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ABSTRACT 
 
 

This paper addresses the following issue: If a set of agents bargain on a set of feasible 

alternatives 'in the shadow' of a voting rule, that is, any agreement can be enforced if a 

'winning coalition' supports it, what general agreements are likely to arise? In other words: 

What influence can the voting rule used to settle (possibly non-unanimous) agreements have 

on the outcome of negotiations? To give an answer we model the situation as an extension of 

the Nash bargaining problem in which an arbitrary voting rule replaces unanimity to settle 

agreements by n players. This provides a setting in which a natural extension of Nash's 

solution is obtained axiomatically.  Two extensions admitting randomization on voting rules 

based on two informational scenarios are considered. 
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1 introduction

Nash (1950) proposes and characterizes axiomatically a cooperative 'solution' to the bar-

gaining problem, in the spirit of von Neumann and Morgenstern's (1944) notion of 'value'

of a zero-sum two-person game, as a rational expectation of the 'amount of satisfaction'

or expected utility payo® of a 'highly rational' player engaging in a bargaining situation

with another rational player. In Shapley (1953) a similar notion of value for transferable

utility (TU) games is also proposed and characterized. Since then, several attempts to

obtain a satisfactory 'solution' or a general notion of 'value' in the more general non-

transferable utility (NTU) context have been made by di®erent authors. Harsanyi (1959,

1963), Shapley (1969), Kalai and Samet (1985), Maschler and Owen (1989, 1992) (see also

Hart and Mas-Colell (1996)) have provided di®erent proposals1. As bargaining problems

are two-person NTU games, and TU games are a particular case of the NTU model, the

way of proceeding in all cases is to look for a notion of value for NTU games that coin-

cides with Nash's solution and Shapley's value when restricted to bargaining problems and

TU games, respectively. As is well known these extensions di®er, and there are no clear

grounds for claiming superiority for any one of them over the others. Perhaps there is no

de¯nite answer to this dispute. The reason for this might be an 'excess of abstraction' in

the NTU model itself. The NTU model consists basically of a feasible set of utility vectors

for each particular coalition. That is all. This seems to be enough in the simpler models

that serve as term of reference: bargaining problems, where coalitions play no role, and

TU games, where the feasible sets (or the con¯guration of players' preferences) are very

particular. But in the general case the minimalistic NTU model seems too general to be

sure ground for providing su±cient intuition.

The results presented in this paper appear to support this view. Nevertheless the

original motivation of this work lies elsewhere. We are interested in understanding the

in°uence that the voting rule used to settle agreements by a set of bargainers can have

on the outcome of negotiations. More precisely (and this is exactly what this paper is

about), if a set of agents bargain on a set of feasible alternatives 'in the shadow' of a

voting rule, that is, any agreement can be enforced if a 'winning coalition' supports it,

what general agreements are likely to arise? Or, put into Nash's classical terms, what

agreements can a rational agent expect to arise when faced with the prospect of engaging

in such a situation? The importance of the issue is clear in many contexts. It is often the

case in a committee that uses a voting rule to make decisions that the ¯nal vote is merely

the formal settlement of a bargaining process in which the issue to be voted upon has been

adjusted to gain the acceptance of all members. It seems intuitively obvious that in such

1See McLean (2002) for a recent review.
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cases the voting rule by means of which agreements are settled conditions the outcome of

negotiations.

With this motivation in mind and in the spirit common to the classical results of von

Neumann-Morgenstern, of Nash and of Shapley alluded to above, in this paper we explore

an extension of Nash's (1950) model of a bargaining problem. We see Nash's original model

as consisting of two ingredients, a set of (two) players with von Neumann-Morgenstern

(1944) preferences over a set of feasible agreements, and a voting procedure (unanimity)

to settle agreements. Thus the kind of situation we are interested in can be described by a

natural generalization of this model (and its traditional extension to n players), by consid-

ering arbitrary voting rules2 instead of unanimity. In this two-ingredient setting, on similar

grounds to those in Nash (1950) or Shapley (1953), axioms such as e±ciency, anonymity,

independence of irrelevant alternatives, invariance w.r.t. positive a±ne transformations

and null-player can be adapted, keeping their meaning and motivation. Assuming these

conditions entails a signi¯cant narrowing of the class of admissible answers or 'solutions',

which is identi¯ed. It is shown that in fact all that remains is to settle the choice (within

narrow limits) of an answer for the same issue in the particular case in which the con¯gura-

tion of preferences is TU-like. Then, in order to provide arguments in support of a choice,

the class of problems under consideration is broadened by admitting random voting rules.

The results in the deterministic case are consistently extended to this wider domain in

two ways corresponding to two di®erent informational scenarios. It is then shown that the

two extensions are incompatible, but there exists a unique solution in the deterministic

domain that admits extensions in either sense which coincide for TU-bargaining problems.

The rest of the paper is organized as follows. In Section 2 the model is precisely

formulated. In Section 3 the natural extension of Nash's and some of Shapley's axioms

in the more general framework considered here are provided. Section 4 contains the ¯rst

characterizing results, along with the relationships with Nash's solution and the Shapley

value. The case in which random voting rules are admitted is considered in Section 5.

Section 6 contains some remarks about the axioms, while the meaning of the results is

discussed in Section 7 along with some lines of further research.

2 bargaining in the shadow of a voting rule

We are concerned with a situation in which a set of agents bargain on a set of feasible

alternatives 'in the shadow' of a voting procedure. That is, any agreement can be enforced

2A setting including both a voting rule and a set of feasible agreements has already been considered by

some authors but, as far as we know, with di®erent purposes and within a completely di®erent approach

concerned with social choice issues (see Peleg (2002) for a recent overview).
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if a 'winning coalition' supports it. The set N = f1; :::; ng will label the seats of the

decision procedure by means of which agreements are to be settled. As only yes/no voting

is considered, a vote con¯guration can be represented by the set of 'yes'-voters. So, any

S µ N represents the result of a vote in which players occupying seats in S voted 'yes'

and those in NnS voted 'no'. An N-voting rule is speci¯ed by a set W µ 2N of winning

(i.e., which would lead to passing a decision) vote con¯gurations such that (i) N 2 W ;

(ii): ; =2 W ; (iii) If S 2 W , then T 2 W for any T containing S; and (iv) If S 2 W then

NnS =2 W . W denotes the set of all such N-voting rules. For voting rule W , M(W ) denotes

the set of minimal winning con¯gurations, i.e., those that do not contain any other winning

con¯guration. For any S 2 M(W ) (S 6= N), W ¤
S denotes the voting rule that results from

W by eliminating S from the set of winning con¯gurations, that is, W ¤
S := W n fSg. For

any permutation ¼:N ! N , ¼W denotes the voting rule ¼W := f¼(S) : S 2 Wg. A voting

rule W is symmetric if ¼W = W , for any permutation ¼.

If a set of n voters or players uses an N-voting rule they are labelled by the seats in

N that they occupy, and we refer to the subset of players denoted by a subset S µ N as

coalition S. Thus, depending on the context any S µ N will be referred to either as a

vote con¯guration (of seats) or as a coalition (of players). We will also speak of winning

coalitions for a given N-rule, with an obvious meaning. A seat/player i 2 N is said to be

a null seat/player in W if, for any coalition S, S 2 W if and only if Sn fig 2 W .

We assume also that a set of n (N-labelled) players makes decisions by means of rule W

in the following sense. They can reach any alternative within a set A, as well as any lottery

over them, as long as: (i) a winning coalition supports it, and (ii) no player is imposed

upon an agreement worse than the status quo, denoted a; where all players will remain

if no winning coalition supports any agreement. It is also assumed that every player has

expected utility (von Neumann and Morgenstern, 1944) (vNM) preferences over this set of

lotteries, so that the situation can be summarized µa la Nash in utility terms by a feasible set

of utility vectors D, together with the particular vector d associated with the disagreement

or status quo, as a summary of the situation concerning the players' decision. Accepting

this simpli¯cation, the situation can be summarized by a pair (B; W ), where B = (D; d) is

a classical n-person bargaining problem, and W is the N-voting rule to enforce agreements.

In accordance with this interpretation we assume that Dd := fx 2 D : x ¸ dg3 is bounded,

and D is a closed, convex and comprehensive (i.e., x · y 2 D ) x 2 D) set containing

d, such that there exists some x 2 D s.t. x > d. B denotes the set of all such bargaining

problems. For any permutation ¼ : N ! N; ¼B := (¼(D); ¼(d)) will denote the bargaining

problem that results from B by ¼-permutation of its coordinates, so that for any x 2 RN ,

3We will write for any x; y 2 RN , x · y (x < y) if xi · yi (xi < yi) for all i = 1; ::; n.
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¼(x) denotes the vector in RN s.t. ¼(x)¼(i) = xi: A bargaining problem B is symmetric if

¼B = B; for any permutation ¼.

Thus, in this setting we are concerned with pairs (B; W ) 2 B £ W, each of which,

consistently with the interpretation that accompanied its introduction, could properly be

referred to as a bargaining problem B under rule W; or for short just a problem (B; W ).

Before proceeding with the search for a 'value' or a 'solution' in this setting, let us ¯rst

see how the model ¯ts into the general NTU framework and how the classical bargaining

problems and simple TU games ¯t into this model. Let prS : RN ! RS denote the natural

S-projection for S µ N , and let xS := prS(x) for any x 2 RN . On obvious grounds we

can associate the NTU game (N; V(B;W )) with every (B; W ) 2 B £ W, given by

V(B;W )(S) :=

(
prS(

©
x 2 D : xNnS = dNnS

ª
) if S 2 W;

prS(ch(d)) if S =2 W ,

where B = (D; d), and ch(d) denotes the comprehensive hull of fdg : For each S µ N;

V(B;W )(S) is the closed, convex and comprehensive subset of RS containing all feasible

utility vectors for coalition S: The n-person classical bargaining problem corresponds

to the case in which W is the unanimity rule W = fNg, with N as the only winning

coalition. While when the bargaining ingredient in the generalized model is the bar-

gaining problem ¤ := (¢; 0), where ¢ :=
n

x 2 R
_N :

P
i2N xi · 1

o
, the associated NTU

game V(¤;W ) is equivalent to a simple TU game. We will refer to ¤ = (¢; 0) as the

(normalized) TU-bargaining problem. We reserve the notation ¢N for the N-simplex

¢N =
n

x 2 [0; 1]N :
P

i2N xi = 1
o

: Note that in preferences terms the situation behind

¤ is the following. There is no feasible agreement which Pareto-dominates any lottery

over agreements bi (i = 1; 2; ::; n), where bi denotes an agreement which is optimal for

player i and indi®erent to the status quo a for the other players (i.e., ui(b
i) = 1, and

uj(b
i) = u(a) = 0 for j 6= i; for suitably chosen utilities). In this case V(¤;W ) is equivalent

to the simple TU game representing the rule vW , given by

vW (S) :=

(
1 if S 2 W;

0 if S =2 W .

Thus the family of associated NTU games
©

(N; V(B;W )) : (B; W ) 2 B £ Wª
properly

contains all classical bargaining problems and all simple superadditive games4. Neverthe-

less, in spite of the possibility of embedding the family of problems under consideration

into a subclass of NTU games, we will deal with the model in terms of its constituent

elements, B and W .

4A TU game v : 2N ! R is superadditive if v(S [ T ) ¸ v(S) + v(T ); for all disjoint S; T µ N .
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3 rationality conditions for a 'value' or a 'solution'

In the class of situations described by this model the question addressed by Nash (1950)

and Shapley (1953) in their respective cases can also be addressed: What is the 'amount

of satisfaction' or utility that a rational player can expect from such a situation, or, in

classical terms, what is the value for any player of the prospect of engaging in a situation

such as this? We will proceed as in the two seminal papers by stating reasonable conditions

that will narrow the possible options. Thus, we will impose some conditions on a map

© : B £ W ! RN , for vector ©(B; W ) 2 RN to be considerable as a rational agreement, or

better as a reasonable expectation of utility levels of a general agreement in a bargaining

situation B under voting rule W . To begin with, in view of the interpretation in terms of

the underlying situation stated in section 2, we build the requirements of being feasible

and no worse than the status quo for any player into the very notion of solution, that

is, we impose as prerequisites: ©(B; W ) 2 D (feasibility), and ©(B; W ) ¸ d (individual

rationality); if B = (D; d). In addition to this we require the following conditions, all but

one of which are direct adaptations of Nash's and Shapley's characterizing properties:

1. E±ciency (E®): For all (B; W ) 2 B £ W, there is no x 2 D, s.t. x > ©(B; W ).

2. Anonymity (An): For all (B; W ) 2 B £ W, and any permutation ¼:N ! N , and any

i 2 N , ©¼(i)(¼(B; W )) = ©i(B; W ); where ¼(B; W ) := (¼B; ¼W ):

3. Independence of irrelevant alternatives (IIA): Let B; B0 2 B, with B = (D; d) and

B0 = (D0; d0), such that d0 = d; D0 µ D and ©(B; W ) 2 D0, then ©(B0; W ) = ©(B; W ),

for any W 2 W.

4. Invariance w.r.t. positive a±ne transformations (IAT): For all (B; W ) 2 B £ W, and

all ® 2 RN
++ and ¯ 2 RN ,

©(® ¤ B + ¯; W ) = ® ¤ ©(B; W ) + ¯;

where ®¤B +¯ = (®¤D+¯; ®¤d+¯); denoting ®¤x := (®1x1; ::; ®nxn); and ®¤D+¯ :=

f® ¤ x + ¯ : x 2 Dg :

5. Null player (NP): For all (B; W ) 2 B £ W, if i 2 N is a null player in W , then

©i(B; W ) = di:

The readers can see for themselves the precise correspondence of axioms 1 to 5 with

some of Nash's and Shapley's axioms. But it is worth noting some subtle di®erences

arising in this setup. Observe that E®, IIA and IAT (adaptations of Nash's axioms)

concern the feasible set, while An (adapted from Nash's and Shapley's anonymity5) and

5In Nash (1953) anonymity replaces symmetry. We prefer this simpler condition to the slightly weaker

symmetry in Nash (1950), which can also be adapted to this setting
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NP (from Shapley's system) concern both. We omit the arguments in support of each of

these conditions, which can be found in Nash's and Shapley's papers6. It may be worth

remarking though that An entails a consistent relabelling of voters in B and seats in W .

Note also that it seems natural in our setting to set null players' expectations to zero, or

more precisely to the status quo level, given their null capacity to in°uence the outcome

given the voting rule according to which ¯nal agreements are enforced.

4 first characterization

In this section we show how assuming the above ¯ve conditions drastically restrict the

class of admissible 'solutions' or 'values' © : B £ W ! RN .

Denote by Nash(B) the Nash (1950) bargaining solution of an n-person bargaining

problem B = (D; d), that is,

Nash(B) = arg max
x2Dd

Y
i2N

(xi ¡ di);

and by Nashw(B) the w-weighted asymmetric Nash bargaining solution (Kalai, 1977) of

the same problem for a vector of nonnegative weights w = (wi)i2N ,

Nashw(B) = arg max
x2Dd

Y
i2N

(xi ¡ di)
wi :

In fact, if any of the weights is zero, the w-weighted Nash solution may not be unique

under the conditions assumed in the bargaining problems. This di±culty can be overcome

in two ways: Either by assuming a condition of 'non-levelness' on the feasible set, or by

imposing the disagreement 'payo®' for players whose weight is zero. That is, rede¯ning

Nashw
i (B) :=

8<: argi max
x2Dd

Q
j2J(xj ¡ dj)wj if i 2 J;

di if i 2 N n J ,
(1)

where J = fi 2 N : wi > 0g : In what follows we refer always to de¯nition (1).

Proposition 1 Let © : B £ W ! RN be a solution/value that satis¯es E®, An, IIA

and IAT, then there exists an anonymous (i.e., such that '¼(i)(¼W ) = 'i(W ); for any

permutation ¼) map ' : W ! ¢N such that, for all (B; W ) 2 B £ W,

©(B; W ) = Nash'(W )(B): (2)

In particular, if W is a symmetric voting rule, ©(B; W ) = Nash(B):

6For a careful discussion of Nash's axioms see, e.g., chapter 1 in Binmore (1998).
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Proof. Fix a rule W . Then E®, IIA and IAT become for ©(¢; W ) : B ! RN exactly Nash's

(1950) corresponding characterizing conditions of his solution in the domain B of classical

bargaining problems. In view of Kalai's (1977) characterization it must be ©(¢; W ) =

Nashw(¢); for some vector of nonnegative weights, which, to avoid indeterminacy, we can

assume to be 'normalized', that is, w 2 ¢N . In general w is dependent on W , so that we

can write w = '(W ), for some map ' : W ! ¢N . In particular if B = ¤, as ¼¤ = ¤, An

imposes anonymity on ', i.e., '¼(i)(¼W ) = 'i(W ); for any permutation ¼. Moreover, if

W is a symmetric rule, An becomes exactly Nash's anonymity for ©(¢; W ), so that in this

case, for all B 2 B, ©(B; W ) = Nash(B):

Thus E®, An, IIA and IAT, narrow the class of possible answers to solutions of the

form (2), where ' : W ! ¢N is an anonymous function of the voting rule. We leave to

the reader the simple proof of the following lemma, which will be of use:

Lemma 1 For any vector of nonnegative weights w 2 RN (w 6= 0), Nashw(¤) = ~w;

where ~w := w=
P

i2N wi denotes the normalization of w.

As a corollary we have the following

Proposition 2 Let © : B £ W ! RN be a solution/value that satis¯es E®, An, IIA, and

IAT, then

©(B; W ) = Nash©(¤;W )(B): (3)

Proof. By Proposition 1, there must exist an anonymous map ' : W ! ¢N such that

©(B; W ) = Nash'(W )(B): In particular, for B = ¤, in view of Lemma 1, it must be

©(¤; W ) = Nash'(W )(¤) = '(W );

for all W 2 W. Note that ©(¤; W ) 2 ¢N by E®.

In other words: Assuming E®, An, IIA, and IAT, the solution, given by (3), will be

unique as soon as ©(¤; ¢) is speci¯ed. As stated in Section 2, in the case of the TU-

bargaining problem ¤, for any voting rule W , the associated NTU game V(¤;W ) is equiv-

alent to the simple TU game vW s.t. vW (S) = 1 if and only if S 2 W . Thus, the solution

is so far determined up to the choice of a value on the domain of simple superadditive

games. But Propositions 1 and 2 impose certain conditions on this value. Namely, 'e±-

ciency' and 'anonymity'. Finally, the null player (NP) condition on ©, imposes the null

player condition on this value. Thus, the following theorem summarizes the situation.
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Theorem 1 Let © : B £ W ! RN be a solution/value that satis¯es e±ciency (E®),

anonymity (An), independence of irrelevant alternatives (IIA), invariance w.r.t. a±ne

transformations (IAT) and null player (NP), then

©(B; W ) = Nash©(¤;W )(B);

where ©(¤; ¢) : W ! RN satis¯es e±ciency, anonymity and null player.

Therefore, any map ©(¤; ¢) : W ! RN that satis¯es e±ciency, anonymity and null

player would ¯t into formula (3) and yield a solution ©(B; W ) that satis¯es the ¯ve

rationality conditions. The conditions on ©(¤; ¢) bring immediately to mind the Shapley

(1953) value, or more speci¯cally in the context of simple games, the Shapley-Shubik

(1954) index7. Dubey (1975) characterized the Shapley value on the domain of simple

games (i.e., the Shapley-Shubik index) using the lattice property of 'transfer', which in

terms of voting rules can be stated as follows (Laruelle and Valenciano, 2001):

6. Transfer (T): For any two rules W; W 0 2 W, and all S 2 M(W ) \ M(W 0) (S 6= N) :

©(¤; W ) ¡ ©(¤; W ¤
S) = ©(¤; W 0) ¡ ©(¤; W 0¤

S ): (4)

Denote by Sh(v) the Shapley (1953) value of a TU game v, given by

Shi(v) =
X

S:SµN

(n ¡ s)!(s ¡ 1)!

n!
(v(S) ¡ v(Sni));

and by Sh(W ) the Shapley-Shubik (1954) index of a voting rule W , i.e., the Shapley value

of the associated simple game vW . We have the following result.

Proposition 3 Let © : B £ W ! RN be a solution/value that satis¯es E®, An, NP and

T, then for any voting rule W 2 W; ©(¤; W ) = Sh(W ):

Proof. For any W 2 W, as stated in Section 2, the associated NTU game V(¤;W ) is

equivalent to the simple TU game vW s.t. vW (S) = 1 if and only if S 2 W . And, as

is well known, e±ciency, anonymity, null player and transfer characterize the Shapley (-

Shubik) value in the domain of simple (superadditive or not) games (Dubey (1975), see

also Laruelle and Valenciano (2001)). It can then be easily checked that in our setting

conditions E®, An (recall that ¤ is symmetric), NP and T become their homonymous for

©(¤; ¢) : W ! RN . Thus ©(¤; W ) = Sh(vW ) = Sh(W ) for any voting rule.

Then as a corollary of Theorem 1 and Proposition 3 we have:

7But there are other alternatives, for instance, the normalization of any semivalue (Dubey, Neyman

and Weber, 1981) meets these conditions. Also some 'power indices,' as the Holler-Packel (1983) index.
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Theorem 2 There exists a unique solution/value © : B £ W ! RN that satis¯es e±-

ciency (E®), anonymity (An), independence of irrelevant alternatives (IIA), invariance

w.r.t. a±ne transformations (IAT), null player (NP) and transfer (T), and it is given by

©(B; W ) = NashSh(W )(B): (5)

Proof. Existence: For any (B; W ) 2 B £ W, NashSh(W )(B) exists by the compactness

of Dd, whose convexity makes it unique under de¯nition (1). It is easy to see then that

the solution ©(B; W ) := NashSh(W )(B) satis¯es E®, An, IIA, IAT and NP. As to T, let

W; W 0 2 W, and S 2 M(W ) \ M(W 0) (S 6= N): In view of Lemma 1 and the fact that

the Shapley value satis¯es transfer, we have

©(¤; W ) ¡ ©(¤; W ¤
S) = NashSh(W )(¤) ¡ NashSh(W ¤

S )(¤) = Sh(W ) ¡ Sh(W ¤
S)

= Sh(W 0) ¡ Sh(W 0¤
S ) = NashSh(W 0)(¤) ¡ NashSh(W 0¤

S )(¤) = ©(¤; W 0) ¡ ©(¤; W 0¤
S ):

Uniqueness8: Let © : B £ W ! RN be a value or solution that satis¯es E®, An, IIA, IAT,

NP and T. By Theorem 1 it must be ©(B; W ) = Nash©(¤;W )(B): And by Proposition 3,

©(¤; W ) = Sh(W ):

Note that NP and T become empty requirements when W is any ¯xed symmetric rule,

while conditions IIA and IAT become empty requirements when ¯xing B = ¤. Then

the second part of Proposition 1 can be rephrased like this: the characterizing axioms in

Theorem 2 when restricted to ©(¢; W ) : B ! RN for any ¯xed symmetric rule, become

Nash's axiomatic system. Proposition 3 can also be rephrased like this: the characterizing

axioms in Theorem 2 when restricted to ©(¤; ¢) : W ! RN become Shapley-Dubey's

characterizing system of the Shapley value (or Shapley-Shubik index) in W. In other

words, Theorem 2 integrates Nash's and Shapley-Dubey's characterizations into one. But

it goes further beyond both characterizations, yielding a surprising solution to the more

complex problem under consideration given by (5).

Nevertheless, there is still the question of the compellingness of transfer (T), which

is far from obvious. In words, this condition postulates that the e®ect of eliminating a

minimal winning coalition from the set of winning coalitions is the same whatever the

voting rule (one of whose minimal winning coalitions is that coalition) as long as the

bargaining component is the normalized TU-bargaining problem. Why this should be so?

To address this point we introduce risk in the voting rule.

8The proof of uniqueness relies upon some sort of 'folk theorems'. For instance, Kalai's (1977) result,

alluded to in the proof of Proposition 1, was in fact proved in his paper only for two-person bargaining prob-

lems and positive weights. Therefore we consider it convenient to give (in the Appendix) an independent

proof to dissipate any doubts and make the paper self-contained.
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5 rationality under risk in the voting rule

Theorem 1 narrows the class of admissible solutions, i.e., those satisfying the ¯ve rational-

ity conditions introduced in Section 2, to the family given by (3), where ©(¤; ¢) : W ! RN

veri¯es e±ciency, anonymity and null player. In order to go one step further within this

family we need either to justify the transfer condition or to introduce additional com-

pelling conditions. With this purpose we will enrich the model by also admitting random

voting rules. There are two points of view to motivate this extension of the domain. On

the one hand, it is often the case that a committee uses di®erent voting rules to decide

upon di®erent classes of issue, and there may exist uncertainty about which rule should

be used to decide upon an issue. On the other hand, at the very foundations of Nash's

model is the consideration of risk in the feasible agreements, inherent to the description of

vNM-rational players (though in practice negotiators tend to avoid random agreements),

which constrains the admissible utility functions. In other words, even if it is assumed

that for any point in the feasible set there exists a deterministic agreement yielding that

utility vector, the model only makes full sense if these are assumed to be VNM utilities.

The situation under consideration here is an extension of the one modeled by Nash in

which the new element is the voting rule. Introducing risk in the voting rule will allow

us similarly (even if we were only interested in the case of deterministic voting rules) to

further constrain the degrees of freedom in the choice of the 'value' function.

Thus, the second element in the model will now be in general a lottery over the set of

all N-voting rules, denoted by L(W). In this wider setting (we identify each deterministic

voting rule with the corresponding degenerated lottery that assigns probability 1 to that

rule) a problem will consist of a pair (B; ¸) 2 B£L(W). Any lottery ¸ 2 L(W) will be

represented by a map ¸ : W ! [0; 1] s.t.
P

W2W ¸(W ) = 1; where ¸(W ) represents the

probability of voting rule W: Note that any given ¸ 2 L(W) induces a probability of each

coalition being winning. We will also use the following notation: For any S µ N ,

¸S :=
X

W :S2W2W
¸(W );

that is, ¸S is the probability of S being winning for the random procedure ¸. The dis-

tinction between a voting rule W and its associated simple game vW , allows us to avoid

ambiguity: ¹W + (1 ¡ ¹)W 0 represents a random voting rule, while ¹vW + (1 ¡ ¹)vW 0 is

a TU game.

As in the case of deterministic voting rules, for any (B; ¸) 2 B£L(W), we can associate

with it the NTU game (N; V(B;¸)), such that for any S µ N ,

V(B;¸)(S) :=

(
¸S prS(

©
x 2 D : xNnS = dNnS

ª
) + (1 ¡ ¸S)dS if ¸S 6= 0;

prS(ch(d)) if ¸S = 0.

11



This is consistent with the meaning of D: if ¸S is the probability of S being winning, this

coalition can guarantee expected utilities for its members within the speci¯ed set. While

for the TU-bargaining case (¤; ¸), the associated NTU game V(¤;¸) is equivalent to the

TU game

v¸(S) := ¸S ; for all S µ N .

Note also that

v¸ =
X

W 2W
¸(W ) vW : (6)

But bear in mind that not all n-person TU games are generated in this way. In view of (6),

only those in the convex-hull (in the space R2n¡1) of the set of simple superadditive games

are generated as particular cases of V(¤;¸). And more importantly, unlike the deterministic

case, the associated NTU game (N; V(B;¸)) encapsulates in general less information than

the pair (B; ¸); because di®erent lotteries in L(W) can yield the same v¸ = (¸S)SµN :

We now address the issue of a solution/value © : B£L(W) ! RN in this wider setting.

We consider two scenarios for this extension supported on two alternative assumptions

about the information of the players on the bargaining environment:

Scenario 1: The con¯guration of preferences B is common knowledge, but only the

probabilities of each coalition being winning (i.e., (¸S)SµN) are common knowledge.

Scenario 2: Both elements of the bargaining environment (i.e., the pair (B; ¸) 2
B£L(W)) are common knowledge.

In Scenario 1 players know the probabilities of di®erent coalitions being winning but

are unaware of the actual lottery. Therefore their expectations have to be founded on the

(2n ¡ 1)-vector of probabilities v¸ = (¸S)SµN , instead of on the random voting rule itself.

Thus in this scenario it is only consistent requiring:

7. Coalitional expectations dependence (CED): For all ¸; ¸0 2 L(W), such that for any

S µ N; ¸S = ¸0
S , ©(B; ¸) = ©(B; ¸0) for all B.

As the reader can easily check, there is no di±culty in extending E®, An, IIA, IAT

and NP to the wider domain B£L(W), where they keep their meaning and motivation9.

Combining this extension with CED we obtain the following extension of Theorem 1,

whose proof, entirely similar, we omit

Theorem 3 Let © : B £ L(W) ! RN be a solution/value that satis¯es E®, An, IIA,

IAT, NP and CED on B £ L(W), then, for all (B; ¸) 2 B £ L(W),

©(B; ¸) = Nash©(¤;¸)(B);

9For instance, now anonymity involves a consistent relabelling of B and v¸ = (¸S)SµN ; and a null

player is a player whose entering or leaving any coalition never modi¯es its probability of being winning.
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where ©(¤; ¢) : L(W) ! RN satis¯es e±ciency, anonymity, null player and CED. In

particular, for all W 2 W, ©(B; W ) = Nash©(¤;W )(B):

Now consider Scenario 2, where both B and ¸ are common knowledge. In this case it

seems reasonable to assume that when rational players are faced with the prospect of using

a random voting rule ¸ they should, whatever the B, reach an agreement before applying

the random rule that is better than the payo® expected if they postpone the agreement

to carry out the lottery, provided that they have the chance to do so. We have then the

following condition of rationality under random voting rules: For all (B; ¸) 2 B£L(W),

©(B; ¸) ¸
X

W 2W
¸(W )©(B; W ):

If so, this expected payo® can be seen as a reserve option. But this is as if assuming

that players take d¸ :=
P

W2W ¸(W )©(B; W ), as the actual disagreement point, that is,

B¸ := (D; d¸) as the actual problem. In this case it seems reasonable to use 'by default'

the unanimity rule (W = fNg) for bargaining the 'extra' utilities. So one step further is

requiring

8. Strong rationality under random voting rules (SRR): For all (B; ¸) 2 B£L(W),

©(B; ¸) = ©(B¸; fNg):

Let © : B £ W ! RN be any solution in the family characterized in Theorem 1. Its

unique extension to B£L(W) satisfying condition SRR is given by

©(B; ¸) = ©(B¸; fNg) = Nash©(¤;fNg)(B¸) = Nash(B¸):

And note that SRR (along with E® on B £ W) implies the following condition on ©(¢; ¢):
8'. Weak rationality under random voting rules (WRR): For all ¸ 2 L(W),

©(¤; ¸) =
X

W 2W
¸(W )©(¤; W ):

Thus we have an alternative extension of Theorem 1:

Theorem 4 Let © : B £ L(W) ! RN be a solution that satis¯es E®, An, IIA, IAT and

NP on B £ W, and SRR on B £ L(W), then for all B 2 B, and all ¸ 2 L(W),

©(B; ¸) = Nash(B¸);

where B¸ = (D; d¸), with d¸ =
P

W 2W ¸(W )©(B; W ); and ©(B; W ) = Nash©(¤;W )(B),

where ©(¤; ¢) : L(W) ! RN satis¯es e±ciency, anonymity, null player and WRR.

13



Thus, Theorems 3 and 4 provide two alternative extensions of Theorem 1, and of

the family characterized by it. But in view of the di®erent informational scenarios that

support conditions SRR and CED it is not surprising that, as we will show, these extensions

are incompatible in the following sense: The intersection of the families characterized by

either theorem is empty. But surprisingly enough there exists a unique solution in the

deterministic domain (i.e., B £ W) that admits extensions in either sense which coincide

for TU-bargaining problems. Thus we have a two-faced result, existence and uniqueness

on one side and impossibility on the other.

Let us see ¯rst that WRR and CED imply transfer (T) on the subdomain f¤g £ W.

Lemma 2 Let © : B£L(W) ! RN be a solution/value such that ©(¤; ¢) : L(W) ! RN

satis¯es WRR and CED, then ©(¤; ¢) satis¯es T.

Proof. Let W; W 0 2 W, and S 2 M(W ) \ M(W 0) (S 6= N). It can immediately be

checked that the lotteries 1
2W + 1

2W 0¤
S and 1

2W ¤
S + 1

2W 0 assign the same probability of

being winning to every coalition. Then, combining CED and WRR, we have

1

2
©(¤; W ) +

1

2
©(¤; W 0¤

S ) = ©(¤;
1

2
W +

1

2
W 0¤

S )

= ©(¤;
1

2
W ¤

S +
1

2
W 0) =

1

2
©(¤; W ¤

S) +
1

2
©(¤; W 0):

Which yields transfer (4) for ©(¤; ¢).

Then we have the following existence and uniqueness result:

Theorem 5 There exists a unique solution © : B £ W ! RN which admits extensions

to B£L(W) satisfying the conditions of Theorem 3 and Theorem 4 which coincide for

TU-bargaining problems, and it is given by ©(B; W ) = NashSh(W )(B):

Proof. Let © : B £ W ! RN be the restriction of two solutions ©1 and ©2 on B £ L(W)

belonging to the families characterized in Theorems 3 and 4 respectively, and such that

©1(¤; ¸) = ©2(¤; ¸), for all ¸ 2 L(W). Then ©1 and ©2 must satisfy CED and WRR on

f¤g £ L(W), where they coincide. Then, by Lemma 2, they and consequently © satisfy

T, so that in view of Theorem 2 it must be ©(B; W ) = NashSh(W )(B): On the other

hand, it is easy to see that this solution can be extended consistently and uniquely to two

maps ©1 and ©2 on B £ L(W) under the conditions of either Theorem 3 and Theorem 4

respectively. For these extensions we have, for all ¸;

©2(¤; ¸) = Nash(¤¸) = Nash(¢;
X

W2W
¸(W )Sh(W ))
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=
X

W2W
¸(W )Sh(W ) = Sh(v¸) = NashSh(v¸)(¤) = ©1(¤; ¸):

As a corollary we have:

Theorem 6 There is no solution © : B£L(W) ! RN that satis¯es the conditions of

Theorem 3 and those of Theorem 4. In other words, the intersection of the families

characterized in either theorem is empty.

Proof. Assume © : B£L(W) ! RN satis¯es the conditions of Theorems 3 and 4. In view

of Theorem 5, ©(B; W ) = NashSh(W )(B). And it is easy to see that the only extension

consistent with Theorem 3 is ©(B; ¸) = NashSh(v¸)(B). But this solution does not satisfy

SRR. To see this it su±ces to provide an example (B; ¸) for which

NashSh(v¸)(B) ¤
X

W2W
¸(W )NashSh(W )(B): (7)

The following example serves this purpose10: Let N = f1; 2; 3g, and B = (D; 0) the 3-

person bargaining problem in which D is the comprehensive hull of the convex hull of the

set: ½
(1; 0; 0); (0; 1; 0); (

2

3
; 0;

1

3
); (0;

2

3
;
1

3
)

¾
:

And let ¸ be the random voting rule that assigns probability 1=3 to each of the three

unanimity rules W 12; W 13; and W 23, where W ij denotes the rule whose only minimal

winning coalition is fi; jg. Then, as Sh(v¸) = (1=3; 1=3; 1=3), we have

NashSh(v¸)(B) = Nash(B) = (1=3; 1=3; 1=3);

whileX
W2W

¸(W )NashSh(W )(B) =
1

3
(
2

3
; 0;

1

3
) +

1

3
(0;

2

3
;
1

3
) +

1

3
(
1

2
;
1

2
; 0) = (

3:5

9
;
3:5

9
;
2

9
):

Thus we have (7).

6 some remarks about axioms and results

1. The following solutions show the independence of the axioms used in Theorem 2 as well

as WRR and CED.

©(B; ¸) = d, satis¯es all but E®.

©(B; ¸) = NashSh!(v¸)(B), where Sh! is any nonsymmetric !-weighted Shapley value

(Kalai and Samet, 1987), satis¯es all but An.

10We thank Abraham Neyman, who provided a ¯rst example for (7).
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©(B; ¸) = Nash(B), satis¯es all but NP.

©(B; ¸) = d + ¹t Sh(v¸), where ¹t = max ft 2 R : d + t Sh(v¸) 2 Dg ; satis¯es all but IAT.

©(B; ¸) = d + ¹t ((m ¡ d) ¤ Sh(v¸)), where ¹t = max ft : d + t ((m ¡ d) ¤ Sh(v¸)) 2 Dg
with m 2 RN s.t. mi = max pri(Dd), satis¯es all but IIA (note this family yields Kalai-

Smorodinsky (1975) solution as the particular case ©(¢; W ) when W is symmetric).

©(B; ¸) = NashBz(v¸)(B), where Bz is the Banzhaf (1965) index (or any semivalue

(Dubey, Neyman and Weber, 1981) di®erent from Sh), satis¯es all but WRR (and T).

©(B; ¸) = NashHP (¸)(B), where HP is the extension of Holler-Packel's (1983) index

given by HP (¸) :=
P

W2W ¸(W )HP (W ), where HPi(W ) = wiP
i wi

and wi is the number

of minimal winning coalitions in W containing i, satis¯es all but CED (and T).

2. In Theorem 2 transfer (T) can be replaced by the weaker (in the presence of

anonymity) condition introduced in Laruelle and Valenciano (2001) of symmetric-gain

loss, which in the present setting can be restated like this:

(SymGL) For any voting rule W 2 W, and all S 2 M(W ) (S 6= N) :

©i(¤; W ) ¡ ©i(¤; W ¤
S) = ©j(¤; W ) ¡ ©j(¤; W ¤

S)

for any two voters i; j 2 S; and any two voters i; j 2 N n S.

That is, the e®ect of eliminating a (minimal) winning con¯guration from the list that

speci¯es the voting rule is equal on any two voters belonging (not belonging) to it. It is

easy to check that this condition can replace T in Proposition 3, and in Theorem 2. If the

weakness of the axioms were our main goal, this would be a better choice. But, although

SymGL also beats transfer in simplicity (it involves the modi¯cation of a single voting

rule), it entails equating gains (or losses) of utility of di®erent agents. Nevertheless the

fairness °avor of this condition may be interesting for a normative interpretation of the

solution characterized in Theorem 2.

3. In Theorem 4, though technically unnecessary, the axioms E®, An, IAT and NP

can be extended to and required on the wider domain B£L(W) (instead of requiring them

only on B £ W). But the natural extension of IIA to B£L(W) is inconsistent with SRR.

This can be easily explained: Requiring SRR implies that some alternatives apart from

©(B; ¸) are no longer 'irrelevant'. Namely, by SRR, in the determination of ©(B; ¸) the

points in f©(B; W ) : ¸(W ) 6= 0g are obviously relevant, and these points change with the

feasible set.

4. The impossibility result of Theorem 6 is easy to understand: The logical clash

between SRR and CED is not surprising given the inconsistency of the informational

environments that support them: common knowledge either of ¸ (SRR) or of v¸ (CED).
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This makes the compatibility of these conditions on f¤g £L(W) as established by Theorem

5 even more surprising .

7 conclusion

Theorem 1 extends the Nash bargaining solution and provides an endogenous justi¯cation

of the 'weights' in Kalai's (1977) asymmetric Nash solutions in the complete information

context11. Kalai's solutions emerge when symmetry is dropped in Nash's system, or still

assuming symmetry in an adequately 'replicated' problem (Kalai, 1977), as if each player

negotiated on behalf of a number of players, as is usually the underlying situation when a

nonsymmetric rule is used to make decisions. Binmore (1998, p. 78) justi¯es the asymmet-

ric Nash solutions as re°ecting the di®erent 'bargaining power' of the players 'determined

by the strategic advantages conferred on players by the circumstances under which they

bargain', and uses the term 'bargaining power' to refer to the players' weights12. In our

case these circumstances consist of the voting rule that governs negotiations. Thus the

extension provided by Theorem 1 re-opens the old power indices' 'contest' in a richer and

more interesting setting than the traditional one of bare simple games. Now they (i.e.,

e±cient, anonymous values for simple games satisfying the null player condition) compete

to adequately represent the 'bargaining power' (in a precise and relevant sense) that a

voting rule confers to its users in a bargaining committee.

Theorem 2 singles out the Shapley-Shubik index by integrating two axiomatic sys-

tems into a single, consistent one, which when restricted to classical bargaining problems

becomes Nash's system, and when restricted to simple games becomes a characterizing

system (Dubey-Shapley's) of the Shapley value. As a result the solution emerging turns

out to be consistent with both Nash's solution and Shapley's value. But in general no

solution in the NTU literature coincides with the one obtained here on axiomatic grounds

in the class of NTU games associated with the class of two-ingredient models considered

by us13. This seems to corroborate the impression of the excessive abstraction and conse-

11See Harsanyi and Selten (1972) for the incomplete information case.
12This interpretation is consistent with the outcome of Rubinstein's (1982) alternating o®ers model

within the noncooperative approach (see Binmore, 1987). It is also consistent with the interpretation

proposed by Valenciano and Zarzuelo (1994) within Rubinstein, Safra and Thomson's (1992) preference-

based model.
13The solution obtained depends on the bargaining problem and the players' weights (given by the

Shapley-Shubik index of the voting rule). Consequently, the bargaining problem can be modi¯ed in many

ways so that the feasible set for some coalition(s) changes without the solution changing, unlike other

solutions of the associated NTU game. Nevertheless, as Sergiu Hart pointed out, the solution characterized

here can be seen as the Shapley NTU value-like of an NTU game by associating the whole feasible set with
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quent lack of intuitive basis of the bare NTU model: unless you put something else in it it

does not provide su±cient sure ground for a solution. So far, axiomatic characterizations

in the NTU domain have come (if at all) only after the proposals of solutions satisfying

the aforementioned double consistency with Nash and Shapley (e.g., Aumann (1985) and

Hart (1985)). But here integration has been accomplished directly at the axiomatic level

with surprising results. Nevertheless the credit of this particular solution as characterized

by Theorem 2 depends on the compellingness of the transfer condition.

In order to justify this particular solution we have provided two extensions (Theorems

3 and 4) of the solutions characterized by Theorem 1 based on two di®erent informational

environments admitting random voting rules. Theorem 6 proves these extensions incom-

patible, but Theorem 5 proves them to be compatible within the subdomain of determinis-

tic voting rules and coincident for TU-problems in a single case: the one characterized by

Theorem 2, singling out the solution NashSh(W )(B). Is this enough to consider it as the

best answer to the main question that motivated this paper? It seems clear that neither of

the two scenarios considered separately provides unequivocal support for a unique answer,

but we ¯nd the double consistency of this solution along with its uniqueness in the sense

established in Theorem 5 rather compelling in support of this solution. It turns out to

be the only one consistent with two di®erent informational environments when either the

rule is deterministic or the problem TU.

Several lines of further research can be suggested. First, and possibly most important,

the 'Nash program' challenge: the noncooperative foundation of the cooperative solutions

characterized. Rubinstein (1982) and Binmore (1987) seem the natural term of reference

as a starting point, but the achievement of this goal does not appear to be obvious at all.

A completely di®erent line of work is open if the results in this paper are taken as a new

starting point for addressing the normative issue about the 'fair' voting rule. That is, if

the members of a committee in which bargaining is the usual practice represent groups of

individuals of di®erent size, what voting rule is adequate?
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8 Appendix

The basic idea of the following proof of uniqueness in Theorem 2 is similar to that of Nash

in the proof of his classical result, but the possiblity of null players needs to be handled

with care. To make the proof simpler we establish two lemmas which will be of use. In

Lemma 4 and in the proof of the theorem we use the following notation. For any set

C µ RN , and J µ N; CJ denotes the set CJ := fx 2 C : xi = 0 for all i 2 N n Jg : Also,

for any W 2 W, we denote sup(W ) = fi 2 N : i is not a null player in Wg :

Lemma 3 Let © : B £ W ! RN be a solution that satis¯es IIA, then, for any two

problems in B, B = (D; d) and B0 = (D0; d0), such that d = d0 and Dd = D0
d, and any

W 2 W; it holds that ©(B; W ) = ©(B0; W ):

Proof. Just note that for two such problems ch(Dd) = ch(D0
d0); and this set is contained

in D and in D0. By the individual rationality condition embodied in the solution concept,

©(B; W ) and ©(B0; W ) must lie on Dd µ ch(Dd). Then by IIA we have ©(B; W ) =

©((ch(Dd); d); W ) = ©(B0; W ):

Lemma 4 Let © : B £ W ! RN be a solution that satis¯es E®, An, IIA, IAT, NP and

T, then, for any (B; W ) 2 B £ W with B = (D; d) such that d = 0, and DJ = ¢J for

J = sup(W ); it holds that ©(B; W ) = Sh(W ):

Proof. We ¯rst prove a special case. Let W 2 W, and J = sup(W ). For any ± 2 (0; 1),

let T J;± : RN ! RN the linear map given by

T J;±
i (x) :=

(
xi if i 2 J;

±xi if i 2 N n J:

Then, for any ± 2 (0; 1), by IAT and Proposition 3, as Shi(W ) 6= 0 if and only if i 2 J;

we have

©(T J;±(¤); W ) = T J;±(©(¤; W )) = T J;±(Sh(W )) = Sh(W ):

By Lemma 3, the same conclusion holds by replacing T J;±(¤) by the problem T J;±
+ (¤) :=

(T J;±
+ (¢); 0), where T J;±

+ (¢) := ch(T J;±(¢)\RN
+ ), that is, ©(T J;±

+ (¤); W ) = Sh(W ): Now let

B = (D; d) 2 B such that d = 0, and DJ = ¢J for J = sup(W ): For ± 2 (0; 1) su±ciently

small, T J;±
+ (¢) µ D: By NP, ©(B; W ) 2 ¢J \ RN

+ , and consequently ©(B; W ) 2 T J;±
+ (¢):

Then by IIA it must be ©(B; W ) = ©(T J;±
+ (¤); W ) = Sh(W ).

Proof. (of Theorem 1) Uniqueness: Let © : B £ W ! RN be a solution that satis¯es

E®, An, IIA, IAT, NP and T. Let any problem (B; W ), with B = (D; d): Without loss of
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generality in view of IAT we can assume d = 0, and in view of Lemma 3 we can assume

D = ch(Dd). Denote x¤ := NashSh(W )(B); which exists and is unique, and J := sup(W ):

By (1) and the conditions on D, it is immediate that x¤
i 6= 0 if and only if i 2 J . Now let

p 2 RN the vector

pi :=

8<:
Shi(W )

x¤
i

if i 2 J;

0 if i 2 N n J ;

and for any k > 0, let Bp;k = (Dp;k; 0) the problem in which

Dp;k =
©

x 2 RN : px · 1; xi · k (8i 2 N n J)
ª

:

Note that x¤ 2 Dp;k (px¤ =
P

i2J Shi(W ) = 1; and x¤
i = 0 < k for all i 2 N n J)), and

that Bp;k is the result of transforming the problem Bk = (Dk; 0), in which

Dk =

(
x 2 RN :

X
i2J

xi · 1; xi · k (8i 2 N n J)

)
;

by means of the linear map T : RN ! RN

Ti(x) :=

(
1
pi

xi if i 2 J;

xi if i 2 N n J;

that is, Bp;k = T (Bk). As DJ
k = ¢J , by Lemma 4, ©(Bk; W ) = Sh(W ). Thus by IAT

©(Bp;k; W ) = ©(T (Bk); W ) = T (©(Bk; W )) = T (Sh(W )) = x¤:

Finally, for k su±ciently large D \ RN
+ µ Dp;k \ RN

+ . Thus, again by IIA, we conclude

that ©(B; W ) = ©(Bp;k; W ) = x¤:

22




