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ABSTRACT 
 

Testing for unit roots in short-term interest rates plays a key role in the empirical 
modelling of these series. It is widely assumed that the volatility of interest rates follows some 
time-varying function which is dependent of the level of the series. This may cause distortions 
in the performance of conventional tests for unit root nonstationarity since these are typically 
derived under the assumption of homoskedasticity. Given the relative unfamiliarity on the 
issue, we conducted an extensive Monte Carlo investigation in order to assess the performance 
of the DF unit root tests, and examined the effects on the limiting distributions of test 
procedures (t- and likelihood ratio tests) based on maximum likelihood estimation of models 
for short-term rates with a linear drift. 
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1 Introduction

There is a vast literature that deals with modelling risk free short-term
interest rates dynamics since this is a major economic variable. Models
that describe interest rate dynamics normally assume a continuous time-
generating process. Stochastic differential equations (SDE) are commonly
used in this context to characterise the term structure and to price
security assets. A key underlying assumption behind the usual empirical
applications of such models on interest rates time series concerns the
mean-reversion property. Nonstationarity is usually evaluated based on
estimated parameters from the SDE solution and/or within the unit root
testing framework. In choosing the former case, evidence against the null
of integration is taken by performing significance tests on the relevant
parameters from the SDE solution, while the tests proposed by Dickey and
Fuller [DF] (1979, 1981) continue to be the leading methods for the latter
case.
Interest rates display time-varying conditional volatility patterns which,

unlike most financial time series, are not regarded as a measurable function
of squared innovations, but are largely considered as some function of the
lagged level of the series itself (recall that the former is the basic structure
under GARCH-type models). Thus, fitting GARCH-type models to these
time series often cause parameter estimates that exhibit integration and even
explosive patterns as a result of model misspecification. Although there are
a number of studies that deal with asymptotic distributions and properties
of unit root tests in the presence of conditionally heteroskedastic errors (see
Li, Ling and McAleer, 2002, for an interesting overview), little attention has
been given to the driving process of volatility following a highly nonlinear,
level-dependent functional form, characteristic of interest rate time series.
In fact, available research has generally centred on either the assumption
of unconditional heteroskedasticity or stationary GARCH type errors, and
has avoided alternative conditional heteroskedasticity structures which are
relevant in practice.
Given the importance of testing for nonstationarity when modelling short-

term interest rate dynamics, the aim of this paper is twofold. First, we
investigate the effects of level-dependent volatility on the DF tests (t-test
and likelihood ratio test) and a suitable nonparametric alternative. Second,
we assess the behaviour of test procedures based on maximum likelihood
estimates of parameters taken from the approximate solution of the SDE.
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Specifically, we consider the class of one-factor diffusion models with a
linear drift and a nonlinear volatility function and study both the limiting
distribution of the t-test on the autoregressive parameter and the likelihood
ratio test on the drift parameters.
The t-test is extensively applied in empirical papers in this context. It

should be noted that most applied papers tend to refrain frommaking explicit
reference to the limiting distribution used when eliciting the significance
of a statistic. This ambiguity is problematic because standard theory (as
implicitly used) does not hold under the hypothesis of a unit root and hence
statistical inference may be misleading. Furthermore, since there is no formal
proof that supports the presence of a unique asymptotic distribution for the
t-test, this paper also looks to shed some light on this issue. Given that
this type of level dependent volatility imposes analytical limitations and
renders the derivation of limit distributions unfeasible, we look to Monte
Carlo experimentation as a valuable means for assessing the effects of such
patterns on the performance of the test procedures considered.
Non-stationarity in interest rates seems to be a controversial point in

practice. There are strong theoretical reasons supporting stationarity of
short-term rates, but empirical evidence mostly shows weak or no reversion at
all. A prudent explanation for this evidence could be based on the fact that
misspecified linear models tend to find spurious evidence of nonstationary
behaviour, as suggested by, inter alia, Aït-Sahalia (1996). However, it has
been shown that methods that estimate nonlinear drifts in diffusions, such
as the nonparametric methods proposed by Aït-Sahalia (1996), tend to find
nonlinearities as an artifact of the procedure; c.f. Chapman and Pearson
(2000). In addition, it is often found that simple linear models cannot be
rejected for more flexible, nonlinear models (see, inter alia, Hong and Li,
2002; and references in Chapman and Pearson, 2001).
Further, one-factor diffusions are potentially too parsimonious for

correctly adjusting the complex dynamics of interest rates; c.f. Hong and Li
(2002)1. However, single-factor models with a linear drift are widely used in
practice because of their tractability and ability to fit yield curve of securities
reasonably well (see Rogers and Stummer, 2000, and references therein). This

1Hong and Li (2002) compare the application of different models on US interest-rate
data. They find that all diffusions with a single factor are rejected, regardless of the linear
or non-linear characteristics of the drift function. They also establish that the nonlinear
drift model of Aït-Sahalia (1996), earlier applied on the same data, does not significantly
improve the goodness of fit over the linear drift alternative.
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is because most of the observed variability of the bond prices can be explained
through a single factor2. Given the importance of these types of models in
the empirical modelling of short-term interest rate time series, the scope of
this paper looks to assess the effects of nonlinear patterns in volatility when
testing against a unit root, to better comprehend the modelling and practical
fitting of these series.
This paper is organised as follows. Section 2 discusses a general diffusion

model for interest rate dynamics as well as its econometric extensions.
Section 3 presents the Monte Carlo simulations with Section 4 reporting
the main results. Finally, Section 5 summarises the empirical findings.

2 Short-term Interest Rates Modelling

For notational purposes, recall that short-term interest rates, say (rt)t>0, are
often regarded as state variables following a one-factor time-homogeneous
diffusion in continuous time and represented as,

drt = µ (rt; θ) dt+ σ (rt; θ) dWt (1)

where Wt is a Wiener (Brownian) process and both the drift, µ (·) , and the
volatility function, σ (·) , depend solely on the state variable, rt, and a set
of parameters θ. Continuous-time diffusion processes have been extensively
used in economics and finance. In the case of research based on interest rates,
these processes provide a basic tool for pricing the term structure in both
the arbitrage-free and the equilibrium framework.
We can observe specific differences of one-factor SDEs when applied to

short-term rate dynamics in the linear or nonlinear nature of µ (·) and in
the way in which the volatility function σ (·) is related to the level of the
process. Particular cases of (1) are nonlinear diffusions with linear drift and
time-varying volatility. A more general model of this type was proposed by
Chan, Karolyi, Longstaff and Sanders [CKLS] (1992), and expressed as,

drt = (α0 + α1rt) dt+ σrγt dWt (2)

2As reported in several studies, roughly 90% of variation in US treasury rates can be
traced to changes in levels of interest rates. In one-factor models, this factor is identified
with short-term interest rates.
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where γ ≥ 0 represents the elasticity of volatility against the level of the
series. When this parameter is non-zero, the conditional volatility of the
model increases according to the level of the interest rate.
Remark 2.1: The CKLS diffusion in (2) combines a large number of well-
knownmodels from the literature; such as, the Orstein-Uhlenbek process used
in Vasicek (1977), the model proposed by Brennan and Schwartz (1979), and
the square-root model of Cox, Ingerson and Ross [CIR] (1985), among others.
Because of the generality inherited in the CKLS model, it will later serve as
benchmark in our analysis.
Despite the characteristics of continuous-time diffusions, the parameters

involved are always estimated in the discrete-time domain based on
simulations of the SDE solution. Explicit solutions are only available for
very few models (e.g., the Ornstein-Uhlenbek and the CIR model) and as
such, parameters are generally estimated from approximations based on
numerical techniques. The Euler scheme is the preferred method because
of its simplicity and computational convenience. In fact, it is often applied
in many papers even when exact solutions are available.
Thus, given that model (2) is in general not explicitly solvable, its Euler

discretisation results in,

∆mrt = α0m+ α1mrt−1 + σ
√
mrγt−1ηt (3)

where ηt ∼ iidN(0, 1) and the changes in the variable are assumed to
be measured over short enough sampling intervals (m) to avoid large
discretisation bias3. Broze, Scaillet and Zaköian (1995) discussed several
statistical properties of discrete-time approximations of the CKLS model. In
particular, they show that (3) is ergodic and second-order stationary if and
only if |1 + α1m| < 1 and γ ∈ [0, 1). When γ = 1, second-order stationarity
is still possible, provided (1 + α1m)

2 < 1− σ2; and ergodicity is guaranteed
if E (ln |1 + α1m+ σηt|) < 0. It should be noted that the properties of the
discrete model are not exactly the same as those in the continuous time model
(m→ 0). For instance, strict stationarity depends on the parameters of the
drift and volatility functions in the continuous model, so the process may

3This approach is based on the heuristic argument that the approximation converges to
the continuous-time model as m→ 0. Data in empirical analysis are mainly sampled on a
daily and weekly basis but also on a monthly basis, even though the latter can imply large
biases. Given the trade-off between discretisation bias in low-frequency samples and data
problems related to market microstructure in high-frequency observations, weekly data is
often considered as the best alternative.
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exhibit so-called ‘volatility-induced’ stationarity in continuous time even for
α1 ≥ 0.Model (3) is typically estimated by (quasi) maximum likelihood (ML)
based on the normality assumption, or by the general method of moments
(GMM) under suitable conditions, although more sophisticated methods that
do not rely on the Euler approximation have since been developed (see,
inter alia, Aït-Sahalia, 2002 and references therein, and Kloeden and Platen,
1995).
Model (2) and its discrete-time approximation (3) were generalised in

several ways to fit more complex dynamics in volatility, in the conditional
mean, or both. A natural extension in the econometric framework lies
in allowing the scale parameter, σ2, to be time-varying following its own
dynamics, resulting in what has been termed mixed models for interest rates.
A number of processes have considered stochastic volatility patterns (Ball and
Torous, 1995) and GARCH models that include dependence of unexpected
shocks and cluster effects in volatility. Models under the latter approach are
largely based on GARCH(1,1)-type equations, such as,

σ2t,m = ω0 + ω1ξt−1,m + ω2σ
2
t−1,m; ω0 > 0; ω1,ω2 ≥ 0 (4)

εt,m = ∆mrt − α0m− α1mrt−1,m;

where several alternatives for ξt−1,m are common. Brenner, Harjes and
Kroner (1996) specify,

ξt−1,m = ε2t−1,m (5)

which makes the scale dependent on both shocks and level through lagged
values of the disturbance term. Note that the basic assumptions of GARCH
processes do not apply to the driving errors εt,m, thus the resulting process is
no longer an ordinary GARCH(1,1) model. Koedijk, Nissen, Schotman and
Wolff (1997); Anderson and Lund (1997); and Bali (2003), among others,
overcome this inconvenience by modelling ‘standardised’ innovations rather
than the error term itself, that is,

ξt−1,m = ε2t−1,m/r
2γ
t−2,m (6)

so that the scale dynamics is unaffected by the level. There are several
methodological advantages supporting formulation (6) over (5). It allows for
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a parsimonious and neat distinction between the clustering effect (related
to the GARCH dynamics of the scale) and the level effect (related to the
elasticity parameter). Moreover, GARCH parameters in the scale maintain
their standard meaning and accept the common restrictions to ensure
stationarity and existence of higher moments, unobserved in (5) . Finally,
the drift function may be augmented in order to include nonlinear effects
owing to nonlinear or polynomial structures; see Aït-Sahalia (1996). The
resulting models may be used together with the former volatility models
originating heavily parametrized yet powerful specifications (see Bali, 2003;
for recent estimation of such models). However, it should be noted that
precise estimation under such specifications is difficult because of the strong
degree of nonlinearity, hence ML procedures are likely to find problems in
reaching a global optimum.

3 Testing for Unit Roots: A Monte Carlo
Investigation

Little or nothing is formally known about the statistical properties concerning
stationarity or volatility persistence of mixed models. We provide some
insights on the behaviour of interest rate dynamics as a function of mixed
models throughMonte Carlo analysis in this section. We assess the behaviour
of different statistical procedures when testing the null hypothesis of a unit
root in time series that exhibit some form of level-dependent conditional
heteroskedasticity. In a general setting, the basic framework for this
analysis is based on a discrete-time model (subscript m defining the sample
frequency is hereafter omitted for simplicity of notation) related to the CKLS
specification as,

∆rt = µ+ αrt−1 + εt; εt = htηt; ηt|It−1 ∼ Niid (0, 1) ; t = 1, ..., T (7)

where It denotes the information set up to time t and the sequence {ht}
denotes the It−1−measurable conditional variance of the noise term such
that E (ε2t |It−1) = ht. As motivated in the previous section, we shall focus on
two different sources driving ht in order to conduct experimentation: a pure
level-dependent process given by,

ht = σ2r2γt−1; σ > 0, γ ≥ 0 (8)
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and a mixed model with a scale parameter following a GARCH(1,1) process
as in (6), i.e4,

ht = σ2t r
2γ
t−1; γ ≥ 0 (9)

σ2t = ω0 + ω1 σt−1ηt−1
2
+ ω2σ

2
t−1; ωi > 0.

Remark 3.1: In considering that (µ,α, γ) = 0 and σ2t = σ2 in the above
models, we obtain the homoskedastic driftless random walk considered under
the DF tests null hypothesis. The series rt is conditionally heteroskedastic
when γ > 0, so that testing for unit roots by means of procedures derived
under the i.i.d. assumption may result in power and size distortions.
Remark 3.2: The disturbance term related to (8) is not unconditionally
second-order stationary when rt is I(1). This occurs because the conditional
variance of εt is defined as a scaled power of a lagged integrated process.
However, since the dynamics of rt are maintained, the unconditional
expectation is not well defined. Note that this complicates the theoretical
derivation of suitable limiting distributions, since second-order stationarity
is normally required in order to apply the functional central limit theorem to
show convergence to a functional of a Brownian motion. Although the DF
test can be shown to convergence to a ratio of functionals of Lévy processes
when innovations have infinite variance (c.f. Chan and Tran, 1989; Chan,
1990; Phillips, 1990; Ahn, Fotopoulos and He, 1990), this is generally based
on strong assumptions regarding the error distribution. The reader is referred
to Hansen (1992,1995) for a general analysis of parameter estimation under
nonstationary variances.
Remark 3.3: Recall that rt is not second-order stationary if γ > 1 regardless
of the value of α. As such, the (unconditional) variance of this series may
not be finite even when the true process has no unit roots. Moreover, the
statistical properties of the model when the scale parameter σ2t is time-
varying are unknown.
Remark 3.4: Park (2002) has investigated several statistical properties
of time series built as a function of an integrated process. These series
are relevant because they can generate volatility clustering patterns, in

4Although both GARCH-type models are econometric extensions of CKLS and there
are no theoretical reasons to prefer one model over the other, the approach based on (6)
seems to have more popularity in empirical applications owing to the reasons commented in
the text. Furthermore, Anderson and Lund (1997, p.350) reported that both alternatives
seemed to be indistinguishable when fitting volatility dynamics to their series.
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other words, nonstationary nonlinear heteroskedasticity, that behave similar
to nonstationary GARCH structures. Note that (8) cannot reproduce
cluster effects in the conditional variance unless rt is integrated. However,
specification (9) works to provide such flexibility.
In obtaining the t-test for H0 : α = 0 and the likelihood ratio test for

H0 : (µ,α) = 0 (i.e., the standard DF unit root test statistics) we investigate
the presence of an autoregressive unit root in rt. The t-ratio test is also widely
used for testing against nonstationarity after estimating the discrete version
(or any econometric extension) of the CKLS model.
The next section will consider a univariate time series {rt} generated

according to a conditionally Gaussian random walk without drift. In specific,
we simulate random paths of model (7) with (µ,α) = 0 and innovations
driven by either (8) or (9) . Note that a random walk with a non-zero drift
displays an upward/downward deterministic trend in the level of the series
which is unrealistic in terms of accommodating interest rate dynamics5.
Therefore, the additional constant term, µ, in the estimated models is
primarily intended to fit the value to which the series reverts to under
stationarity, rather than fitting the possible drift of a random walk process.
We do not consider short-run dynamics in the DGP for the sake of simplicity,
although the analysis including these patterns is straightforward.
In order to evaluate the performance of the test procedures considered,

three Monte Carlo experiments were performed, which we denote as
Experiments I, II and III.

3.1 Experiment I

In the first set of experiments, we explore the small sample size properties of
the DF tests (t-test and LR test) when applied on time series with level
dependent heteroskedasticity. The DGP in this analysis is defined as a
random walk with a level-dependent volatility specification that considers
(a) constant scale, σ2, and (b) scale dynamics, σt following GARCH(1,1)
dynamics. Since GARCH parameters cause some analytical complexities in
the latter case, we focus on values raised by existing empirical work.
Recall that the basic DF testing procedure is based on estimating an

5The analysis based on a DGP which includes deterministic trends as well as a unit
root, though of econometric interest, is beyond the scope of this paper, since it does not
seem plausible for the present context.
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auxiliary first-order autoregressive model such as,

∆rt = µ+ αrt−1 + ut (10)

with ut ∼ iid (0,σ2u) , σu < ∞. The relevant statistics (a t-test for the
significance of α, and an F -test for the joint significance of (µ,α)) when
testing against the null of integration are obtained from the ordinary least-
square (OLS) estimates of (10). Hence, both estimation and inference stages
of this procedure are performed under the assumption of an i.i.d. error term
with finite, constant variance. As these assumptions are unfulfilled in the
present context, this experiment looks to analyse the effect of such departures
on the size and power performance of the DF tests.
Remark 3.5: Ling and Li (1997b) derived the distribution of the test
based on the least-square estimates when the errors followed a covariance-
stationary GARCH(1,1) process (this is the case considered in (b) when γ
is set to zero). They show that the limiting distribution is identical to the
one tabulated by Dickey and Fuller (1979). Thus, the DF test procedure
remains valid under the considered heteroskedasticity since the distribution
is asymptotically invariant. On the other hand, the limit distribution of the
DF test when GARCH errors are not stationary (and hence divergence of the
unconditional variance occurs) is as yet unknown.
Remark 3.6: Kim and Schmidt (1993) show through Monte Carlo
simulation that integrated GARCH (IGARCH ) errors drive the DF tests
to moderate size departures even in large samples.
Along with the DF tests, we also investigate the performance of a

nonparametric test recently introduced by Breitung (2002), which we denote
henceforth as NP. The NP test rejects the null of integration for small values
of the variance ratio statistic,

NP =
T−2 T

t=1 Û
2
t

T
t=1 û

2
t

(11)

where Û2t =
t
i=1 û

2
i , and ûi = ri−r̄ are the residuals from an OLS regression

after adjusting for a non-zero mean. Critical values for this test at the
confident levels of 10%, 5% and 1% for a sample of 500 observations are,
respectively, 0.01473, 0.01046 and 0.00536 (see Breitung, 2002; for further
details).
This procedure served firstly to provide robustness against misspecified

short-run dynamics and nuisance parameters in the mean equation. Inter-
estingly, preliminary analysis showed that this test is also robust against
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ARCH errors even under volatility integration or explosive patterns, a prop-
erty not generally satisfied by DF tests. To illustrate the properties of the
DF and NP tests, the empirical sizes of these tests against both IGARCH
errors and ARCH errors (regarded as a function of the values of the ARCH
coefficient, ω1) are plotted in Figure 3.1. Here it is clear that the DF tests
are fairly sensitive to ARCH effects, whereas the nonparametric test only
undergoes moderate size distortions. Thus, as this test may feature better
properties than the DF tests under level and mixed models it deserves closer
investigation.
Our attention is on the small-sample properties of these tests thus, the

analysis at this stage was based on 50,000 replications of samples of 500
observations. This sample length is of empirical relevance for data sampled
on a weekly or monthly basis (roughly corresponding to a decade of weekly
observations)6. To minimise the effects of initial values on the findings, 900
observations were generated, with the first 400 having been removed from
the simulated paths. The empirical size and the power of the tests are
evaluated at the 1% and 5% nominal levels. To assess the power of the tests
against stationary alternatives we concentrated on the near-integrated region,
α = {−0.01,−0.05}. In both cases the drift parameter was considered as µ =
r0 (1 + α) so that the long-run expectation could take the same value. The
value r0 = 0.15 was arbitrarily chosen and assigned to initialise the simulated
paths in all experiments. Finally, since the constant scale parameter, σ, has
been empirically estimated to be approximately 1e-02, we restrict our interest
to this range of values. All the runs of the Monte Carlo analysis were drawn
with σ2 = 0.0003.
In experiment (b), we also consider an unconditional scale parameter equal

to σ2 = 0.0003, where it follows that σ2 = E (σ2t ) = ω0 (1− ω1 − ω2)
−1 .With

empirical evidence having provided quite different results when estimating
GARCH parameters (see Experiment III below for further details). We
began experimentation by taking a scale parameter that followed stationary
GARCH dynamics given by i) a high degree of persistence together with low
short-run effects (ω1 = 0.05,ω2 = 0.90), namely GARCH-L process, and ii)
high persistence together with a relatively high ARCH effect (ω1 = 0.20,
ω2 = 0.70), namely GARCH-H process, for comparative purposes. Note that

6Simulations were also carried out on samples of length T=1000, with little differences
with respect to the results observed from T=500. We avoid the presentation of the results
regarding T=1000 in order to save space, but these are available from the authors upon
request.
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Figure 3.1: Empirical sizes of unit root tests when errors follow IGARCH and 
explosive ARCH patterns 
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empirical application of the CKLS models have found similar values (see, for
instance, Koedijk et al., 1997).

3.2 Experiment II

The second Monte Carlo analysis focuses on the t-test on the autoregressive
parameter estimate and on the LR test obtained from ML estimation of the
discrete approximation of the CKLS model. The GMM estimation proposed
in CKLS is a natural alternative to the ML method, though orthogonality
conditions require finite moments and hence could be inadequate if the time
series considered is not weakly stationary. Here, we consider a DGP rendered
by a pure randomwalk with driving errors following level-dependent volatility
with constant scale. The analysis is based on the ML estimation of the
following specification, i.e.,

∆rt = µ+ αrt−1 + εt; εt|It−1 ∼ N 0,σ2r2γt−1 . (12)

The set of parameters to be estimated is θ = (µ,α, γ,σ) and where the
parameter space is constrained to avoid negative values of γ.
The unrestricted log-likelihood function, L (θU) , is then constructed by

considering the prediction error decomposition,

L (θU) =
T

t=1

ln f (∆rt|It−1) (13)

where f (·) corresponds to the Normal distribution density. The ML estima-
tor becomes the optimum of the above function and the nonstationarity test
drives from the left-sided t-test statistic on α̂, that is,

tα =
α̂√
ω̂α

(14)

where ω̂α is the corresponding diagonal element of the covariance matrix.
Since the assumption of εt as normally distributed is unrealistic, the
covariance matrix is typically estimated using a robust covariance estimator
(referred to as the White method) from the QML procedure.
In addition, the null of a random walk with zero-drift may also be proved

using a LR test after computing both the restricted and unrestricted log-
likelihood functions. In this case, the appropriate statistic is,

LR = −2 L θ̂R − L θ̂U (15)
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with L (θR) denoting the log-likelihood function valued at the restricted
estimated parameter vector.
Both the t- and the LR statistics are computed from ML estimation of

model (8) based on 50,000 replications of samples of length T=500. We take
γ as a nuisance parameter and carry out the simulations for values of this
parameter in the range [0, 1.5]. Note that this is the usual range of values
found in empirical work. As indicated earlier, the scale parameter is set as
σ2 = 0.0003. Since optimization of the likelihood functions in theMonte Carlo
framework is computationally quite demanding, the optimisation routine sets
off by taking the true value as an initial guess7.
Remark 3.7: Recall that the ML estimation method is more efficient than
OLS when stationary ARMA-type models with conditional heteroskedastic
innovations are involved. This property could extend to nonstationary time
series, in which case unit root tests, based on ML estimates, can provide more
powerful results. Hence, we assess the possible gains in power over OLS-type
tests when the true process has no unit roots with α = {−0.01,−0.05} and
µ = r0 (1 + α) .
Remark 3.8: Note that the distribution of the t-statistic is scale-invariant
in standard theory and in the unit root framework under errors with long-run
finite variance. However, this property can be lost when errors bear infinite
variance. We also analyse the sensitivity of the asymptotic distribution of
these tests against different values of the scale parameter, σ2. Taking the
parameter of γ in the CIR model as a benchmark (γ = 1/2) , we consider
an increasing sequence σ2j of values for the scale parameter in which case
σ2j = jσ2, j = {0.10, 1, 10, 100} and σ2 = 0.0003. The simulation takes
50,000 paths of length T=500. We also consider the effect of changing the
value of σ on the OLS t-statistic from Experiment Ia)

3.3 Experiment III

Finally, the last experiment is concerned with the t-test and the LR test
under the ML framework. In this case, the focus is on the econometric
extension of the CKLS model which allows for the scale parameter to follow
time-varying dynamics. The data generating process is a pure random walk
with conditional variance following (9) , and the model to be estimated is

7Optimisation is carry out with the CML library of GAUSS 3.2.
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defined as,

∆rt = µ+ αrt−1 + εt; εt|It−1 ∼ N 0,σ2t r
2γ
t−1 (16)

σ2t = ω0 + ω1 εt−1/r
γ
t−2

2
+ ω2σ

2
t−1

where the set of parameters to be estimated through ML is now given by
θ = (θ1, θ2) , θ1 = (µ,α) and θ2 = (γ,ω0,ω1,ω2) .
Remark 3.9: The distribution of the ML t-test with errors following a
GARCH process (i.e., by taking γ = 0 in the former equation) was analyti-
cally derived under restrictive assumptions in Seo (1999). Under the fourth-
moment condition, the limiting distribution converges to a mixture of DF
and standard normal distributions. The mixture coefficient is a nuisance
term that depends on the values of the GARCH parameters and the fourth
moment of the standardised errors. Ling, Li and McAleer (2001) propose
several transformations of the t-statistic in order to obtain a test with a
limiting distribution free of nuisance parameters.
Remark 3.10: The distribution of the likelihood ratio test is derived by
Boswijk (2001) when innovations follow a near-integrated GARCH process.
It is shown that there is little improvement over the OLS tests when volatility
displays strong persistence in the presence of low short-term effects (high
values of ω2 together with low values of ω1 in our framework), stylised features
exhibited by most financial data.
GARCH modelling requires parameter restrictions to ensure nonnegative

values (ω0 > 0; ω1,ω2 ≥ 0) and frequently parametric space constraints
through the restriction ω1+ω2 < 1 to ensure second-order stationarity. It is
worth noting that it is still possible to define meaningful stationary volatility
paths under (5) even when using values beyond the unit boundary; recall
that the common restrictions to ensure stationarity under GARCH errors
are meaningless for this model. However, under GARCH(1,1) dynamics
this is no longer the case since the scale and hence the whole conditional
variance, explodes fairly quickly. As it is unfeasible to report an exhaustive
analysis of all possible combinations of parameters, we will focus on values
found in the empirical literature. Empirical research presents different values
for parameter estimates when considering series from different countries,
different sample frequencies and different time periods. Still, we can observe
some common features.
Firstly, the level effect measured through the elasticity coefficient is

always found to be strongly reduced when mixed-level models are used. This
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is typically observed when 0 < γ < 1 and often when the parameter estimate
is not significantly different from that of the CIR model (γ = 1/2). Secondly,
a number of empirical papers show that the scale parameter follows a
stationary process, mainly characterised by low values for ω1 and high values
for ω2 inside the stationary region (see, for instance, Koedijk et al., 1997).
Some authors have found parameter estimates to exceed far beyond the
stationarity bound, when using daily and weekly data (see, for instance, Bali,
2003). As mentioned earlier, such an occurrence is extremely unappealing
and non-intuitive, and suggestive that volatility follows an explosive process
that ultimately diverges with time8. A possible explanation for this may
lie in the fact that parameter stability is always assumed when modelling
interest rates, thus yielding misspecification when samples span over several
years (often decades) of observations. As the GARCH estimation under the
QML procedure is sensitive to the correct specification of the model, results
may be biased.
Therefore, since nonstationary values cannot be considered reliable, we

consider values falling inside the stationarity region. We initially allow for
a high degree of persistence in the scale dynamics through ω1 = 0.05 and
ω2 = 0.90 (GARCH-L). As in Experiment I, we also treat the case of high
persistence together with relatively high ARCH effects, assigned by ω1 = 0.20
and ω2 = 0.70 (GARCH-H). Given the great computational effort inherent
in this experiment, we concentrate on a fixed parameter for elasticity, namely
that obtained in the CIRmodel, i.e. γ = 1/2 . The unconditional expectation
of the scale is again set to E (σ2t ) = 0.0003 and the analysis based on 25,000
simulations of paths of length T = 500.

4 Simulation Results

Whereas interest rates are positive time series, the discretised CKLS model
and their econometric extensions are likely to take negative values under
the unit root hypothesis9. Furthermore, the process with level-dependent
volatility has an absorbing barrier in zero that is attainable under the null.

8The values reported in Bali (2003) were inadequate to simulate interest rate paths in
a model with a linear drift, given that the simulated series either diverged quickly or fell
into the nonpositive region owing to the explosive volatility.

9The parametric restrictions ensuring non-negativity are not fulfilled under the unit
root process. However, note that even if the parametric restrictions are preserved, the
approximated solution of a SDE intended for a positive process may take negative values
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The implication is that the asymptotic distribution of the unit root test
degenerates because the underlying DGP collapses in zero —the random
walk has the property of almost surely visiting any value of the real line
in asymptotic samples. Of course, the aim when testing for a unit root in
empirical applications is tacitly that of checking out if the observed process
behaves like a non-degenarate, positive random walk in the period analyzed,
which only is possible in finite series10.
We therefore focus on finite-sampled bounded random walks on (0,∞) as

DGPs for our experiment. There is growing interest in the literature towards
bounded random walks (see Nicolau 2002; and the discussion therein for
a recent application of these procedures). Simulations are easily obtained
by discarding paths which do not fall into this range. The resulting series
provide economical meaning a-priori, and the intuition behind our results is
close to that tied to bootstrap procedures in finite samples.
Finally, note that all simulations (and estimations) follow a discrete-time

framework, that considersm = 1.We proceed in this way because the analysis
of the bias induced by the SDE discretisation on the statistical properties of
the tests involved is not the primary aim of this paper. Instead, a context
isolated of such an effect is regarded so that we can analyse the ideal case and
thus provide a reference benchmark. Of course, the power of the t-ratio in
empirical applications related to Experiment II, in which we observe that the
application of the Euler’s scheme can lead to large estimate bias, is expected
to be no greater than that commented below. The analysis of the specific
effect related to the discretisation bias is an interesting topic and is currently
being investigated by the authors.

4.1 Experiment I

Our findings relating to empirical size from Experiment Ia) for the nominal
levels of 1% and 5% are summarised in Table 4.1. Small deviations from
the nominal sizes arise as a function of γ in the case of the parametric tests,
while the nonparametric procedure appears quite robust against this form
of heteroskedasticity. As the value of γ increases, however, the distribution

(see Schurz, 1996 for a discussion of this issue and an application of the CKLS model).
10In other words, testing the null of a unit root seems to make sense for (arbitrarily

long yet) finite series, where the random walk is able to show a non-degenarate, positive
behaviour, as that exhibited in observed series.
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Table 4.1: Empirical size of unit root tests against stationarity at 1% and 5%
nominal level. The DGP is ∆rt = σrγt−1ηt, ηt|It−1 ∼ iidN (0, 1) and the test
regression used is ∆rt = µ + αrt−1 + ut, where ut is regarded as an iid process.
Empirical size is computed using 50,000 replications of samples of 500 observations
for the i) Dickey-Fuller t-test (DF-T) on H0 : α = 0, ii) Dickey-Fuller likelihood
ratio (DF-LR) on H0 : (µ,α) = 0, and iii) Non-parametric test of Beitrung (2002)
(NP) on H0 : α = 0.

1% 5%
γ DF-T DF-LR NP γ DF-T DF-LR NP
0.00 0.013 0.012 0.011 0.00 0.061 0.056 0.066
0.05 0.012 0.010 0.011 0.05 0.059 0.052 0.067
0.10 0.012 0.010 0.011 0.10 0.057 0.051 0.067
0.25 0.011 0.009 0.011 0.25 0.054 0.046 0.066
0.40 0.013 0.011 0.012 0.40 0.055 0.047 0.064
0.50 0.016 0.017 0.010 0.50 0.062 0.059 0.059
0.55 0.018 0.021 0.010 0.55 0.065 0.064 0.055
0.60 0.022 0.027 0.009 0.60 0.070 0.075 0.052
0.65 0.025 0.031 0.009 0.65 0.071 0.078 0.050
0.70 0.025 0.035 0.009 0.70 0.075 0.084 0.052
0.75 0.021 0.030 0.009 0.75 0.069 0.079 0.053
0.80 0.019 0.027 0.009 0.80 0.066 0.075 0.053
0.95 0.016 0.022 0.009 0.95 0.061 0.068 0.053
1.00 0.015 0.020 0.009 1.00 0.060 0.066 0.053
1.10 0.014 0.018 0.009 1.10 0.057 0.063 0.053
1.25 0.013 0.016 0.009 1.25 0.054 0.059 0.053
1.50 0.011 0.013 0.009 1.50 0.052 0.054 0.052
1.75 0.011 0.011 0.085 1.75 0.050 0.052 0.051
2.00 0.010 0.011 0.089 2.00 0.049 0.050 0.051
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tends rapidly to the DF distribution. The underlying distribution seems to
be therefore the DF distributions.
The effect on power after adjusting for size can be summarised as follows

(see Figures 4.1 and 4.2). Firstly, the parametric tests suffer from distortions
depending on the value of the elasticity parameter; the case of maximum
power for the parametric test is observed for γ = 0,(corresponding to the
context where the model is correctly specified). The LR test is widely known
to be less powerful than the t-test due to its two-sided nature, and it is also
shown here to be more sensitive to level effects than the t-ratio. Both tests are
indeed sensitive to γ, particularly as the root reaches towards unity, though
interestingly, the impact on the DF test weakens as the significance level
decreases. Hence, researchers who tend to avoid large significant levels when
applying the DF test due to the characteristic low power of this procedure
should note in this another reason for doing so when testing the properties of
interest rate time series. The power decreases in the case of the parametric
DF tests, and we show that these procedures have low ability to identify
the mean-reversion behaviour of the series for several values of γ in a near-
integration context.
On the other hand, the nonparametric test proposed by Breitung (2002)

certainly displays robustness against this type of volatility. This test is
generally not more powerful than the DF t-test when the root is relatively far
from unity, it may indeed display better performance in the near-integrated
region given it is less sensitive than the DF test. Therefore, this test may be
the better option when one suspects of the presence of this type of volatility,
than the Dickey-Fuller test. Experiment Ib) highlights the results discussed
earlier. The effect on the unit root tests when allowing a time-varying scale
with stationary GARCH dynamics does not seem significantly different from
that under constant scale, and the empirical percentiles (in the lower tail)
are very similar. Given the strong similarity, we only present results for the
empirical size on the 5% nominal size (see Table 4.2) for the sake of brevity
and space, but remaining results are available from the authors upon request.
The power results are essentially the same as those obtained with a pure

level model for all the tests here considered. Although there are slight
differences for small values of γ, the behaviour is roughly the same for high
values of the same parameter. Figure 4.3 shows the effect on the DF t-test
in the near-integrated region α = −0.01 and nominal size of 5%, exhibiting
predominance of the level effect under the hypothesis of no mean-reverting
behaviour.
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Figure 4.1: Power of unit root tests under different values of , -0.01γ α =  
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Power of unit root tests against stationarity at nominal sizes of 1\% and 5\%. The DGP is given by 

2 2
1 1 1, ~ (0, )t t t t t tr r I N r γµ α ε ε σ− − −∆ = + +  with ( , ) (0.0015, 0.01)µ α = − . Only positive 

realization of the DGP are considered in order to compute size and power. The estimated model is 

1t t tr r uµ β −∆ = + +  where the noise is regarded as an iid process. Power (corrected by empirical size) is 

computed for the i) Dickey-Fuller t-test 0( ), : 0DF T H α− = ;  ii) Dickey-Fuller likelihood-ratio test 

0( ), : ( , ) 0DF LR H µ α− = ; and iii) Breitung's nonparametric tests 0( ), : 0NP H α = . 



 
 
 
 
 
 
 
 

Figure 4.2: Power of unit root tests under different values of , -0.05γ α =  
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Power of unit root tests against stationarity at nominal sizes of 1\% and 5\%. The DGP is given by 

2 2
1 1 1, ~ (0, )t t t t t tr r I N r γµ α ε ε σ− − −∆ = + +  with ( , ) (0.0075, 0.05)µ α = − . The estimated model is 

1t t tr r uµ β −∆ = + +  where the noise is regarded as an iid process. Power (corrected by empirical size) is 

computed for the i) Dickey-Fuller t-test 0( ), : 0DF T H α− = ; ii) Dickey-Fuller likelihood-ratio test 

0( ), : ( , ) 0DF LR H µ α− = ; iii) Breitung's nonparametric tests 0( ), : 0NP H α = . 



Table 4.2: Empirical size of unit root tests against stationarity at a 5%
nominal level. The DGP is ∆rt = σtr

γ
t−1ηt, ηt|It−1 ∼ N (0, 1) , with

σ2t = ω0 + ω1 ηt−1σt−1
2
+ ω2σ

2
t−1,σ

2
t = 0.0003 = ω0 (1− ω1 − ω2)

−1 and
either (ω1,ω2) = (0.05, 0.90) , (GARCH − L), or (ω1,ω2) = (0.20, 0.70) ,
(GARCH −H) . The estimated model is ∆rt = µ + αrt−1 + ut, where ut is
regarded as an iid process. Empirical size is computed using 50,000 replications of
samples of 500 observations for the i) Dickey-Fuller t-test (DF-T) on H0 : α = 0, ii)
Dickey-Fuller likelihood ratio (DF-LR) on H0 : (µ,α) = 0, and iii) Non-parametric
test of Beitrung (2002) (NP) on H0 : α = 0.

GARHC-L GARCH-H
γ DF-T DF-LR NP γ DF-T DF-LR NP
0.00 0.063 0.059 0.066 0.00 0.063 0.059 0.066
0.05 0.061 0.055 0.066 0.05 0.068 0.063 0.065
0.10 0.063 0.055 0.065 0.10 0.067 0.061 0.066
0.25 0.056 0.048 0.065 0.25 0.064 0.054 0.064
0.40 0.059 0.051 0.063 0.40 0.064 0.056 0.062
0.50 0.063 0.061 0.058 0.50 0.070 0.064 0.059
0.55 0.068 0.068 0.054 0.55 0.075 0.072 0.054
0.60 0.072 0.075 0.053 0.60 0.077 0.080 0.051
0.65 0.075 0.083 0.052 0.65 0.079 0.087 0.050
0.70 0.074 0.083 0.051 0.70 0.080 0.088 0.051
0.75 0.072 0.081 0.052 0.75 0.076 0.085 0.049
0.80 0.070 0.077 0.052 0.80 0.074 0.082 0.051
0.95 0.063 0.070 0.052 0.95 0.069 0.074 0.052
1.00 0.062 0.068 0.052 1.00 0.067 0.072 0.052
1.10 0.060 0.065 0.052 1.10 0.065 0.069 0.052
1.25 0.058 0.061 0.053 1.25 0.054 0.057 0.053
1.50 0.055 0.057 0.053 1.50 0.062 0.066 0.053
1.75 0.053 0.055 0.052 1.75 0.059 0.059 0.052
2.00 0.052 0.053 0.051 2.00 0.059 0.058 0.052
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Figure 4.3:  Power of unit root tests under mixed errors, 0.01α = −  
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Power of unit roots tests against stationarity at 5\% nominal size. The DGP is given by 

1 1 , 1  ~ (0,1)t t t t t t t t tr r r I iidNγµ α ξ ξ σ η η− − −∆ = + + =  where 2 2 2
0 1 1 2t t tσ ω ωξ ω σ−= + + . The DGP 

in all cases assumes ( , ) (0.0015, 0.01)µ α = −  and [ ]0,2γ ∈ . The conditional variance dynamics is 

given by: 
  

i) Level model:  2 2
0 0( ,0,0),  0.003ω σ σ= = . 

ii) mixed model with strong persistence and low ARCH effect (GARCH-L): 

0( ,0.05,0.80)ω ω= . 

iii) mixed model with strong persistence and high ARCH effect (GARCH-H):  

0( ,0.20,0.70)ω ω=  where 2
0 0 1 2(1 )ω σ ω ω= − − . 

 

The estimated model is 1t t tr r uµ β −∆ = + + , where the noise is regarded as an iid process. Power 

(corrected by empirical size) is computed for the i) Dickey-Fuller t-test 0( ), : 0DF T H α− = ; ii) 

Dickey-Fuller likelihood-ratio test  0( ), : ( , ) 0DF LR H µ α− = ; and iii) Breitung's nonparametric tests 

0( ), : 0NP H α = . 



4.2 Experiment II

In Tables 4.3 and 4.4 we report the simulated critical values for the test
statistics from ML estimations. It is clear that the distribution of the t-test
and the LR test gravitate around the Dickey-Fuller distributions. Moreover,
as γ increases the t-statistic is progressively attracted to the same limiting
distribution as the standard DF test, although some slight deviations from
these distributions can be observed when γ takes values under 1/2. The
empirical distribution of these tests seems to be (at least) influenced in small
samples by the value of the elasticity parameter γ, although remarkably the
DF distribution of the t-ratio indicates good critical values for the empirical
range considered (see Figure 4.4).
In terms of the scale parameter effect on the shape of the limit

distribution, it appears that the tails of the t-test are affected when this
parameter takes relatively high values, so the scale-invariance of the ordinary
t-stastistic is indeed lost when considering these types of stochastic processes
(see Table 4.5). The differences seem to be of little importance when the scale
parameter is small or moves into the relevant range for empirical applications.
However, it becomes evident that high parameter values shift the distribution
to the left, so the probability of taking parameter estimates of α greater than
zero increases, given the value11 of γ. Interestingly, this phenomenon is also
present when the DGP is bounded, though the magnitude of the shift is
found to be smaller and concentrated in the upper tail. Of course, the scale-
invariance property of the OLS t-statistic in Experiment I is also lost, and
the limiting distributions depend on the value of the scale. Again, the higher
the value of that parameter, the higher the departure.
With respect to the power properties of the ML tests, our analysis shows

that parameter γ still conditions the ability of these tests to reject the null.
Table 4.6 presents the power results of the ML when using the empirical
critical values from the above simulations. It can be observed that the power
of the ML tests is nearly halved when the elasticity parameter is different
from zero and the root is near-integrated α = −0.01. The power of the t-test
is higher than that of the LR statistic and in general ML based tests exhibit
higher power than those based on the OLS method from Experiment Ia).
Interestingly, the power of the ML and OLS based procedures tends to be
equal for values γ > 1. It is seen that the critical values offered by the DF

11We repited the simulations for several values of γ with no qualitatively differences
from results reported in the main text.
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Table 4.3: Empirical percentiles for the t-test of the null hypothesis H0 : α = 0 in
the model ∆rt = µ+ αrt−1 + σrγt−1ηt; ηt|It−1 ∼ iidN (0, 1), where parameters
are estimated based on the ML method. The DGP takes (µ,α) = 0. DF-T
represents the percentiles of the t-test DF distribution (T=500). Percentiles are
computed based on 50,000 replications.

Probability of a smaller value
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

DF-T −3 .44 −3 .13 −2 .87 −2 .57 −0 .43 −0 .07 0 .24 0 .63
γ

0.00 −3.52 −3.20 −2.94 −2.65 −0.60 −0.25 0.06 0.42
0.10 −3.48 −3.17 −2.91 −2.62 −0.55 −0.20 0.13 0.51
0.25 −3.48 −3.17 −2.91 −2.66 −0.56 −0.19 0.14 0.54
0.40 −3.44 −3.14 −2.89 −2.60 −0.50 −0.12 0.23 0.63
0.50 −3.45 −3.13 −2.87 −2.54 −0.50 −0.12 0.22 0.64
0.65 −3.44 −3.13 −2.86 −2.56 −0.41 −0.04 0.29 0.68
0.75 −3.44 −3.12 −2.87 −2.57 −0.46 −0.08 0.25 0.66
0.90 −3.43 −3.12 −2.86 −2.57 −0.44 −0.07 0.27 0.68
0.95 −3.45 −3.13 −2.87 −2.57 −0.42 −0.04 0.29 0.68
1.00 −3.44 −3.13 −2.87 −2.57 −0.41 −0.04 0.30 0.68
1.25 −3.43 −3.12 −2.85 −2.56 −0.41 −0.03 0.29 0.68
1.50 −3.40 −3.10 −2.84 −2.54 −0.40 −0.03 0.29 0.67
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Table 4.4: Empirical percentiles of the LR test of the null hypothesis H0 :
(µ,α) = 0 in the model ∆rt = µ + αrt−1 + σrγt−1ηt; ηt|It−1 ∼ iidN (0, 1),
where parameters are estimated by ML in both the restricted and unrestricted
models. The DGP takes (µ,α) = 0. DF-LR represents the percentiles of the LR
DF distribution (T=500). Percentiles are computed based on 50,000 replications.

Probability of a smaller value
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

DF-LR 0 .60 0 .78 1 .02 1 .34 7 .58 9 .22 10 .82 12 .94
γ
0.00 0.64 0.87 1.13 1.50 7.90 9.52 11.09 13.14
0.10 0.65 0.89 1.15 1.52 7.78 9.42 10.96 13.04
0.25 0.58 0.86 1.17 1.59 7.80 9.48 11.03 13.09
0.40 0.48 0.74 1.06 1.50 7.85 9.42 10.91 12.90
0.50 0.42 0.67 0.97 1.40 7.65 9.24 10.79 12.83
0.65 0.41 0.67 0.94 1.33 7.52 9.11 10.67 12.65
0.75 0.44 0.69 0.95 1.32 7.48 9.06 10.57 12.67
0.90 0.46 0.69 0.95 1.31 7.53 9.12 10.66 12.57
0.95 0.47 0.70 0.95 1.31 7.55 9.15 10.69 12.72
1.00 0.47 0.70 0.95 1.31 7.55 9.16 10.69 12.71
1.25 0.51 0.72 0.96 1.31 7.53 9.16 10.69 12.78
1.50 0.54 0.74 0.98 1.31 7.48 9.10 10.62 12.70
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Figure 4.4: Empirical Cumulative Density Function of the t-statistic for values of 

γ  reported in Table 3.1 
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Table 4.5 :Empirical percentiles for the t-test of the null hypothesis H0 : α = 0
in the model∆rt = µ+αrt−1+σrγt−1ηt; ηt|It−1 ∼ iidN (0, 1) , where parameters
are estimated by ML. The DGP takes γ = 1/2, (µ,α) = 0 and the values of the
parameter scale, σ2, presented in the first column. DF-T denote the percentile
for the t and LR test obtained from the respective DF distributions (T=500).
Percentiles are computed based on 50,000 replications.

Probability of a smaller value
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

DF-T −3 .43 −3 .12 −2 .86 −2 .57 −0 .44 −0 .07 0 .23 0 .60

σ2

0.00003 −3.42 −3.11 −2.84 −2.54 −0.42 −0.06 0.26 0.64
0.0003 −3.45 −3.13 −2.87 −2.54 −0.50 −0.12 0.22 0.64
0.003 −3.45 −3.13 −2.87 −2.54 −0.40 −0.05 0.30 0.74
0.03 −3.42 −3.11 −2.86 −2.56 −0.43 −0.03 0.35 0.77

Probability of a smaller value
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

DF-LR 0 .60 0 .78 1 .02 1 .34 7 .58 9 .22 10 .82 12 .94

σ2

0.00003 0.57 0.77 1.00 1.32 7.44 9.05 10.63 12.66
0.0003 0.42 0.67 0.97 1.40 7.65 9.24 10.79 12.83
0.003 0.38 0.65 1.02 1.57 8.26 9.85 11.44 13.58
0.03 0.38 0.65 1.02 1.60 8.32 9.95 11.50 13.55
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Table 4.6: Power of ML t-test tests at 1% and 5% nominal levels. The estimated
model is ∆rt = µ + αrt−1 + σrγt−1ηt, ηt|It−1 ∼ iidN (0, 1) , where the DGP
considers mean-reverting paths with α = {−0.01,−0.05} . Power is computed
based on 50,000 replications of samples of 500 observations for the i) t-test on
H0 : α = 0, and ii) LR test on H0 : (µ,α) = 0. The value of µ is set as
µ0 (1 + α).

α = −0.01 α = −0.05
1% 5% 1% 5%

γ t-test LR t-test LR t-test LR t-test LR

0.00 0.053 0.039 0.210 0.159 0.813 0.740 0.987 0.970
0.10 0.049 0.034 0.189 0.138 0.743 0.650 0.971 0.942
0.25 0.030 0.022 0.138 0.105 0.727 0.645 0.965 0.935
0.40 0.028 0.020 0.120 0.092 0.740 0.660 0.964 0.933
0.50 0.026 0.020 0.122 0.098 0.728 0.661 0.965 0.940
0.65 0.026 0.020 0.119 0.099 0.728 0.672 0.963 0.942
0.75 0.026 0.020 0.118 0.100 0.726 0.666 0.963 0.942
0.90 0.026 0.020 0.120 0.095 0.730 0.670 0.963 0.936
0.95 0.024 0.019 0.118 0.093 0.718 0.652 0.964 0.934
1.00 0.025 0.019 0.117 0.090 0.723 0.652 0.962 0.933
1.25 0.024 0.017 0.120 0.087 0.726 0.637 0.965 0.930
1.50 0.024 0.017 0.118 0.085 0.740 0.638 0.967 0.930
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distributions are precise for most of the values of γ in the range analyzed,
although it should be remarked that empirical sizes are slightly higher than
the respective nominal sizes when γ takes low values.

4.3 Experiment III

The general results stated in the previous section can be extended to
Experiment III, in which case, the scale parameter follows a stationary
yet highly-persistent GARCH dynamics. The search for the optimum is
considerably more complex than in the level case as a result of tolerating
a high degree variance nonlinearity (despite the offset of the optimisation
routine being the true solution), though convergence is reached in all cases.
The GARCH parameters governing the scale dynamics are clearly

nuisance parameters and therefore make the limiting distribution differ from
the one wi th cons tant scal e (see Fi gure 4. 5). For exampl e, when γ = 1/2, the
percentiles (1%, 5%, 10%) and [90%, 95%, 99%] of the empirical distributions
are (-3.33, -2.77, -2.50) and [0.04,0.40,0.90] respectively, when GARCH
dynamics includes low short-run effects. However, the corresponding
percentiles are (-3.33,-2.76,-2.44) and [0.25, 0.58, 1] when higher short-
run dynamics is allowed for. Recall that the computed critical values are
(-3.44, -2.89, -2.60) and [-0.11, 0.23, 0.61], respectively, when only level-
dependence drives the conditional variance, so the GARCH dynamics push
the distributions to the left. Note that this result is in the same line that the
main results evidenced by Seo (1999). The limiting distribution of the LR
statistic is also seen to depend on the particular GARCH dynamics 12.
Thus, it is important to note that the limiting distribution of the t-

test obtained in the estimation of generalisations of the CKLS model for
a particular value of γ is far from normal and, in fact, is much closer to the
DF distribution. Nonetheless, the normal distribution is (implicitly) used as
the limit distribution when conducting inference in such models, (though, no
explicit reference to the distribution of the test statistic used is made). Hence,
conclusions regarding mean-reversion in this non-formal manner are dubious
and potentially misleading (see, Bali, 2003 among others, for an example of
this ambiguity13). It should be noted that the normal distribution would

12We avoid the presentation of these statistics for the sake of space, although these are
available upon request.
13The procedure used by Bali (2003) is as follows: firstly, the DF t-test is performed

under the null of a random walk without drift, based on an auxiliary regression with a
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Figure 4.5: Kernel Densities of t-statistics under level and Mixed errors 
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Kernel densities of the empirical distributions of the t-stastistic with and without a time-varying scale 
when 1/ 2γ = . The conditional variance dynamics is given by: 
  

i) level model (Level):  2 2
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ii) mixed model with strong persistence and low ARCH coefficient (GARCH-H): 
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only make sense if the true model were intended as a unit root process with
a non-zero drift, which is not a realistic premise for interest rates. Yet, even
in such a case, it has been shown in the conventional unit root literature that
the limit distribution could differ from the Gaussian distribution in samples
of moderate size and small drift; see Hylleberg andMizon (1989) and Haldrup
and Hylleberg (1995).

5 Conclusion

In this paper we provide several insights into the behaviour of the more
popular unit root test procedures, commonly applied in the empirical
modelling of risk-free, short-term interest rates. Unit root dynamics do not
seem to be a proper model for interest rates, though testing against this type
of behaviour is common in literature related to the topic, either as part of
a previous descriptive analysis or as part of the diagnostic analysis on the
estimates from the parametric model involved.
As a first approach, we assessed the performance of the well-known DF

tests as well as a recently introduced nonparametric procedure proposed by
Breitung (2002) and Breitung and Taylor (2003) when random innovations
are level-dependent. The effect of GARCH dynamics and other nonlinear
structures, like regime switching models, have been analysed in the literature
related to unit root tests, however to level-dependent conditional variances
little attention has been given. This type of process is better suited in
the framework of interest rates and, hence, raises an interesting issue of
empirical relevance. Our analysis represents an empirical extension of the
basic homoskedastic framework of unit root testing procedures towards this
form of heteroskedasticity. We observe that the statistical properties of
the DF procedures are sensitive to a particular value of γ. This form of
heteroskedasticity leads to high losses of power in samples of moderate size,

constant. Evidence against the unit root is found using a 10% significance level. Then,
the CKLS model (among others) is estimated according to the discrete approximation of
the continuous process, and subsequently parameter estimates and their corresponding
asymptotic t-statistics presented. It is found that “The maximum likelihood estimates of
the linear drift model imply mean reversion of the spot rate since α1 [the autoregressive
parameter] is found to be negative and highly significant”, pp. 211. Note that the t-
statistic for the level model (see Table 4, p.213) takes the value −1.48 with γ̂ = 1.57, as
a result this parameter is not very significant at any of the conventional confident levels
when the true empirical distribution is used.
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particularly when a high significance level is used in a near-integrated context.
On the other hand, the nonparametric procedure analysed reveals to be

quite robust against this class of heteroskedasticity and yields better results
in contexts where the performance of parametric tests fails. Given that the
strong persistence of the series is capable of generating a quasi-integrated
context, the exact functional form of conditional volatility is unknown
and can only be estimated. Procedures that provide robustness against
conditional volatility and even against the presence of a second moment may
constitute a better alternative than parametric tests. Approaches such as
the recently proposed procedure by Luger (2003) could in this context prove
useful, and clearly deserve further investigation.
Next, given the importance of modelling and testing for the interest rate

literature, we analysed the shape of the limiting distributions of both the
t-test and the LR test obtained from ML estimation of discretely observed
diffusion processes. We considered a general nonlinear CKLS diffusion model
and an econometric extension that allows the scale parameter to evolve
according to stationary GARCH dynamics. The limiting distributions of
the relevant statistics are tampered by nuisance parameters and depend (at
least) on the particular value of the elasticity parameter, particularly when
γ takes low values. Furthermore, the t-statistic is not scale-invariant, as is
generally the case when there is a well-defined long-term variance. The power
of tests based on ML estimation shows to be sensitive to the particular value
of γ, although not to the same extent as observed in OLS procedures. It was
also found that the limiting distribution is also sensitive to a particular value
of the driving parameters when the scale follows time-varying dynamics. It
is likewise the case in the standard context in which the variance does not
depend on the level, since the distribution switches to the left.
In conclusion, the t-test for estimates taken from the discretely observed

CKLS model or its econometric extensions, require finding evidence against
the unit root hypothesis based on distributions free of nuisance parameters;
alternatively the limiting distribution for each particular realization can be
obtained by means of bootstrapping procedures. Nevertheless, it should be
noted that the DF distributions provide precise critical values for most of
the relevant values of γ and σ which are found in practice. When the scale
is allowed to follow time-varying dynamics, the critical values from the DF
distribution represent only approximated values.
The findings of this paper emphasise not only the need for closer

analytical investigation of proposed procedures but further introduction
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of new parametric tests based on ML estimation with better properties
than those presently available. Also this study importantly touched
on the particularities connected to the difficulty in deriving asymptotic
distributions. The highly nonlinear structure displayed by the random
innovations are not treated in the standard theory of random walk processes.
The interest rate series exhibit conditional heteroskedasticity as well as
infinite-variance errors under the null, introducing yet more intricacies to
our investigation. Although econometric literature has already dealt with
finite-variance errors in the unit root framework under the assumption of
errors drawn from a α-stable distribution, the general cases here discussed
remain a challenging problem.
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