respectively, ᾱ(W,p∗) := 1−α(W,p∗)) for the three rules, we obtain:

α(WCv, p∗) = 0.225, ᾱ(WCv, p∗) = 0.775,

α(WCs, p∗) = 0.101, ᾱ(WCs, p∗) = 0.899,

α(WNi, p∗) = 0.036, ᾱ(WNi, p∗) = 0.964.

It means that with the rule proposed in Nice it would be a priori extremely difficult to pass

proposals. The rule proposed by the Convention substantially increases the probability

of passing a proposal (or reduces the probability of a proposal being rejected). The

probability of a proposal being rejected under the Constitution rule is larger than under

the Convention rule but smaller than under the Nice rule. The probabilities of success

for every country, unconditional and interim in both senses, are given in Table 1. The

following comments can be made on this table. Starting with the Nice rule, a first comment

concerns the probability of a proposal being rejected given that a certain country votes

against it (Ωi−i ): this probability is strikingly high for France, Germany, Italy, Poland,

Spain and UK (more than 0.99). It means that the rule gives a great veto power to these

big states. Even small states have a very high probability of having a proposal rejected

if they vote against it (nearly 0.97 for the smallest state, Malta). The rule proposed by

the Convention reduces this probability for all states (the range of probabilities is between

0.93 -for Germany- and 0.79 -for Malta). The probabilities that are obtained with the

Constitution rule are intermediate between the two above mentioned rules. We have that

for any state i:

Ωi−i (W
Cv, p∗) < Ωi−i (W

Cs, p∗) < Ωi−i (W
Ni, p∗).

The counterpart is that with the Nice rule, the probability of a proposal being accepted

given that a state votes for it (Ωi+i ) is very small for all states (for the largest state,

Germany, this probability is 0.06). The probability of having a proposal accepted given

that a state votes for it increases substantially (for instance, for Germany this probability

passes from 0.06 to 0.26). The probabilities that are obtained with the Constitution rule

are again intermediate between the two above mentioned rules. We have for any state i:

Ωi+i (W
Cv, p∗) > Ωi+i (W

Cs, p∗) > Ωi+i (W
Ni, p∗).

The probability of getting the outcome (acceptance or rejection) one votes for with the

Nice rule is around 0.50 (between 0.55 for Germany and 0.50 for Malta). This probability
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is larger for the Constitution rule than with the Nice rule, and the largest under the

Convention rule. That is, for any state i:

Ωi(W
Cv, p∗) > Ωi(WCs, p∗) > Ωi(WNi, p∗).

In sum, the results are the following. Among the three rules, the Convention rule is the

one that confers all the states the largest probability of getting the outcome one votes for.

The Convention rule is also the rule that yields the largest probability of a proposal being

accepted. This is however done at the expense of being more often imposed proposals

one does not favor. In other terms, if the criterion that prevails is ”keeping national

sovereignty” and not being imposed a proposal one does not want, then the best rule

of the three is the Nice rule. In any case, contrary to what is sometimes claimed, the

choice of the rule is not a zero-sum game between large and small states. It is more a

problem of the choice of the criterion. Those who are more in favor of further integration

will surely prefer the Convention rule (for its larger probability of passing proposals in

the different senses considered), while those who are mainly worried about keeping the

national sovereignty will prefer the Nice rule.

Finally, let us briefly compare these results with the ones obtained from the point of

view of a priori decisiveness, as evaluated by the Banzhaf index18. First, as implied by

(5), the ranking between the rules is the same as the one obtained for the probability of

success. So for any state i we have:

Φi(W
Cv, p∗) > Φi(WCs, p∗) > Φi(WNi, p∗).

That is, the probability of being decisive would be the largest under the Convention rule,

and the smallest under the Nice rule. But note that for any voting rule, as pointed out

in section 2, we have equality (6) for any state. In other words the assessment based

on decisiveness is insensitive to the differences between the interim evaluations which are

conspicuous from the point of view of success and no doubt matter for all State Members.

4 Conclusion

A first conclusion is the clear conceptual and analytical distinction between the notions

of success and that of decisiveness. It has been shown that, in addition to the obvious

18It may be worth recalling that the normalization of the Banzhaf index (still common in the literature)

completely distorts the conclusions. By normalizing the Banzhaf index by dividing each component by the

sum of the components, the probabilistic interpretation is lost. In addition to that it makes the comparison

of the rules meaningless. It may be that a state’s probability of being decisive increases while its percentage

of the sum of probabilities decreases. The normalization forces a comparison in terms of a zero-sum game,

in the sense that comparing percentages it is impossible for all percentages to increase or to decrease.
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difference of meaning, these two concepts are independent in the sense that neither of

them can be derived from the other in general, and their ”interim” conditional variations

behave differently. While the unconditional and interims variants coincide for decisiveness

under certain conditions on the prior p (met in particular for the usual normative prob-

ability distribution p∗), this is not so for the corresponding evaluations of success. The

relationship between Banzhaf’s and Rae’s measures established by Dubey and Shapley,

whose very especial character has been shown, may partly explain but never justify the

overlooking of success in the literature. Even if one only cares about the normative point

of view provided by p∗, for with an affine relation holds, it remains the question of which

is the most relevant notion.

Perhaps the fascination raised by the notion of ”power” has caused a distortion of focus

in the field. It can be argued that decisiveness seems intuitively closer to the notion of

”power” than that of success, but this does not grant greater credit to recommendations

based on this interpretation. In other words, the relevant question is not what notion is

closer to the intuitive idea of ”power”, but what is a more adequate basis for normative

recommendations. And as a base for normative recommendations (e.g., in connection with

important issues, as that of the most adequate voting rule in a committee of representa-

tives) it seems more relevant the notion of success than that of decisiveness. If this is taken

seriously it seems necessary a revision of the recommendations that have been made so far

based on the notion of power as likelihood of being decisive. In this sense the application

to the EU Council is a first step in this direction.
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Ωi+i (W,p
∗) Ωi−i (W,p

∗) Ωi(W,p
∗)

Country WNi WCs WCv WNi WCs WCv WNi WCs WCv

Austria 0.046 0.125 0.255 0.975 0.922 0.806 0.510 0.524 0.530

Belgium 0.048 0.126 0.258 0.977 0.924 0.808 0.513 0.525 0.533

Cyprus 0.040 0.120 0.244 0.968 0.918 0.795 0.504 0.519 0.519

Czech 0.048 0.126 0.258 0.977 0.924 0.809 0.513 0.525 0.533

Denmark 0.043 0.123 0.251 0.972 0.921 0.801 0.507 0.522 0.526

Estonia 0.040 0.121 0.245 0.968 0.918 0.796 0.504 0.519 0.520

Finland 0.043 0.123 0.251 0.972 0.921 0.801 0.507 0.522 0.526

France 0.063 0.159 0.334 0.992 0.956 0.884 0.528 0.558 0.609

Germany 0.063 0.180 0.379 0.992 0.978 0.930 0.528 0.579 0.654

Greece 0.048 0.126 0.258 0.977 0.924 0.809 0.513 0.525 0.534

Hungary 0.048 0.126 0.258 0.977 0.924 0.808 0.513 0.525 0.533

Ireland 0.043 0.122 0.249 0.972 0.920 0.799 0.507 0.521 0.524

Italy 0.063 0.158 0.332 0.992 0.956 0.883 0.528 0.557 0.607

Latvia 0.040 0.121 0.246 0.968 0.919 0.797 0.504 0.520 0.522

Lithuania 0.043 0.122 0.248 0.972 0.920 0.799 0.507 0.521 0.524

Luxemburg 0.040 0.120 0.243 0.968 0.918 0.794 0.504 0.519 0.519

Malta 0.039 0.120 0.243 0.967 0.918 0.794 0.503 0.519 0.518

Netherlands 0.050 0.129 0.266 0.978 0.927 0.817 0.514 0.528 0.542

Poland 0.062 0.144 0.303 0.990 0.941 0.854 0.526 0.543 0.578

Portugal 0.048 0.126 0.258 0.977 0.924 0.808 0.513 0.525 0.533

Slovakia 0.043 0.123 0.251 0.972 0.921 0.802 0.507 0.522 0.526

Slovenia 0.040 0.121 0.246 0.968 0.919 0.796 0.504 0.520 0.521

Spain 0.062 0.144 0.304 0.990 0.942 0.854 0.526 0.543 0.579

Sweden 0.046 0.125 0.256 0.975 0.923 0.807 0.510 0.524 0.531

U.K. 0.063 0.159 0.335 0.992 0.957 0.886 0.528 0.558 0.610

Table 1: Probabilities of success in the EU-25 countries under the three rules.
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