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ABSTRACT 
 

This paper deals with price competition among multiproduct firms. We consider 
a model with n firms and one representative buyer. Each firm produces a set of products 
that can be different or identical to the other firms' products. The buyer is characterized 
by her willingness to pay -in monetary terms- for every subset of products. To handle 
the combinatorial complexity of this general setting we use the linear relaxation of an 
integer programming package assignment problem. This approach allows to 
characterize all the equilibrium outcomes. We look for subgame perfect Nash 
equilibrium prices in mixed bundling strategies, i.e., when firms offer consumers the 
option of buying goods separately or else packages of them at a discount over the single 
good prices. We find that a mixed bundling subgame perfect Nash equilibrium price 
vector always exists. Also, the associated equilibrium outcome is always efficient, in the 
sense that it maximizes the social surplus. We extend the analysis to a model with m 
buyers and offer the conditions under which the equilibrium outcome set is non-empty. 
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1 Introduction

This paper deals with price competition among multiproduct firms. We
consider a model with n firms and one representative buyer. Each firm pro-
duces a set of products that can be different or identical to the other firms’
products. The buyer is characterized by her willingness to pay -in mone-
tary terms- for every subset of products. We show that a mixed bundling
subgame perfect equilibrium outcome always exists and it is efficient in the
sense of maximizing the social surplus. Then, we extend the analysis to a
model with m buyers and offer the conditions under which the equilibrium
outcome set is non-empty.

Mixed bundling1 refers to the practice of offering consumers the option
of buying goods separately or else packages of them (at a discount over the
single good prices). This pricing strategy has often been seen as a form of
price discrimination. The traditional theory on this angle begins with the
observation by Stigler (1963) that bundling can increase a seller’s profits
when consumers’ reservation prices for two goods are negatively correlated.
In the two goods case, offering both a two-good bundle as well as the in-
dividual items (mixed bundling) is typically optimal (Adams and Yellen,
1976; McAfee, McMillan and Whinston, 1989). This is because bundling
reduces heterogeneity in consumer valuations, enabling a monopolist to bet-
ter price discriminate (Schmalensee, 1984), while still capturing residual
demand through unit sale. While the insight that bundling reduces hetero-
geneity in valuations is quite general, other aspects of these solutions often
do not generalize beyond the two-goods case. Tractable analytical solutions
have been found for a variety of special cases such as linear utilities or when
valuations across different consumers can be ordered in specific ways or sat-
isfy certain separability conditions (Armstrong, 1996; Sibley and Srinagesh,
1997). Nowadays, there have been several studies that have considered large
number bundling problems in specific contexts related to information goods2

pricing (Chuang and Sirbu, 1999). These studies generally found that en-
gaging in a form of mixed bundling where a certain large bundle is offered
along side individual sale dominates either strategy alone. However, most

1Examples of mixed budling are season tickets, film with camera, all-included vacation
packages, round-trip airline tickets, etc.

2The emergence of Internet as a low-cost, mass distribution medium has renewed in-
terest in pricing structures for information and other digital goods. Thus, publishers,
software producers, music distributors, cable television operators, etc. face similar profits’
maximizing problems.
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of the results are more empirical than analytical.
The conditions of competition can be quite different when there are

more than one competing firms and, therefore the analysis of the effect of
mixed bundling becomes more complicated. Duopoly was considered by
Economides (1993), in a model where firms produce complementary goods,
and shows that mixed bundling is a dominant strategy for both firms. In
a different but related set up, Liao and Urbano (2002, LU hereafter) and
Liao and Tauman (2002, LT, hereafter), assume that firms produce each
two complementary goods which are substitutes for the two corresponding
goods produced by the other firm. Thus, the two products of each firm
forms a pure system; but the firms produce modular components, in the
sense that consumers can costlessly assemble mixed systems composed of
any two complementary goods of the two different firms. LT find that mixed
bundling strategies play a key role in stabilizing the market. If the use of
mixed bundling is not allowed, LU show that subgame perfect linear pricing
equilibria may fail to exists. The possibility of non existence of linear-pricing
equilibrium when firms produce several goods is in contrasts with the result
of Tauman et al. (1997, TUW, hereafter), and Arribas and Urbano (2003a,
AU hereafter), who always guarantee it. These last two papers, however,
deal with a simple model of price competition in a multiproduct oligopoly
market, where firms only produce a product and the representative consumer
buys either one or zero units of each product. In a setting of a discrete choice
model of product differentiation (logit model), Anderson and Leruth (1993,
AL hereafter), show that only pure component pricing (linear pricing) may
be offered at equilibrium since firms fear the extra degree of competition
inherent in mixed bundling. Very recently, Gandal, Markovich and Riordan
(2002) have examine the importance of strategic bundling for the evolution
of market structure and the performance of the PC office software market.
Also through a discrete choice model of product differentiation, they find
strong empirical support for negative correlation in consumer preferences
over world processors and spreadsheets. This negative correlation creates
an incentive for strategic bundling3.

Most of the above models -dealing with duopoly markets, where each
firm produces two complementary goods- predict mixed bundling as a result
of multiproduct competition. However, a general analysis is still lacking
and, what is worse, it is not even know if a Nash equilibrium may exist
in such a general setting. Our analysis is a first attempt to show the ex-

3Incentive that Microsoft exploited succesfully with its office suite products!
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istence of mixed bundling equilibrium prices in a model with multiproduct
firms, where products are of a very general nature. To set up a model where
oligopolistic firms may follow mixed bundling strategies, we start by assum-
ing a representative buyer, extending the analysis to m buyers later on.
Mixed bundling is an aggressive pricing policy in oligopolistic settings: it
forces firms to reduce prices in an attempt to keep a competitive advantage,
and therefore the assumption of a representative buyer is not as restrictive
as it may appear at a first glance. Firms deal with only a (type of) buyer,
what gives place to a tougher competition among firms, thus adding to the
extra degree of competition inherent in mixed bundling.

Once we abandon the world of two firms and two products, the number
of consumption bundles grows exponentially and it is extremely difficult to
find the subgame perfect Nash equilibrium outcomes by checking and avoid-
ing all the possible deviations. To generalize the above analysis is, then,
necessary, to use tools with better handle these combinatorial complexity.
In this sense, the integer programming package problem, or better, its linear
relaxation allows us to characterize all price vectors satisfying Nash equilib-
rium subgame perfection in a huge set.

Firms do not precommit to a particular pricing strategies prior to the
choice of actual prices, this meaning that mixed bundling pricing is not
excluded. We look for subgame perfect Nash equilibrium prices in mixed
bundling. If the use of mixed bundling strategies is not allowed, equilib-
rium may not exist (this was shown in LU). In contrast, we show here that
a mixed bundling (subgame perfect) Nash equilibrium price vector always
exists. Hence, mixed bundling is important to stabilize the market. Fur-
thermore, we find that mixed bundling in oligopolistic competition induce
consumers to select the efficient consumption set, i.e., the consumption set
which maximizes the social surplus. This is not always the case, when mixed
bundling is excluded.

We show that the optimal solutions of the linear relaxation of the above
mentioned integer integer programming package assignment problem are the
subgame perfect Nash equilibrium profits or net prices and consumption set.
It is interesting to note that the optimal solutions of a linear programming
problem are a polyhedron, and so is the projection of the dual problem’s
solutions on firms’ net price vectors. This polyhedron is completely deter-
mined by its vertices. The Pareto frontier of the above projection has to
be identified in order to characterize the set of all subgame perfect Nash
equilibrium net price vectors. As this frontier can be expressed as the con-
vex combination of non-Pareto dominated vertices, we just need to obtain
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all these vertices. At every equilibrium, a non-active firm sets marginal
costs prices, and the active firms’s net prices are the non-Pareto dominated
vectors of the above Pareto frontier. When, the equilibrium consumption
set is pure, i.e., it consists only of products of a firm, then non-active firms
prices are set equal to marginal costs, and the selected firm’s price is a
bundling price, leaving the buyer with some surplus. On the contrary, if
the equilibrium consumption set is composed of a product of each firm, a
completely mixed bundle, then the buyer pays the sum of the individual
products’s prices, even though bundles are offered at special prices. Thus,
mixed bundling prices are here off-equilibrium prices but are used to sustain
the equilibrium. Then, LT and AL results are especial cases of our general
model.

When the social value function for bundles of goods is monotonic and
firms are substitutes, then equilibrium net prices are the social marginal
contributions of firms, reflecting the underlying market competition. When
it is convex equilibrium net prices coincide with the core of the economy.

The market model considered here is also related to the matching lit-
erature (see, Kelso and Crawford 1982, KC) and with assignment games.
In particular, some extensions of the canonical standard assignment model,
with many sellers and buyers interacting have received and increasing at-
tention recently. These models are two-side matching markets, where sellers
have an initial endowment of indivisible objects and buyers have an utility
function over any package or bundle of objects. Differences in the framework
are based on the units produced (each seller has only one product and only
one unit of this product or their have no restriction on their production);
the units purchased (just one or a bundle); the number of sellers (one or
more); the number of buyers; the price of a bundle (additive or non-additive
pricing function), etc.

The package assignment problem has been studied by Gul and Stacchetti
(1999, GS), Bikhchandani and Mamer (1997, BM) and Bikhchandani and
Ostroy (2001, BO), among others. In all these papers utilities are quasilinear
in money, defined on bundles of goods and buyers play the same role; they
select, given firms’ prices, the best bundle. The main difference between our
model and theirs is that we deal with strategic equilibrium where firms are
price setters, while they deal with Walrasian equilibria. Other difference is
that we deal with a representative buyer (although we extend some of our
results to m buyers), but have no restriction on the set of goods, while, for
instance, GS deal with heterogeneous buyers, but with goods which have no
complementarities (a notion closely related to gross substitutability). BM
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and BO give a linear programming (LP) characterization of the Walrasian
equilibrium outcomes while we formulate the Nash equilibrium of a multi-
product market with a representative buyer, as an extension of the package
assignment model and show the equivalence of some linear programming
solutions and Nash equilibrium outcomes.

The paper is organized as follows. The model is presented in section 2,
while the integer programming package assignment problem and its linear
relaxation are offered in section 3. The main results are provided in section 4,
where we show the existence of mixed bundling equilibria and characterize
the equilibrium outcome set. Specific results for monotonic, concave and
convex value functions are offered in section 5. Section 6 cares about the
role of mixed bundling. The model with m buyers is the subject of section
7, and it concludes the paper.

2 The model

Consider an economy with n firms and one buyer. Each firm produces a
set of products and one firm’s products can be different from or identical to
the other firms’ products. Let N = {1, 2, ..., n} be the set of firms. Let Ωi
be firm i’s set of products and Ω = ∪i∈NΩi be the set of all products. Let
ci(wi) be the (constant) unit cost of production of firm i for product wi ∈ Ωi,
where costs are additive, i.e., ci(Ti) = w∈Ti ci(w), Ti ⊆ Ωi, and for any set
S ⊆ Ω, with Si = S ∩ Ωi for all i, let c(S) = (c1(S1), c2(S2), · · · , cn(Sn)) be
the associated cost vector.

A consumption set is a subset S ⊆ Ω. A firm is said to be non-active in
a given consumption set if none of its products is consumed. We will write
Si ∈ S to mean that firm i sells set Si in S, i.e. Si = S ∩ Ωi and let F (S)
be the set of active firms in S, i.e., F (S) = {i ∈ N |S ∩Ωi = ∅}. The buyers
is characterized by a value function over any subset S ⊆ Ω, v(S), which
represents her total willingness to pay for consumption set S, with v(∅) = 0.

Each firm i sets prices for its Ωi products. It can also offer subsets of
them as bundles for a special price. Thus, a strategy of firm i, i ∈ N , is a
2Ωi-tuple specifying the price of each w ∈ Ωi as well as the prices of each
any other subset of Ωi, i.e., firm i chooses a price function pi ∈ Pi, where
Pi = R2Ωi+ = {the set of vectors pi : 2Ωi −→ R+ with 2

Ωi = {Ti|Ti ⊆ Ωi}}.
Let pi(Ti) be the price of Ti ⊆ Ωi, if pi(Ti) = w∈Ti pi(w), then prices are
linear and bundle Ti is offered for no special price. If pi(Ti) < w∈Ti pi(w),
then the price of Ti is subadditive, and Ti is offered as a bundle at a lower
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price. In this case, we say that firm i follows a mixed bundling strategy. To
avoid irrational off-equilibrium behavior, we restrict pi(Ti), i ∈ N , Ti ⊆ Ωi,
to satisfy pi(Ti) ≥ ci(Ti) = w∈Ti ci(w).

The sequence of events is as follows. First, each firm i chooses a price
pi(Ti) for any set Ti ⊆ Ωi independently and simultaneously to the other
firms. Then, the buyer observes price vector p = (p1, ..., pn) ∈ P1×· · ·×Pn,
and selects a consumption set S ⊆ Ω as a function of p. Formally, we have a
strategic game with n+1 players, n firms and a representative buyer, player
0. LetGMB(n+1, v, c) (where MB stands for mixed bundling pricing) denote
such a game. The set of strategies of each firm is the set Pi and that of the
buyer is S0 the set of functions S from P1 × · · ·×Pn to 2Ω. Finally, the
profit function for each firm i ∈ N is given by

πi(S, p) =
pi(Si)− ci(Si) Si ∈ S(p)

0 Si /∈ S(p)

where S(p) is the buyer’s consumption set corresponding to p. The pay-
off function of the buyer is her consumer surplus: cs(S, p) = v(S(p)) −
Sk∈S(p) p(Sk).

Let SPE be the set of pure strategy subgame perfect equilibria ofGMB(n+
1, v, c). If (S, p) is an element in SPE, p is called an SPE-price vector, S
is an SPE-consumption set and (S, p) is denoted an SPE-outcome.

Throughout the paper we denote by |S| the number of products in con-
sumption set S ⊆ Ω.

2.1 Mixed bundling pricing equilibria

Firms do not precommit to linear pricing and then the price of a subset of
products can be different from the sum of the prices of its products. That
is, let pi(Ti) be the price of bundle Ti ⊆ Ωi, then pi(Ti) ≤ w∈Ti pi(w),
i.e. bundle Ti might be offered for special price. In the sequel, we charac-
terize the SPE-outcomes, where firms might use mixed bundling strategies.
Assume that the buyer can buy at most one package or bundle from each
firm.

Let set S ⊆ Ω be a consumption set and recall that F (S) is the set of
active firms in S. The subgame perfect Nash-equilibrium conditions preclude
unilateral deviations from the buyer and from each firm. Namely, we need
conditions that guarantee that each active firm does not have an incentive to
either increase the equilibrium prices of its sold bundles (FC1) or to modify
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those of unsold bundles in order to profitably sell any of them (FC2). More
precisely, in a mixed bundling pricing framework the price of each bundle
can be set independently of those of the other bundles with some products
in common. Thus, let (S, p) be an SPE-outcome, condition FC2 below says
that no firm j in F (S) benefits from price reductions of unsold bundles:
i.e. S has to remain a buyer best choice even if j ∈ F (S) reduces the
prices of every Sj ⊆ Ωj , Sj = Sj , to pj(Sj) − cj(Sj) = pj(Sj) − cj(Sj), or
pj(Sj) = pj(Sj)− cj(Sj)+ cj(Sj). The intuition is as follows. Let j ∈ F (S),
and consider any other consumption set S, where j ∈ F (S). Since (S, p) is
an SPE-outcome, the buyer maximizes her surplus, i.e.,

v(S)−
i∈F (S)

pi(Si) ≥ v(S)−
i∈F (S)

pi(Si)

Then, firm j may have an incentive to change the price of Sj ∈ S in
order S becomes as attractive as S to the buyer and to obtain a profit at
least equal to pj(Sj)−cj(Sj). The minimum price verifying these properties
is precisely, pj(Sj) = pj(Sj)− cj(Sj) + cj(Sj).

It is not difficult to show that (Ω, p) is an SPE-outcome iff p ≥ c and
(BC) Buyer optimality: v(Ω)− i∈N pi(Ωi) ≥ v(S)− i∈F (S) pi(Si), for

all S ⊆ Ω;
(FC1) Firm optimality: For every j ∈ N there exists Sj ⊆ Ω\Ωj such

that
v(Ω)−

i∈N
pi(Ωi) = v(S

j)−
i∈F (Sj)

pi(S
j
i )

(FC2) Firm optimality: For each j ∈ N and all S ⊆ Ω such that j ∈ F (S)
v(S)−

i∈N
pi(Ωi) ≥ v(S)− [pj(Ωj)− cj(Ωj) + cj(Sj)]−

i∈F (S)\j
pi(Si).

Notice that (BC) is implied by the subgame perfection requirement, and
(FC1) and (FC2) by firms’ incentives. To see this, suppose that (FC1) does
not hold, then by (BC) there exists j ∈ N , such that for all Sj ⊆ Ω\Ωj

v(Ω)−
i∈N

pi(Ωi) > v(S
j)−

i∈F (Sj)
pi(S

j
i )

and then firm j is better off charging a price pj(Ωi)+ε, for a sufficiently small
ε > 0, such that (BC) is still satisfied for all Sj ⊆ Ω\Ωj . This implies that
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the buyer observing the new price vector will again choose the consumption
set Ω, but firm j obtains an extra gain of ε. Hence (FC1) must be verified
if (Ω, p) is an SPE-outcome.

If (FC2) does not hold, then for some firm j ∈ N there exists a con-
sumption set S ⊆ Ω such that
v(S)−

i∈N
pi(Ωi) < v(S)− [pj(Ωj)− cj(Ωj) + cj(Sj)]−

i∈F (S)\j
pi(Si)

Hence firm j can set a price pj(Sj) = pj(Ωj)− cj(Ωj) + cj(Sj) + ε, for a
sufficiently small ε > 0, such that

v(S)−
i∈N

pi(Ωi) < v(S)− pj(Sj)−
i∈F (S)\j

pi(Si)

which implies that the buyer will select the consumption set S and firm j
will increase its profits.

Conversely if (BC), (FC1) and (FC2) are satisfied then (Ω, p) is an SPE-
outcome since Ω is a best choice for the buyer and no firm has an incentive
to either reduce or increase its prices. Notice that the set Sj in (FC1) may
be empty and in this case v(Ω) − i∈N pi(Ωi) = 0, and firms extract the
entire consumer surplus.

Suppose now that (S, p) is an SPE-outcome with S = Ω. Then, the
equilibrium conditions have to additionally guarantee that no firm j outside
of S benefits from price reductions and thus S has to remain a buyer best
choice even if j /∈ F (S) reduces its prices to its marginal cost levels, pj(Tj) =
cj(Tj), for all Tj ⊆ Ωj . The next Proposition characterizes the set of SPE-
outcomes.

Proposition 1 (S, p) is an SPE-outcome, where S ⊆ Ω and p = (p1, ..., pn),
pi ∈ Pi with p ≥ c , if and only if

(BC) v(S)−
i∈F (S) pi(Si) ≥ v(S)− i∈F (S) pi(Si), for all S ⊆ Ω,

(FC1) For every j ∈ F (S) there exists Sj ⊆ Ω\Ωj such that
v(S)−

i∈F (S)
pi(Si) = v(S

j)−
i∈F (Sj)

pi(S
j
i )

(FC2) For each j ∈ F (S) and all S ⊆ Ω such that j ∈ F (S)
v(S)−

i∈F (S)
pi(Si) ≥ v(S)− [pj(Sj)− cj(Sj) + cj(Sj)]−

i∈F (S)\j
pi(Si)
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(FC3) For each j /∈ F (S) and for all S ⊆ Ω such that j ∈ F (S)

v(S)−
i∈F (S)

pi(Si) ≥ v(S)− cj(Sj)−
i∈F (S)\j

pi(Si)

However, we consider only the set of pure strategy subgame perfect equi-
librium points of the above economy which remains as equilibrium outcomes
even if all non-active firms set marginal cost prices and all active firms set
prices for their unsold bundles equal to those of their sold ones adjusted by
the cost-differential4. In other words, we want (FC3) to be satisfied for all
subsets A ⊆ N\F (S) and (FC2) for all subsets B ⊆ F (S). This restric-
tion removes the set of equilibrium outcomes in which some firms charge
unreasonably high prices so that no individual firm can benefit from a price
reduction of its products only. To see this, consider the following example:

Example. Let N = {1, 2} and Ω1 = {a, b} and Ω2 = {c, d}. Assume for
simplicity that ci(w) = 0 for all i ∈ N,w ∈ Ω. The buyer value function is,

v(S) =


2 S = {a, b}
9 S = {a, d}
5 S = {b, c}
3 S = {c, d}
0 otherwise

The pair (S, p), where S = {b, c}, pa = pd = pab = pcd = 1000, pb = 3
and pc = 2, is an SPE-outcome (verifies BC to FC3), where the consumer
surplus is cs(S) = v(b, c) − pb − pc = 0 and profits of firms 1 and 2 are
pb = 2 and pc = 3 respectively. However, if firm 1 reduces the prices of its
unsold bundles ({a}, {a, b}) to be equal to pb = 3, and firm 2 sets prices
for bundles ({d}, {b, c}), bounded above by pc = 2, then the above SPE is
upset, since now cs(a, d) = v(a, d)−pa−pd = 9−3−2 = 4 > 0 = cs(S) and
the consumer will choose bundle S = {a, d} instead of S. It is easily checked
that under this restriction, an SPE-outcome is (S, p), where S = {a, d},
pa = pab = 4, pb = 0 and pc = pd = pcd = 5.

To define this restriction on the set of subgame perfect Nash equilibria
consider price vector p = (p1, ..., pn) ∈ P1 × · · ·×Pn, and let S ⊆ Ω. Define

4Notice that if marginal costs are assumed to be zero, these prices amount to be equal
to those of the sold bundles.
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vector pS for all i ∈ N , Ti ⊆ Ωi, as

pSi (Ti) =


pi(Si) if i ∈ F (S), Ti = Si
pi(Si)− ci(Si) + ci(Ti) if i ∈ F (S), Ti = Si
ci(Ti) if i /∈ F (S)

i.e. the non-active firms set prices equal to the marginal cost, and all ac-
tive firms set prices for unsold bundles equal to those of their sold bundles
adjusted by the cost-differentials.

Definition 1 For every triple (N, v, c) define

SPE∗ = {(S, p) ∈ SPE|p ≥ c and (S, pS) ∈ SPE}
Equivalently, SPE∗ is the set of equilibrium outcomes satisfying BC,

FC1, and FC4 (instead of FC2 and FC3), where FC4 says,
(FC4) For all A ⊆ N\F (S), all B ⊆ F (S) and for all S ⊆ Ω such that

(A ∪B) ⊆ F (S),
v(S)−

i∈F (S)
pi(Si) ≥ v(S)−

i∈A
ci(Si)−

i∈B
[pi(Si)− ci(Si) + ci(Si)]

−
i∈F (S)\(A∪B)

pi(Si)

Thus, we restrict the analysis to a certain subset SPE∗ of SPE-outcomes.

Notice that an SPE∗-outcome is a vector of prices and an assignment
of firms to the buyer, such that each active firm sells a bundle to the buyer;
firms maximize their profits and the buyer maximizes her surplus. This is
quite similar to a package assignment model, where firms set prices to sell
packages from among their feasible sets in order to maximize their profits.

Let (v − c)(S) = v(S)− i∈F (S) ci(Si) be the social surplus function of
the economy and let i∈F (S)(pi − ci)(Si) = i∈F (S)[pi(Si)− ci(Si)] be the
sum of firms’ profits. Define V (K) as the maximum gain available in the
economy consisting of a representative buyer and the firms in K ⊆ N , i.e.
the maximum social surplus. Finally, let (S, p) be any assignment such that
Si = ∅ for all i ∈ N\K and pi ≥ ci for all i ∈ K, then

V (K) = max
(S)

[v(S)−
i∈F (S)

pi(Si)] +

i∈F (S)
[pi(Si)− ci(Si)]


= max

(S)

v(S)−
i∈F (S)

ci(Si)

 = max
(S)
{(v − c)(S)}
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If S ∈ argmax(S){(v − c)(S)}, we say that S is socially efficient. Since
we are interested in the efficiency of SPE∗-outcomes, we will compare them
with the core of the economy.

Definition 2 (T -Core) Let T ⊆ N . The T -core of the economy G(n +
1, v, c), denoted T -core(G), is the set of (n+1)-tuples (qb, {qi}i∈N ) ∈ Rn+1+ ,
such that

(i) qb + i∈N qi = V (T )
(ii) qb + i∈K qi ≥ V (S), ∀S ⊆ N
The element qb is the consumer surplus and each qi are firm i’s profits.

For T = N , we obtain the core of the economy, denoted by core(G). Also,
the subset of points in T -core(G) such that the buyer surplus, qb, is equal
to zero defines the T -core of (v − c) or T -core(v − c),
T -core(v − c) = {q ∈ Rn+|

i∈T
qi = V (T ) and

i∈S∩T
qi ≥ V (S) for all S ⊆ N}

The intuition of T -core(v−c) is as follows. Suppose that the equilibrium
consumption set is T . Then, firms in N\T obtain zero profits and hence will
be willing to join the set of seller firms. Hence, every subset S ⊆ T can
actually achieve uT (S) where,

uT (S) = max
A⊆N\T

{(v − c)(S ∪A)}

It is easily checked that the projection of the T -core(v−c) on T coincides
with the N -core(uT ), or core(v − c), when the buyer surplus is zero.

Finally, we assume that the social surplus of the economy is positive.
Otherwise, if for every consumption set S, (v(S)− i∈F (S) ci(Si)) < 0, then
the economy is degenerated. Hence, at every equilibrium point (S, p), S = ∅
must hold and therefore, no production will take place.

2.2 Examples

Example 1: Let N = {1, 2} and Ω1 = {a, b} and Ω2 = {c, d}. Assume for
simplicity that ci(w) = 0 for all i ∈ N,w ∈ Ω. The buyer value function is,

v(S) =


16 S = {a, b}
15 S = {a, d}
14 S = {b, c}
δ S = {c, d}
0 otherwise
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Table 1 offers the set of SPE and SPE∗ -outcomes. The two sets co-
incide because condition FC3 gives the lower bounds of prices in both sets,
and FC4 is not binding for prices and only implies efficiency of S .The equi-
librium consumption set is always efficient and firm 2 sets prices equal to
marginal costs (which here are zero).

Table 1: SPE = SPE∗-outcomes of example 1
0 < δ ≤ 13 13 < δ < 16

S = {a, b}, efficient S = {a, b}, efficient
pa1 ≥ 15− δ pa1 ≥ max{15− δ, 0}, pb1 ≥ max{14− δ, 0}
pb1 ≥ 14− δ pS = {pa1 = pb1 = pab1 = 16− δ, pc2 = p

d
2 = p

cd
2 = 0}

pab1 = 16− δ pab1 = 16− δ
pc2 ≥ 0 pc2 ≥ 0
pd2 ≥ 0 pd2 ≥ 0
pcd2 = 0 pcd2 = 0
cs = δ cs = δ

The assumption that the consumer can buy at most a bundle from each
firm may imply superadditive prices; for instance, if we consider only the
prices’ lower bounds pab1 < pa1 + p

b
1, for 0 < δ < 13, pab1 = pa1 + p

b
1, δ = 13

and pab1 > p
a
1+ p

b
1, for 13 < δ < 16. However, this possibility is ruled out for

SPE∗-outcomes under vector pS , where pa1 = pb1 = pab1 = 16 − δ for firm 1
and pc2 = p

d
2 = p

cd
2 = 0, for firm 2. Firm 1’s profits are pab1 = 16− δ, firm 2’s

profits are zero and the consumer surplus is cs = δ.
The core of the economy is,

core(G) = {(qb, q1, q2) ∈ R3+|0 ≤ q1 ≤ 16− δ, q2 = 0, q
b = 16− q1 ≥ δ}.

Hence, the SPE∗-price vector is the element of core(G) which maximizes
the firms’ profits.

Example 2: Let N = {1, 2} and Ω1 = {a, b} and Ω2 = {c, d}, ci(w) = 0
for all i ∈ N,w ∈ Ω, and let the buyer value function be,

v(S) =


6 S = {a, b}
9 S = {a, d}
δ S = {b, c}
7 S = {c, d}
0 otherwise

Table 2a shows the set of SPE-equilibrium outcomes, while table 2b
offers the SPE∗ mixed bundling outcomes.
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Table 2a: SPE-equilibrium outcomes of example 2

0 < δ < 9 0 < δ < 9 7 ≤ δ < 9

S = {c, d}, inefficient S = {a, d}, efficient S = {b, c}, inefficient
pa1 ≥ 2 pa1 ≤ 2 pa1 ≥ pb1 + 9− δ

pb1 ≥ max{δ − 7, 0} pb1 ≥ max{pa1 + δ − 9, 0} pb1 ≤ δ − 7
pab1 = 0 pab1 = p

a
1 + p

d
2 − 3 pab1 = p

b
1 + p

c
2 + 6− δ

pc2 ≥ max{δ − 6, 0} pc2 ≥ max{pd2 + δ − 9, 0} pc2 ≤ δ − 6
pd2 ≥ 3 pd2 ≤ 3 pd2 ≥ pc2 + 9− δ
pcd2 = 1 pcd2 = p

a
1 + p

d
2 − 2 pcd2 = p

b
1 + p

c
2 + 7− δ

pb1 + p
c
2 ≥ δ − 6

cs = 6 cs = 9− pa1 − pd2 cs = δ − pb1 − pc2
Table 2b: SPE∗-outcomes

0 < δ < 9

S = {a, d}, efficient
pa1 = 2

pb1 ≥ max{ δ − 7, 0}
pab1 = 2

pc2 ≥ max{ δ − 6, 0}
pd2 = 3
pcd2 = 3

pb1 + p
c
2 ≥ max{δ − 4, 0}
cs = 4

Thus, firm 1’s profits under SPE∗-outcomes are pa1 = 2, firm 2’s profits
are pd2 = 3 and the consumer surplus is cs = 4. Notice that, SPE-outcomes,
need not be efficient. For instance, ((c, d), (2, 2, 0), (3, 3, 1)) ∈ SPE-outcome
set, but it is socially inefficient given that v(c, d) < v(a, d).

Notice that SPE∗-prices imply pab1 ≤ pa1+pb1 and pcd2 ≤ pc2+pd2, for all δ.
However, although firms offer their two products as a bundle for a special
price, the buyer selects a product of each firm. Here, mixed bundling is an
off-equilibrium pricing strategy, supporting equilibrium outcomes. The core
of the economy is given by the following set,

core(G) = {(qb, q1, q2) ∈ R3+|0 ≤ q1 ≤ 2, 0 ≤ q2 ≤ 3, qb = 9− q1 − q2 ≥ 4}

Thus, as above, the vector of prices of SPE∗-outcomes is the element of
core(G) which maximizes the firms’ profits.
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3 The associated Package Assignment problem.

Our main result shows that there always exists an equilibrium outcome in
our model. Moreover, the set of SPE∗-outcomes is equivalent to integer-
valued solutions of the linear relaxation of a package assignment problem
(LP hereafter).

For any S ⊆ Ω, define zS which is equal to 1 if the buyer chooses con-
sumption set S; and for all firm i ∈ N and any set of its products Ti ⊆ Ωi,
let y(Ti, i) = 1 if firm i sells bundle Ti, and zero otherwise. The integer
programming defining the package assignment problem, denoted ILP is,

V (Ω) =Max
S⊆Ω

(v − c)(S)zS

s.t.
S⊆Ω

zS ≤ 1 (1)

Ti⊆Ωi
y(Ti, i) ≤ 1 ∀i ∈ N (2)

S Ti

zS ≤ y(Ti, i) ∀i ∈ N,∀Ti ⊆ Ωi (3)

zS, y(Ti, i) ∈ {0, 1} ∀i ∈ N,∀Ti ⊆ Ωi,∀S ⊆ Ω

The first constraint ensures that only one consumption set is selected.
The other constraints are redundant given the first one, in the sense that
they do not reduce the set of feasible solutions. However, constraints (2)
and (3) will define the price vector in the dual problem. Constraints in (2)
guarantee that each firm only sells one consumption set, and constraints (3)
ensures that firm i sells Ti ⊆ Ωi if and only if the selected consumption set
S is such that Si = Ti.

Let us consider the linear relaxation LP of ILP in which we change the
integrity constraints zS , y(Ti, i) ∈ {0, 1} in ILP to zS ≥ 0, y(Ti, i) ≥ 0. Let
DLP be the dual of LP. The interest of this formulation is that each dual
variable associated with each constraint in (2) can be interpreted as firm i’s
profits (the buyer’s payment for Ti to firm i minus its marginal cost) and
each dual variable associated with constraints (3), as the net price that firm
i sets for each Ti ⊆ Ωi (i.e. prices minus marginal costs). More precisely, to
write the dual problem, we associate a variable with each of the constraints
of LP. Let πb -the consumer surplus- be the variable associated to the first
constraint ; let πi be the ones associated to constraints (2) and finally, let
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πiSi be those associated with constraints (3). The dual problem, DLP, is

Min πb +
i∈N

πi

s.t. πb +
Si∈S

πiSi ≥ (v − c)(S) ∀S ⊆ Ω (4)

πi − πiTi ≥ 0 ∀i ∈ N, ∀Ti ⊆ Ωi (5)

πb,πi,π
i
Ti ≥ 0

Let (πb, (πi), (π
i
Ti
)) express a generic solution of DLP. The set of solu-

tions of ILP is the set of optimal feasible solutions (vertex points) of LP
because of its special structure. Notice that if we remove the redundant con-
straints of LP we are left with the constraint whose coefficients are equal
to 1 and the non-negativity conditions on variables S, for all S ⊆ N . It is
well known that the solutions for such a problem are integer: the variable
corresponding to the maximum coefficient in the objective function is set
to 1 and the remaining variables are set to 0. Hence, in our case, an inte-
ger solution always exists and it is the consumption set S ⊆ Ω such that
S ∈ argmaxS⊆Ω(v − c)(S).

Moreover, by the fundamental duality theorem (see Dantzig, 1974, p.125),
if the primal problem has an optimal feasible solution, so does its dual prob-
lem and the two optimal value functions are the same. Also notice that the
set of solutions is a convex polyhedron. Denote this set by sol(.).

Interpreting variables (πi) of the dual problem as firms’ profits, let us
define

Π = {(πb, (πi), (πiTi)) ∈ sol(DLP)| there is no other (π b, (πi), (π iTi)) ∈ sol(DLP),
such that πi ≥ πi, for all i and πj > πj for at least some j}

as the Pareto frontier of set sol(DLP). We will see below that the projection
of Π on coordinates (πi) will provide the firms’ equilibrium profits. Further-
more, the set Π can be expressed as the convex combination of adjacent
vertices. A way to obtain some of these vertices is to consider, among all
solutions of the dual problem, those maximizing i∈N πi. Namely, consider
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the restricted dual problem, RDLP,

Max
i∈N

πi

s.t. πb +
Si∈S

πiSi ≥ (v − c)(S) ∀S ⊆ Ω

πi − πiTi ≥ 0 ∀i ∈ N, ∀Ti ⊆ Ωi
πb +

i∈N
πi = V (Ω) (6)

πb,πi,π
i
Ti ≥ 0

where the first and second restrictions are (4) and (5) in DLP.
To generate all the frontier Π we define a family of problems which take

into account the lexicographic order of the solutions ofDLP. To this end, let
µ be an ordered partition of N in the sense that the order of the elements in
the partition is relevant. Thus, µ and µ can give rise to the same partition,
but with a different order in their elements. Let Γ denote the set of all the
ordered partitions. Write µ = {N1, N2, ..., NL} ∈ Γ to mean that under µ
the first element of the partition is N1, the second in N2 and the last one in
NL. Note that L can differ from one partition to another.

The dual problem under this partition-approach, µ-DLP, is then

Max
L

l=1


i∈Nl

πi

 10d(L−1)
s.t. πb +

Si∈S
πiSi ≥ (v − c)(S) ∀S ⊆ Ω

πi − πiTi ≥ 0 ∀i ∈ N, ∀Ti ⊆ Ωi
πb +

i∈N
πi = V (Ω)

πb,πi,π
i
Ti ≥ 0

where d is an integer such that Card(N) · (v − c)(S) < 10d for all S ⊆ Ω.
Note that for µ = {N} we have µ-DLP = RDLP.

The partition formulation does not change the constraints but makes
the objective function vary. The objective function is an integer for which
each set of d (consecutive) digits are determined by i∈Nl πi. Thus, the
first d digits are occupied by i∈N1 πi, the second d digits by i∈N2 πi
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and so on, and, finally, the last d digits by i∈NL πi. In this way, sol(µ-
DLP) ⊆ sol(DLP) so that, a solution in µ-DLP gives one of the most
preferred profit vectors by firms in N1; it gives one of the most preferred
profit vectors by the set of firms in N2, among those most preferred by firms
in N1; and so on.

Also notice that if (πb, (πi), (π
i
Ti
)) ∈ sol(µ−DLP), then so does (πb, (πi), (πiTi)),

where πiTi ≤ πiTi ≤ πi for all i ∈ N,Ti ⊆ Ωi. As we will see below, each
variable πiTi of the dual problem defines firm i’s net price. Moreover, the

µ−DLP approach does not assume any restriction on variables (πiTi) for all

i ∈ N,Ti ⊆ Ωi, i.e., there is not restriction on the relationship between πiTi
and w∈Ti π

i
w. This translates to firm i’s pricing strategies, so that mixed

bundling strategies are allowed. In fact, the solution in which πiTi = πi for
all i ∈ N,Ti ⊆ Ωi will define a mixed bundling price equilibrium.

The next Lemma shows that the dual solutions achieved by different
partitions are in set Π.

Lemma 1 Let µ ∈ Γ and let (πb, (πi), (πiTi)) ∈ sol(µ-DLP), then (πb, (πi), (πiTi))
belong to Π.

Proof: If (πb, (πi), (π
i
Ti
)) /∈ Π, then there exists (πb, (πi), (πiTi)) ∈ Π

such that πi ≤ πi for all i ∈ N and πk < πk, for some k ∈ N . Let µ =
{N1,N2, ...,NL} then,

F (µ,π) =
L

l=1


i∈Nl

πi

 10d(L−l)
<

L

l=1


i∈Nl

πi

 10d(L−l) = F (µ,π )
which implies that (πb, (πi), (π

i
Ti
)) is not a solution of µ-DLP, a contradic-

tion.

Define the binary relation to be coarser than in set Γ as follows. Given
µ, µ ∈ Γ, we say that µ = {N1, ..., NL} is coarser than µ = {N1, ..., NM} if

N1 = N1 ∪N2 ∪ ... ∪Nn1
N2 = Nn1+1 ∪ ... ∪Nn2
... =

...

NL = NnL−1 ∪ ... ∪NM
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Clearly this binary relation is reflexive, anti-symmetric and transitive so
that it induces a partial order relation, with all the maximal chains ending
in N and starting in any of the total partitions of N .

Coarser partitions have more degrees of freedom and hence the sum of
dual solutions {πi}i∈N is bigger. This is proven in the following Lemma.

Lemma 2 Let µ, µ ∈ Γ, with µ coarser than µ . Then πb ≤ πb, for all
(πb, (πi), (π

i
Ti
)) ∈ sol(µ-DLP) and (πb, (πi), (πiTi)) ∈ sol(µ -DLP).

Proof: It suffices to prove it for two consecutive partitions of a maximal
chain, µ = {N1, ..., Nl, ..., NL}, µ = {N1, ...,Nl1 , Nl2 , ..., NL}, where Nl =
Nl1 ∪Nl2 .

Clearly, i∈Nk πi = i∈Nk πi for k = 1, ..., l − 1. Moreover, i∈Nl πi ≥
i∈Nli πi + i∈Nl2 πi and Nl+1∪...∪NL πi ≥ NSl+1∪...∪NL πi.
Hence, i∈N πi ≥ i∈N πiwhich implies that π

b ≤ πb.

Example 3: Let N = {1, 2}, Ω1 = {a, b}, Ω2 = {c, d}, with ci(w) = 0
for all i ∈ N,w ∈ Ω, and let the value function be,

v(S) =


6 S = {a, b}
15 S = {a, d}
14 S = {b, c}
8 S = {c, d}
0 otherwise

The full list of solutions of µ-DLP problems is:

• µ = {{1}, {2}}: πb = 0,π1 = π1a = π1ab = 7,π1b = 6 and π2 = π2c =
π2d = π2cd = 8, which maximizes firm 1’s profit and yields, jointly with

the primal solution, outcome (S, p):

S = {a, d}
p1 = (pa1 = 7, 6 ≤ pb1 ≤ 7, pab1 = 7)
p2 = (pc2 = 8, p

d
2 = 8, p

cd
2 = 8).

It can be checked that (S, p) is an SPE∗-outcome

• µ = {{2}, {1}}: πb = 0,π1 = π1a = π1ab = 6,π
1
b = 5,π2 = π2c = π2d = 9

and π2cd = 8, which maximizes firm 2’s profit and now yields SPE∗-
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outcome (S, p):

S = {a, d}
p1 = (pa1 = 6, 5 ≤ pb1 ≤ 6, pab1 = 6)
p2 = (8 ≤ pc2 ≤ 9, pd2 = 9, pcd2 = 8).

Moreover, both are solutions of RDLP and any convex combination of
them is also a solution of RDLP. In fact, given two different partitions,
µ and µ , and their associated solutions, (πb, (πi), (π

i
Ti
)) ∈ sol(µ−DLP)

and (π b, (πi), (π
i
Ti
)) ∈ sol(µ −DLP), either (πi) = (πi) or there is no

Pareto dominance between them. For instance, partitions µ = {{2}, {1}}
and µ = {N} define the same optimal solution, but µ = {{2}, {1}} and
µ = {{1}, {2}} define solutions with non-Pareto dominance in components
(π1,π2).

Thus, (S, p) is an SPE∗-outcome with S ∈ argmaxS⊆Ω{(v− c)(S)} and
price vector p defined as pi(Ti) = πiTi + c(Ti) for all firm i ∈ N and all

Ti ⊆ Ωi. Notice that firm i sets the price of any bundle Ti ⊆ Ωi, Ti ∩S = ∅,
lower than or equal to the price of bundle Si. As in examples 1 and 2 above,
the payoffs of SPE∗-outcomes are the points of core(G) which maximizes
firms’ joint profits,

core(G) = {(qb, q1, q2) ∈ R3+|0 ≤ q1 ≤ 7, 0 ≤ q2 ≤ 9, q1 + q2 ≤ 15,
qb = 15− q1 − q2 ≥ 0}

4 Mixed Bundling Subgame Perfect Nash equilib-
ria via Linear programming

4.1 Existence

Our main result establishes that an optimal solution of LP and µ−DLP is
an SPE∗-outcome (Proposition 2) ofGMB. Moreover, the SPE∗-consumption
set is always efficient (Corollary 3). First, we start with a general property
which states that optimal solutions of LP and DLP, set the prices of non-
active firms equal to marginal costs and hence their profits are zero (property
ii) and the profits of any active firm are bigger than or equal to their selling
prices minus marginal costs (property i). The proofs are in the Appendix.

Le mm a 3 Le t S ∈ sol (LP) and (π b , (πi ), (π  iTi)) ∈ sol(DLP), then

21



i) πi = πi
Si
(≥ πiTi) for all i ∈ F (S), Ti ⊆ Ωi

ii)πi = πiTi = 0 for all i /∈ F (S) and Ti ⊆ Ωi.

The next Proposition gives an existence result. It shows that any ele-
ment of sol(LP) × sol(µ-DLP) is an SPE∗-outcome, i.e., sol(LP) give
the equilibrium consumption set and sol(µ-DLP) the equilibrium profits
and price vectors, for some partition µ.

Proposition 2 Let v be a value function and c a marginal cost vector. Let
S ∈ sol(LP) and (πb, (πi), (πiTi)) ∈ sol(µ −DLP). Then, (S, p) ∈ SPE∗-
outcome set of GMB(n + 1, v, c), where πiTi + ci(Ti) ≤ pi(Ti) ≤ πi + ci(Ti)

for all i ∈ N and all Ti ⊆ Ωi and pi(Si) = πi
Si
+ ci(Si).

Let us apply the above results to the previous examples.

Example 1 (continuation): Solving the primal and dual problems for
µ = {N} and for different values of δ we find,

δ sol(LP) π1a π1b π1ab π2c π2d π2cd
4 {a, b} 11 12 12 0 0 0
12 {a, b} 3 4 4 0 0 0
15 {a, b} 0 1 1 0 0 0

Defining S = {a, b} and pi(Ti) = πiTi , then (S, p) ∈ SPE∗-outcome set,
as we can check in the right hand side of table 1. For instance, for δ = 12,
the solutions to the primal and dual problems yield the SPE∗-outcome,

S = {a, b}
p1 = (3 ≤ pa1 ≤ 4, pb1 = 4, pab1 = 4)
p2 = (pc2 = 0, p

d
2 = 0, p

cd
2 = 0).

Example 2 (continuation): proceeding similarly, we find that sol(LP) =
{a, d} and π1a = π1b = π1ab = 2 and π2c = π2d = π2cd = 3 for all δ. Thus,

S = {a, b}, p1(T1) = 2 for all T1 ⊆ Ω1 and p2(T2) = 3 for all T2 ⊆ Ω2 define
an SPE∗-outcome as we can see in the right hand side of table 2.

Finally, recalling that when µ = {N}, µ-DLP = RDLP, we notice that
the associated SPE∗-outcomes give the lowest surplus for the buyer. The
proof is in the Appendix.
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Corollary 1 Let v be a value function and c a marginal cost vector, let
S ∈ sol(LP) and let (πb, (πi), (πiTi)) ∈ sol(RDLP), then among all SPE∗-
outcomes, (S, p) is the one which gives the lowest surplus to the buyer, where
πiTi + ci(Ti) ≤ pi(Ti) ≤ πi + ci(Ti) for all i ∈ N and all Ti ⊆ Ωi and
pi(Si) = πi

Si
+ ci(Si).

Corollary 2 For every value function v and marginal cost vector c, there
always exists an SPE∗-outcome of GMB.

Proof: The existence of an optimal solution of LP is immediate and the
fundamental duality theorem guarantees the existence of an optimal solution
of the dual linear program and hence of the restricted dual problem. Finally,
Proposition 2 shows that both a primal optimal solution is an equilibrium
consumption set and an optimal solution of the restricted dual problem
defines an equilibrium price vector.

Next, we show the efficiency of any equilibrium consumption set.

Corollary 3 For every value function v and marginal cost vector c, S ⊆
Ω is an equilibrium consumption set of GMB if and only if S is socially
efficient, i.e., S ∈ argmaxS⊆Ω{(v − c)(S)}.

Proof: Let S ∈ argmaxS⊆Ω{(v − c)(S)} = sol(LP) and consider any

(πb, (πi), (π
i
Ti
)) ∈ sol(RDLP), then by Proposition 2, (S, ((π1T1), ..., (πnTn))) ∈

SPE∗-outcome set.
Now, let (S, p) be an SPE∗-outcome, we will show that S ∈ sol(LP).

If (S, p) ∈ SPE∗-outcome set, then (S, pS) ∈ SPE∗-outcome set, where we
define pS for all i ∈ N and all Ti ⊆ Ωi, as

pSi (Ti) =


pi(Si) if i ∈ F (S), Ti = Si
pi(Si)− ci(Si) + ci(Ti) if i ∈ F (S), Ti = Si
ci(Ti) if i /∈ F (S)

By BC,

v(S)−
i∈F (S)

pSi (Si) ≥ v(S)−
i∈F (S)

pSi (Si)
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for all S ⊆ Ω. Therefore,

(v − c)(S)− (v − c)(S) ≥
i∈F (S)

(pSi − ci)(Si)−
i∈F (S)

(pSi − ci)(Si)

=

i∈F (S)
(pSi − ci)(Si)−

i∈F (S)∩F (S)
(pSi − ci)(Si)

=

i∈F (S)\F (S)
(pi − ci)(Si) ≥ 0,

given that pSi (Si) = ci(Si) for all i /∈ F (S) and pSi (Si) − ci(Si) = pSi (Si) −
ci(Si) for all i ∈ F (S)∩F (S). Thus, (v−c)(S) ≥ (v−c)(S) for every S ⊆ Ω.

4.2 Characterization of SPE∗-outcomes via Linear Program-
ming

In this section we characterize the set of equilibrium prices of efficient con-
sumption sets in GMB. By Proposition 2, the optimal solutions of µ-DLP
characterize the set of SPE∗-price vectors, pS. But, as example 1 shows,
the reverse of Proposition 2 need not be satisfied: SPE∗-outcomes does
not always define a solution of the primal and the restricted dual prob-
lems. Notice, however, that if (S, p) and (S, pS) are two SPE∗-outcomes
then, clearly, the firms and the buyer obtain the same payoffs under such
outcomes: the two equilibria are payoff-equivalent. Thus, any pair (S, pS)
allows to identify its payoff-equivalence class. For any set of payoff equiva-
lent SPE∗-outcomes, we are only considering (S, pS) as the representative
outcome of this equivalence class.

Next result asserts that there is not Pareto dominance between the prof-
its’ vectors associated to two different equilibrium outcomes.

Lemma 4 Let (S, p), (S, p) be two SPE∗-outcomes, then there exists two
active firms j, j ∈ F (S) such that (pj − cj)(Sj) > (pj − cj)(Sj) and (pj −
cj )(Sj ) > (pj − cj )(Sj ).

Proof: Suppose that (pk − ck)(Sk) ≥ (pk − ck)(Sk) for all k ∈ N where
the inequality is strict for some firm j ∈ F (S). Then, j has incentives to
raise its equilibrium prices at (S, p), which is a contradiction.
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We show next, that every firm’s profit vector associated to an SPE∗-
price vector coincides with an optimal solution of the dual problem. i.e.,
every SPE∗-outcome (S, p) is such that S is the solution of the primal
problem and pS defines a solution of the dual problem. Also, by Lemma
4, it does not exist any other solution of the DLP, (πb, (πi), (π

i
Ti
)), such

that its components (πi) weakly Pareto dominates the firms’ profit vector
of any other SPE∗-outcome. The reverse also holds: given both an LP and
DLP optimal solutions, with no weakly Pareto dominated component (πi),
they yield an SPE∗-outcome. In other words, the set of firms’ profit vectors
associated to SPE∗-outcomes is the Pareto frontier of the polyhedron of
projection-sol(DLP) to components (πi).

Proposition 3 Let v be a value function. (S, pS) ∈ SPE∗-outcome set, if
and only if

i) S ∈ sol(LP)
ii) (πb, (πi), (π

i
Ti
)) ∈ Π where πb = v(S) −

k∈F (S) p
S
k (Sk), πi = (p

S
i −

ci)(Si) and πiTi = (p
S
i − ci)(Ti) for all i ∈ N,Ti ⊆ Ωi.

Proof: See the Appendix.

By Corollary 3, S ⊆ Ω is an equilibrium consumption set of GMB if
and only if S ∈ argmaxS⊆Ω{(v − c)(S)}. We show next the efficiency of
equilibrium net prices. To this end, let us check first that the T -Core(G)
coincides with the solutions of the dual linear problem,

Proposition 4 Let v be a value function which defines the economy G(n+
1, v, c) and let T ∈ argmaxS⊆N{(v − c)(S)}. Then,

i) if (πb, (πi), (π
i
Ti
)) ∈ sol(DLP), then (πb, (πi)) ∈ T -Core(G),

ii) if (πb, (πi)) ∈ T -Core(G), then (πb, (πi), (πiTi)) ∈ sol(DLP) where
πiTi = πi for all i ∈ N,Ti ⊆ Ωi.

Proof: First let us prove i). Without loss of generality suppose that
T = N , then T -Core(G)=Core(G). Let (πb, (πi), (π

i
Ti
)) ∈ sol(DLP) and

K ⊆ N . Then, for all T ⊆ Ω such that F (T ) ⊆ K,

πb +
i∈K

πi ≥ πb +

i∈F (T )
πi

≥ πb +
Ti∈T

πiTi ≥ (v − c)(T )
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where the first inequality holds given that F (T ) ⊆ K and the second and
third inequalities are verified by constraints (5) and (4) respectively. Thus,
πb + i∈K πi ≥ V (K). Moreover, by the fundamental duality theorem
V (N) = πb + i∈N πi. Hence, (π

b, (πi)) ∈ Core(G).
To prove ii), let (qb, (qi)) ∈ Core(G) and S ∈ argmaxT⊆Ω{(v − c)(T )},

then trivially qi = 0 for all i ∈ N\F (S). Define (qb, (qi), (qiTi)) where qiTi = qi
for all i ∈ N,Ti ⊆ Ωi. Given T ⊆ Ω, by condition ii) of the definition of
Core(G),

qb +
Ti∈T

qiTi = q
b +

i∈F (T )
qi ≥ (v − c)(T )

and constraints (4) of DLP are satisfied. Moreover, by definition, qi ≥ qiTi
for all i ∈ N,Ti ⊆ Ωi, thus also constraints (5) are satisfied. Finally, by
condition i) of the definition of Core(G),

qb +
i∈N

qi = V (N) = (v − c)(S)

hence (qb, (qi), (q
i
Ti
)) ∈ sol(DLP).

Then, by Propositions 3 and 4,

Corollary 4 Let (S, pS) be an SPE∗-outcome. Then, the buyer surplus,
v(S) −

k∈F (S) p
S
k (Sk), and the firms’ profit vector (or net price vector),

(pS − c)(S), are a subset of T−Core(G), for any T ⊆ N .

5 Monotonic social surplus functions

By Proposition 3, it is not difficult to show that if all socially efficient
consumption sets of the game GMB are such that S ⊆ Ωi for some firm
i ∈ N , i.e., the buyer chooses only the products of a single firm, as in
example 1, then S is sold as a bundle at price pi(S) = v(S) − α, where
α = maxS⊆Ω\Ωi{(v− c)(S), 0}. Firm i obtains positive profits, the products
of any other firm are offered at marginal cost prices and the buyer obtains
a positive payoff equal to α. But, if there are two or more socially efficient
pure consumption sets, then they are sold at marginal cost prices and the
buyer obtains the entire surplus. On the other hand, when the equilibrium
consumption set contains products of two o more firms, as in example 2, then
although firms might offer their products as bundles for a special prices, the
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buyer selects a subset of products of each firm. Therefore, mixed bundling
might also be an off-equilibrium pricing strategy, supporting equilibrium
outcomes.

However, the precise form of equilibrium prices is difficult to obtain
unless we know the specific value functions. In this section we characterize
SPE∗-prices for monotonic social surplus functions. First, we need some
definitions.

Definition 3 (v − c) is monotonic if and only if (v − c)(S) ≤ (v − c)(T )
whenever S ⊆ T ⊆ Ω.

Then, monotonicity of (v − c) implies that the social surplus increases
for larger consumption sets.

The social marginal contribution of consumption set S, c∗(S), for all
S ⊆ Ω, i.e., the increase in social surplus due to S, is

c∗(S) = (v − c)(Ω)− (v − c)(Ω\S) = v(Ω)− v(Ω\S)− c(S), ∀S ⊆ Ω

If (v − c) is monotonic, then, by Proposition 2, there exists an SPE∗-
outcome with Ω as the equilibrium consumption set. Furthermore, if (v− c)
is strictly monotonic then Ω is the only equilibrium consumption set. Next
Lemma shows that firm i’s equilibrium profits have an upper bound.

Lemma 5 If (Ω, p) ∈ SPE∗-outcome set, then pi(Ωi)− c(Ωi) ≤ c∗(Ωi) for
all i ∈ N

Proof: Let i ∈ N , by BC, v(Ω)− k∈N pk(Ωk) ≥ v(Ω\Ωi)− k∈N\i pk(Ωk)
or equivalently,

v(Ω)− v(Ω\Ωi) ≥
k∈N

pk(Ωk)−
k∈N\i

pk(Ωk) = pi(Ωi)

Thus, c∗(Ωi) ≥ pi(Ωi)− ci(Ωi).
Recall that Si = Ωi ∩S, for all i ∈ N , then following Shapley (1962), we

say that firms are substitutes if the social marginal contribution of consump-
tion set S is bigger or equal to the sum of the social marginal contributions
of firms in S,

c∗(S) ≥
Si∈S

c∗(Si) ∀S ⊆ Ω FS
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This property has been previously used in different setting by several
authors as KC(1982) and BO(2002) among others. The former have em-
ployed it to justify that workers are better off by forming a union rather
than by bargaining individually with management, whereas the latter to
show that when buyers are substitutes, then the core has the lattice prop-
erty with respect to buyers. Next Proposition says that equilibrium prices
under monotonic social surplus functions satisfying FS are equal to marginal
costs plus firms’ social marginal contributions:

Proposition 5 Let (v − c) be a monotonic social surplus function and let
firms be substitutes (FS holds). Then (S∗, p∗) ∈ SPE∗-outcome set, with
(v − c)(S∗) = (v − c)(Ω) and p∗i (Ti) = c∗(Ωi) + c(Ti), for all Ti ⊆ Ωi, and
for all i ∈ N . The converse is also true.

If (v−c) is strictly monotonic, then the unique SPE∗-outcome is S∗ = Ω
Proof: See the Appendix.

Each firm i sells S∗i as a bundle at price

p∗i (S
∗
i ) = c

∗(Ωi) + c(S∗i ) ≤
wi∈S∗i

p∗i (wi)

obtaining its marginal contribution as its profits,

p∗i (S
∗
i )− ci(S∗i ) = c∗(Ωi)

Moreover, the buyer surplus is positive, reflecting the market competition
under FS:

cs = v(S∗)−
S∗i ∈S∗

p∗i (S
∗
i ) = (v − c)(S∗)−

S∗i ∈S∗
c∗i (S

∗
i )

= c∗(S∗)−
S∗i ∈S∗

c∗i (S
∗
i ) ≥ 0

Finally,

Definition 4 (1) (v − c) is convex if and only if
(v − c)(S +w)− (v − c)(S) ≤ (v − c)(T + w)− (v − c)(T )

whenever S ⊆ T ⊆ Ω\w, and
(2) (v − c) is concave if the opposite holds, i.e.,

(v − c)(S +w)− (v − c)(S) ≥ (v − c)(T + w)− (v − c)(T )
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5.1 Concave value functions

Concavity of (v−c) reflects a kind of substitution among products or bundles
of products so that there is market competition and the buyer will obtain
some surplus. Two straightforward results are the following,

Lemma 6 Let (v−c) be a concave social surplus function and let c∗(w) ≥ 0
for all w ∈ Ω, then (v − c) is monotonic.

Proof: Let w = w , w,w ∈ Ω. By concavity,
(v− c)(Ω\w)− (v− c)(Ω\{w,w }) ≥ (v− c)(Ω)− (v− c)(Ω\w ) = c∗(w ) ≥ 0
thus (v−c)(Ω) ≥ (v−c)(Ω\w) ≥ (v−c)(Ω\{w,w }). In general, by induction,

(v − c)(Ω\{w1, ..., wl}) ≥ (v − c)(Ω\{w1, ..., wl, wl+1})
i.e., (v − c)(S) ≤ (v − c)(S + w).

Let S ⊆ T ⊆ Ω and let T\S = {w1, ..., wl}. We have that
(v−c)(S) ≤ (v−c)(S∪{w1}) ≤ ... ≤ (v−c)(S∪{w1, ..., wl−1}) ≤ (v−c)(T ).

Lemma 7 Let (v − c) be a concave social surplus function, then firms are
substitutes, i.e. FS is satisfied.

Proof: Let S ⊆ Ω, F (S) = {i1, ...il}. Then,
c∗(S) = v(Ω)− v(Ω\S)− c(S) = v(Ω)− v(Ω\Si1)− c(Si1)

+
l−1

j=1

[v(Ω\{Si1 , ..., Sij}− v(Ω\{Si1 , ..., Sij+1}− c(Sij )]

≥
l

j=1

v(Ω)− v(Ω\Sij )− c(Sij ) =
Si∈S

c∗(Si)

Proposition 5 and Lemmas 6 and 7 make it possible to offer results for
concave social surplus functions.

Corollary 5 Let (v − c) be concave and c∗(w) ≥ 0, for all w ∈ Ω. Then,
firms are substitutes, and firms’ equilibrium profits (or net prices) are equal
to their social marginal contributions.
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5.2 Convex social surplus functions

Convexity of (v − c) reflects complementarities among products or bundles
of products and hence among firms. Therefore it induces only weak market
competition so that firms can extract the entire buyer surplus. It is straight-
forward to prove that if (v − c) is nonnegative and convex, then (v − c) is
monotonic.

Lemma 8 Let (v−c) be a convex social surplus function with (v−c)(w) ≥ 0
for all w ∈ Ω. Then (v − c) is monotonic.

The set of firms’ equilibrium profits of convex social surplus functions
is the convex hull of n! vectors which are components (πi)i∈N of the corner
solutions of RDLP. Moreover, we show next that, if (v − c) is monotonic
and convex, then core(v − c) is non-empty: in fact, core(v − c) is the set
of components (πi)i∈N of the solutions of RDLP, thus coinciding with the
set of firms’ equilibrium profits. Let P (Π) = {(πi) ∈ Rn+| there exists
(0, (πi), (π

i
Ti
)) ∈ Π}.

Proposition 6 Let (v−c) be a convex value function, such that (v−c)(w) ≥
0 for all w ∈ Ω. Then, the following two sets are the same.

(i) core(v − c)
(ii) P (Π) = {π ∈ Rn+|(0, (πi), (πiTi)) ∈ Π where πiTi = πi for all i ∈

N,Ti ⊆ Ωi}
and the buyer’s surplus is zero.

Thus, if the social surplus function is convex, then the consumer’s surplus
is zero at any equilibrium outcome of the economy, so that firms extract the
entire surplus.

6 The role of mixed bundling

Let us consider the scenario where firms are not allowed to used mixed
bundling strategies. Thus, a strategy of firm j, j ∈ N, is a vector pj =
{pj(w)}w∈Ωj where pj(w) is firm j’s price of product w. Let pi(Ti) be the
price of Ti ⊆ Ωi, then pi(Ti) = w∈Ti pi(w), i.e., prices are linear and bundle
Ti is offered for no special price. The buyer then select one consumption set
as a function of the vector of prices {pj(w)}j∈N,w∈Ωj that she already has
observed. This defines a two-stage game5 GLP .

5A restricted version of this model is LU (2002).
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Let us denoted a subgame perfect equilibrium outcome of GLP as an
LSPE∗-outcome. The properties that LSPE∗-outcomes shall satisfy are
similar to BC1, FC1 and FC4. However, firms’ possible deviations under
linear prices are different from those in mixed bundling settings. Thus,
condition FC2 is not of application here, given that the prices of two non-
disjoint bundles are not independent anymore: if a firm increases the price
of a product, it is simultaneously increasing the price of all the bundles
containing it. As in the mixed bundling framework, LSPE∗-outcomes are
associated to optimal solutions of some LP problems, denoted LPL. The
LPL problem is similar to LP but we need to change constraints (3),

S Ti

zS ≤ y(Ti, i) ∀i ∈ N,∀Ti ⊆ Ωi

by those associated to each firm i’s product,

S w

zS ≤
w∈Ti⊆Ωi

y(Ti, i) ∀i ∈ N,∀w ⊆ Ωi

These new constraints tell us that w ⊆ Ωi is sold by firm i if and only if the
buyer has chosen a consumption set S with w ∈ S. Let DLPL be the asso-
ciated dual problem and let (πb, (πi), (πw)) be a generic solution of DLPL.
Similar arguments to those of LP and DLP of section 3, ensures that LPL
always has an integer optimal solution and hence (by the fundamental du-
ality theorem) DLPL has an optimal solution with πb+ i∈N πi = V L(Ω).
Finally, the associated restricted dual problem, RDLPL is

Max
i∈N

πi

s.t. πb +
w∈S

πw ≥ (v − c)(S) ∀S ⊆ Ω

πi −
w∈Ti

πw ≥ 0 ∀i ∈ N, ∀Ti ⊆ Ωi

πb +
i∈N

πi = V L(Ω)

πb,πi,πw ≥ 0
which will always have an optimal solution. It satisfies sol(RDLPL) ⊆
sol(DLPL). Given (πb, (πi), (πw)) ∈ sol(RDLPL), let πiTi = w∈Ti πw for
all i ∈ N,Ti ⊆ Ωi.
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Notice that if LP and DLP problems of the Package Assignment model
admit a degenerate solution in pure component prices, this solution is an
LSPE∗-outcome. Let ΠL denote the set of optimal solutions of DLPL
non Pareto-dominated on components (πi) and recall that Π is the corre-
sponding one for DLP problems. It is not difficult to show that if both
frontiers have a non-empty intersection, i.e. if (πb, (πi), (πw)) ∈ ΠL∩ Π,
then ((πi), (πw)) will define an LSPE

∗-price and profits vectors (see AU,
2003b). However, when (πb, (πi), (πw)) ∈ ΠL\Π different things may hap-
pen. Namely, although some solutions of the LPL andDLPL problems still
define LSPE∗-outcomes, others do not characterize them anymore. This
last case implying that either an LSPE∗-outcome does not exist or it is
inefficient (see AU, 2003b, for the proofs of these results). To clarify the
above discussion let us consider the following example in LU(2002), where
existence of linear pricing equilibria is not always guaranteed.

Example: Let v be as in example 1. The following tables shows the
LSPE∗-outcomes for linear (additive) prices.

Table 3: Equilibrium outcomes in linear prices

Equilibrium in Linear prices

Region I Region II Region III Region IV
0 < δ ≤ 6 6 < δ < 12 12 ≤ δ < 13 13 ≤ δ < 16

S = {a, d} S = {a, b} S = {a, b}
pa1 = 15− 2

3δ No pa1 = 2 pa1 + p
b
1 = 16− δ

pb1 = 14− 2
3δ equilibrium pb1 = 1 pa1 ≤ 2, pb1 ≤ 1

pc2 =
2
3δ exists pc2 = 0 pc2 = 0

pd2 =
2
3δ pd2 = 0 pd2 = 0

cs = 0 cs = 13 cs = δ
no efficient efficient efficient

In this example LSPE∗-outcomes can be inefficient (Region I) or could
not exist (Region II). Notice first that for 13 ≤ δ < 16, (region IV), {a, b} ∈
sol(LPL) and πb = δ,πa = min{16 − δ, 2},πb = 16 − δ − πa,πc = πd =
0 is a solution of RDLPL which also defines a solution of RDLP, i.e.,
(πb, (πi), (πw)) ∈ ΠL∩ Π. Hence the outcome (S, p), where S = {a, b} and
p(w) = πw is an LSPE

∗-outcome. Now, for δ < 13 the unique solution of
RDLPL is πb = 13,πa = 2,πb = 1,πc = πd = 0 and it does not belong to
Π anymore, i.e. ΠL∩ Π = ∅. However, for 12 ≤ δ < 13 this solution still
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defines an LSPE∗-outcome. But, for δ < 12, LPL and RDLPL solutions
do not characterize LSPE∗-outcomes, this meaning that LSPE∗-outcomes
could not exist or could be inefficient. For instance, let δ = 10 and consider
the optimal solution to LPL and RDLPL problems: outcome (S, p) where

S = {a, b}
pa = 2, pb = 1

pc = pd = 0.

firm 1 obtains a profit of 3 and the buyer’s surplus is 3. Firm 1 has incentives
to change its prices so that pa = pb = 5− ε, for ε small enough. Then, the
buyer chooses bundle {a, d}, maximizing her surplus and firm 1 obtains a
profit equal to 5− ε bigger than 3.

Thus, there are important differences between games GMB and GLP :
first, a subgame perfect equilibrium may not exists in linear prices (Region
II); secondly, the equilibrium outcomes may be non-efficient (Region I). In
the above example, when 0 < δ ≤ 6 (Region I) the game GLP has always a
unique equilibrium: the buyer purchases the consumption set {a, d}, which
is not socially efficient and the equilibrium prices are such that the firms
extract the entire surplus, leaving the buyer with zero surplus, v(a, d) =
15 = pa1 + p

d
2. However, if mixed bundling is allowed, then the unique

equilibrium consumption set is {a, b}, the socially efficient. Firm 1 must sell
its pure system as a bundle for the price pab1 = 16− δ, lower than the sum
of the prices of its two products separately and firm 2 sets prices equal to
zero. Thus, the buyer’s surplus is δ. Observe that if 3 < δ ≤ 6 then both
firms are worse off in GMB relatively to GLP , but if 0 < δ ≤ 3 then firm 1
is better off in GMB and firm 2 is better off in GLP . Now, let assume that
6 < δ < 12 (Region II), then no subgame perfect equilibria exists in GLP ,
thus mixed bundling is needed to guarantee equilibrium’s existence. This
results are in contradiction with AL(1993). They found that firms will in
equilibrium choose to precommit to linear prices better than allowing mixed
bundling. This will be only the case in Region I when 3 < δ ≤ 6. But, if
firms have precommitted to linear prices in Region II, then the market would
not achieve any equilibrium outcome meanwhile mixed bundling guarantees
the socially efficient consumption set {a, b}, at price pab1 = 16− δ, and with
a buyer’s surplus of δ.
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7 The Model with m buyers

Let us extend the above model to one with m buyers, denoted by b ∈ B =
{1, ...,m}. Each buyer has a value function defined over sets of bundles
of objects, vb(S), S ⊆ 2Ω. An allocation of objects to buyers is a vector
(S1, ..., Sm) where Sb ⊆ Ω, Sb ∩ Sb = ∅ for any b, b ∈ B, b = b . It is
possible that for some b, Sb = ∅. Assume, for simplicity, that the unit costs
of production are zero.

As in the previous model, each firm i ∈ N chooses prices pi(Ti) for
any set Ti ⊆ Ωi and then, each buyer b ∈ B, after observing price vector
p = (p1, ..., pn) ∈ P1 × · · ·×Pn, selects the consumption set Sb ⊆ Ω which
maximizes her surplus, i.e., for all b ∈ B, and S ⊆ Ω,

vb(S
b)−

i∈F (Sb)
pi(S

b
i ) ≥ vb(S)−

i∈F (S)
pi(Si).

Let (S1, ..., Sm) be an allocation and denote by Sbi = S
b ∩ Ωi the set of

products sold by firm i to buyer b, hence S = ∪b∈BSb. Thus, firm i sells the
set of products Si = ∪b∈BSbi , which can be arranged as a vector (S1i , ..., Smi ).
Let Ψi be the set of such vectors associated to any possible allocation and
ψi ∈ Ψi any of its elements.

Given b ∈ B,S ⊆ Ω, define z(S, b) equal to 1 if buyer b chooses consump-
tion set S, zero otherwise; for any i ∈ N and ψi ∈ Ψi define y(ψi, i) equal
to 1 if firm i sells its products to buyers according to ψi and zero otherwise.
Consider the following integer problem ILP’.

Max
b∈B S⊆Ω

vb(S)z(S, b)

s.t.
S⊆Ω

z(S, b) ≤ 1 ∀b ∈ B (7)

ψi∈Ψi
y(ψi, i) ≤ 1 ∀i ∈ N (8)

b∈B {S:S∩Ωi=T}
z(S, b) ≤

b∈B {ψi:Sbi=T}
y(ψi, i), ∀i ∈ N,T ⊆ Ωi(9)

z(S, b), y(ψi, i) ∈ {0, 1}
where constraints (7) ensure that only one consumption set is chosen by
each buyer, constraints (8) guarantee that each firm i sells every individual
product to at most one buyer, and constraints (9) set that the bundle chosen
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by buyer b from firm i is the one sold by firm i to buyer b. Let LP’ be the
linear relaxation of ILP’, so that constraints z(S, b), y(ψi, i) ∈ {0, 1} change
to z(S, b), y(ψi, i) ≥ 0. Let VILP (N,B) and VLP (N,B) denote the optimal
value of ILP’ and LP’ respectively, thus VLP (N,B) ≥ VILP (N,B). The
LP’ problem has associated the dual linear programming problem DLP’:

Min
b∈B

πb +
i∈N

πi

s.t. πb +
i∈N

πiS∩Ωi ≥ vb(S) ∀b ∈ B,S ⊆ Ω

πi −
b∈B

πi
Sbi
≥ 0 ∀i ∈ N,∀ψi = (S1i , ..., Smi ) ∈ Ψi

πb,πi,πiT ≥ 0
where πi can be interpreted as firm i’s net profit, i ∈ N ; πb is buyer b’s
surplus; and πiT is the price that firm i sets to bundle T , i ∈ N,T ⊆ Ωi. The
feasible region of LP’ is nonempty, which implies that DLP’ also has an
optimal solution, say VDLP (N,B). Among the optimal solutions of DLP’
let us consider those whose coordinates (πi), for all i ∈ N , are not Pareto-
dominated by any other optimal solution. A way to obtain some of these
solutions is to consider the following restricted dual problem RDLP’,

Max
i∈N

πi

s.t. πb +
i∈N

πiS∩Ωi ≥ vb(S) ∀b ∈ B,S ⊆ Ω

πi −
b∈B

πi
Sbi
≥ 0 ∀i ∈ N,∀ψi = (S1i , ..., Smi ) ∈ Ψi

b∈B
πb +

i∈N
πi = VDLP (N,B)

πb,πi,πiT ≥ 0
By the duality theorem of linear programming we have that

VDRLP (N,B) = VDLP (N,B) = VLP (N,B) ≥ VILP (N,B).
As an extension of Proposition 2 it can be proven that if VLP (N,B) =
VILP (N,B), then an optimal solution of LP’ together with a non Pareto-
dominated solution of DLP’ in coordinates (πi), for all i ∈ N , yield an
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SPE∗-outcome of the m- buyers’ model. The equilibrium price vectors are
mixed bundling prices. Thus, the existence of SPE∗-outcomes depends on
the existence of an integer optimal solution of LP’.

Trivially, if all buyers have additive value functions (vb(S) + vb(T ) =
vb(S ∪ T ) for all b ∈ B and S, T ⊆ Ω) then, equilibrium prices will also
be linear, with pi(w) = maxb{vb(w)}, for all firm i ∈ N,w ∈ Ωi and ex-
istence of (degenerate) SPE∗-outcomes is always guaranteed. The next
sub-sections analyze conditions on buyers’ value functions which ensure ex-
istence of SPE∗-outcomes.

7.1 Homogeneous buyers

Let us first analyze the case in which all value functions are the same. We
need conditions to ensure that b∈B S⊆Ω vb(S)z(S, b) is maximized at an
integer feasible allocation. Let (λS)S⊆Ω, be a balanced vector if λS ≥ 0 for
all S ⊆ Ω and for all w ∈ Ω, S w λS = 1. A value function v(.) defined
on subsets S ⊆ Ω is balanced if for any balanced vector (λS)S⊆Ω we have
S λSv(S) ≤ v(Ω).
Result 1: If all agents have the same value function v(.), and if v(.) is

balanced, then VLP (N,B) = VILP (N,B) and there exists an SPE
∗-outcome

(as solution of the primal and dual linear problems).

For homogeneous balanced value functions,

b∈B S⊆Ω
v(S)z(S, b) ≤ v(Ω)

thus LP’ has an optimal integer solution determined by, say, allocation
(Ω, ∅, ..., ∅). More precisely, (z(S, b), y(ψi, i)) is an optimal solution of LP’,
where z(Ω, 1) = 1 and z(S, b) = 0 if S = Ω or b = 1 and y(ψi, i) = 1 if
ψi = (Ωi, ∅, ..., ∅) for all i ∈ N, and zero otherwise.

Proof: Let ((z(S, b), (y(ψi, i)) be a feasible solution of LP’, thus for
all w ∈ Ω, S w b∈B z(S, b) ≤ 1. Define λw = b∈B z(w, b) + (1 −
S w b∈B z(S, b)). For S ⊆ Ω, such that |S| ≥ 2 define λS = b∈B z(S, b).

It can be checked that (λS)S⊆Ω is a balanced vector and λS ≥ b∈B z(S, b).
Thus,

b∈B S⊆Ω
v(S)z(S, b) =

S⊆Ω b∈B
z(S, b)v(S) ≤

S⊆Ω
λSv(S) ≤ v(Ω)

where the first inequality is given by λS ≥ b∈B z(S, b) and the second one
from balancedness.
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Moreover, given that a convex value function is balanced we conclude
that if all agents have the same convex value function, then the set of SPE∗-
outcomes is non empty.

7.2 Heterogeneous buyers

The existence of SPE∗-outcomes can be easily extended to two types of
buyers, provided they have strictly convex value functions i.e., there are two
types of buyers such that agents type j = 1, 2 have the same convex value
function.

To see this, let B1 be the set of type 1 buyers and B2 be the set of type
2. It is not difficult to show that at any optimal solution of DRLP’ the
buyers’ surplus is the same for all of them and equal to zero (the proof runs
similar to the single buyer model).

Case 1: In the optimal solution of ILP’, there exists b ∈ B1 such that
VILP (N,B) = vb(Ω). Relabeling the buyers if necessary, b = 1. Consider the
allocation, ψ = (Ω, ∅, ..., ∅) and price vector p = (p1, ..., pn) such that,

i∈N
pi(Ωi) = v1(Ω)

pi(Ωi) ≤ v1(Ω)− v1(Ω\Ωi) for all i ∈ N
pi(T ) = pi(Ωi) for all i ∈ N,T ⊆ Ωi

where conditions 1 and 2 are simultaneously verified by convexity of v1. It
can be checked that this allocation and price vector define an equilibrium
outcome.

Case 2: In the optimal solution of ILP’, there exists b ∈ B1 and b ∈ B2
such that VILP (N,B) = vb(S) + vb (T ) for some S, T ⊆ Ω, with S ∩ T =
∅. Relabeling the buyers if necessary, b = 1, b = 2. Also notice that by
convexity of the value functions, cases 1 and 2 are the unique integer optimal
solutions .

Consider the following allocation, ψ = (S, T, ∅, ..., ∅) and the price vector
p = (p1, ..., pn) such that,

Si∈S
pi(Si) = v1(S)

Ti∈T
pi(Ti) = v2(T )

pi(K) = pi(Si) + pi(Ti) for all i ∈ N,K ⊆ Ωi
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and pi(Ti), pi(Si) bigger than some amount characterized by the constraints
of DLP’. It can be checked that this allocation and price vector defines an
equilibrium outcome.

The extension of this result to more than two types of buyers remains
an open question. For instance, in the three types case the existence of
Walrasian equilibria with linear prices is not guaranteed as shown in the
following example with one firm, and three types of buyers (see, BM, 1996):

Example in BM (1996)
S 1 2 3 1, 2 1, 3 2, 3 1, 2, 3

v1 1 1 1 30 3 3 40
v2 1 1 1 3 30 3 40
v3 1 1 1 3 3 30 40

However, solving the linear programming problem and it restricted dual
we find the following SPE∗-outcome,

ψ = ({1, 2, 3}, ∅, ∅)
p(S) = 40 for all S ⊆ Ω

Thus, mixed bundling prices guarantee the existence of efficient equi-
librium outcomes. Our intuition suggests that under strict convexity of the
buyers’ value functions there always exist SPE∗-outcomes in mixed bundling
prices, independently of the number of types of the buyers. Nevertheless,
something more precise can be said if we consider a single firm model.

Result 2: Let N = 1, a single seller, and m buyers with strictly convex
value functions. Then the set of SPE∗-outcomes is non empty.

Proof: Let (z, y) be an optimal solution of ILP’ which defines the allo-
cation (S1, ..., Sm). By convexity, vb (S

b) ≤ vb(Sb), for every Sb = ∅ and for
all b, b ∈ B, b = b . Suppose that there exists b, b ∈ B, and vb (Sb) > vb(Sb)
then,

vb(S
b) + vb (S

b ) < vb (S
b) + vb (S

b ) ≤ vb (Sb ∪ Sb )
which contradict the optimality of (S1, ..., Sm).

Now define πb = 0 for all b ∈ B, π1 = b∈B vb(S
b
1) and π

1
T = maxb vb(T ).

It can be checked that ((πb),π1, (π
1
T )) is a feasible solution of DLP’, thus

VDLP (1, b) ≤ b∈B vb(S
b
1)
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Then,

VILP (1, B) ≤ VLP (1, b) = VDLP (1, b) ≤
b∈B

vb(S
b
1)

but b∈B vb(S
b
1) ≤ VILP (1, B) and we conclude that VILP (1, B) = VLP (1, b),

(S1, ..., Sm) is an optimal allocation of both ILP’ and LP’, and jointly with
the vector of prices given by (π1T ) defines an equilibrium outcome.

Finally, consider the case in which all buyers are characterized by a
value function vb, b ∈ B verifying KC(1982)’s gross substitution condition
(gs). Given a buyer b ∈ B, with value function vb and a price vector p, let
Db(p) be

Db(p) = {S ⊆ Ω|vb(S)−
Si∈S

pi(Si) ≥ vb(T )−
Ti∈T

pi(Ti) for all T ⊆ Ω}

Now, define (gs) as follows,
Given b ∈ B, vb satisfies gross substitution if for any two price vectors

p and q such that pi(T ) ≤ qi(T ) for all i ∈ N,T ⊆ Ωi and any S ∈ Db(p),
there exists T ∈ Db(q) such that Ti = Si if pi(Si) = qi(Si).

The results in GS(1999) and BVSV(2002) can be extended to cover
SPE∗-outcomes under mixed bundling pricing. Let rb(S, p) = minT∈Db(p) |S∩
T | be the dual rank function of a matroid. Then by the matroid partition
theorem if for all T ⊆ Ω, b∈B rb(T, p) ≤ |T |, then there exists a partition
of Ω so that every buyer receives at most one element of Db(p). In other
case, choose T ⊆ Ω, such that b∈B rb(T, p) > |T | and is the one verifying
that property with minimal cardinality. Now, following a modification of
the algorithm proposed by GS(2000), each firm i increases the price of its
bundles Si ⊆ Ωi such that Si ∩ Ti = ∅ by > 0. After a finite number of
rounds we obtain a price vector and an allocation which defines an optimal
solution of both LP’ and ILP’.

We conclude by noting that existence of SPE∗-outcomes for the m-
buyers’ model under general value functions is hardly guaranteed. However,
our intuition suggests that if we allow mixed bundling prices to be also non-
anonymous (i.e. buyer’s dependent), some partial results could be given
(see BO, 2002, for the Walrasian Equilibrium set up). This is left for future
research.
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8 Appendix.

Proof of Lemma 3: If i /∈ F (S), then constraint Ti⊆Ωi y(T, i) ≤ 1 is
satisfied with strict inequality and by the complementary slackness condition
πi = 0. Now, by constraints (5) inDLP, 0 = πi ≥ πiTi ≥ 0 and ii) is satisfied.

Now we prove i): if i ∈ F (S), again by constraints (5), πi ≥ πiTi for all
Ti ⊆ Ωi. Given that zS = 1, then by the complementary slackness condition,
πb +

Si∈S π
i
Si
= v(S). Thus,

πb = v(S)−
i∈N

πi = v(S)−
Si∈S

πi
Si

which implies that i∈N πi = Si∈S π
i
Si
=

i∈F (S) πi. But this, in turn,

implies that for all i ∈ F (S), πi = πi
Si
given that by (5) πi ≥ πi

Si
.

Proof of Proposition 2: W.l.o.g., we assume, for simplicity, that
marginal costs are zero. We prove first that (S, p) ∈ SPE∗-outcome set
under partition µ = {N} (µ-DLP=RDLP) and pi(Ti) = πiTi . To this end,
we check that conditions BC, FC1 and FC4 are satisfied.

Step 1: Condition BC
Given S ⊆ Ω, by Lemma 3 and constraints (4) in DLP (or RDLP),

v(S) ≤ πb +
Si∈S

πiSi = v(S)−
Si∈S

πi
Si
+
Si∈S

πiSi =

= v(S)−
i∈F (S)

pi(Si) +

i∈F (S)
pi(Si)

thus v(S)−
i∈F (S) pi(S) ≥ v(S)− i∈F (S) pi(S).

Step 2: Condition FC1
If v(S)−

i∈F (S) pi(Si) = 0, then it is trivially verified for S
j = ∅.

Now suppose that πb = v(S)−
i∈F (S) pi(Si) > 0 and that there exists

j ∈ F (S) such that for all S ⊆ Ω\Ωj ,

πb = v(S)−
i∈F (S)

pi(Si) > v(S )−
i∈F (S )

pi(Si)

Let = 1
2 minS⊆Ω\Ωj{v(S)− i∈F (S) pi(Si)− (v(S)− i∈F (S) pi(Si))} > 0.
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Define,

πb = πb −
πi =

πi + if i = j
πi if i = j

πiTi =
πiTi + if i = j, Ti = Si
πiTi otherwise

Let us show that (πb, (πi), (π
i
Ti
)) satisfies all RDLP constraints. Given

S ⊆ Ω, if Sj = Sj then
πb +

Si∈S
πiSi = πb − +

Si∈S\Sj
πiSi + πjSj + = πb +

Si∈S
πiSi ≥ v(S)

otherwise,

πb +
Si∈S

πiSi = πb − +
Si∈S

πiSi ≥

≥ πb − 1
2
(v(S)−

i∈N
pi(S)− v(S) +

i∈N
pi(S)) +

Si∈S
πiSi =

= πb − 1
2
(v(S)−

Si∈S
πi
Si
− v(S) +

Si∈S
πiSi) +

Si∈S
πiSi =

= πb − 1
2
(πb − v(S) +

Si∈S
πiSi) +

Si∈S
πiSi =

=
1

2
(v(S) + πb +

Si∈S
πiSi) ≥

1

2
(v(S) + v(S)) = v(S)

Thus, constraints (4) are satisfied. To prove that so do constraints (5),
consider different cases. For all i = j, πi − πiTi = πi − πiTi ≥ 0. If i = j but
Ti = Si then πi − πiTi = πi + − πiTi ≥ πi − πiTi ≥ 0; if i = j and Ti = Si
then πi − πiTi = πi + − (πiTi + ) = πi − πiTi ≥ 0.

Finally, πb + i∈N πi = πb − + i∈N\j πi + πj + = πb + i∈N πi =

V (Ω). Then (πb, (πi), (π
i
Ti
)) verifies all RDLP constraints and i∈N πi =

i∈N πi + > i∈N πi which contradicts the optimality of (π
b, (πi), (π

i
Ti
)).

Step 3: Condition FC4
Let A ⊆ N\F (S), B ⊆ F (S). First, recall, by Lemma 3, that πi = πiTi =

0 for all i ∈ A, Ti ⊆ Ωi. Second, by the dual constraints (5) and Lemma 3
that πi = πi

Si
≥ πiTi for all i ∈ B,Ti ⊆ Ωi.
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Then, given S ⊆ Ω, where (A ∪B) ⊆ F (S),

v(S)−
i∈F (S)

pi(Si) = v(S)−
Si∈S

πi
Si
≥ v(S)−

Si∈S
πiSi

= v(S)−
Si∈S

i/∈(A∪B)

πiSi −
Si∈S
i∈B

πiSi

≥ v(S)−
i∈F (S)\(A∪B)

pi(Si)−
i∈B

pi(Si)

and FC4 is verified.
Thus, (S, p) verifies conditions BC, FC1 and FC4, and hence (S, p) ∈

SPE∗-outcome set when µ = {N}.
The proof for any other partition µ = {N} is not remarkably different

from case µ = {N}. Finally the proposition holds if we consider any price
vector such that πiTi ≤ pi(Ti) ≤ πi for all i ∈ N,Ti ⊆ Ωi given that if
(πb, (πi), (π

i
Ti
)) ∈ sol(µ−DLP), then (πb, (πi), (πiTi)) ∈ sol(µ−DLP), where

πiTi ≤ πiTi ≤ πi for all i ∈ N,Ti ⊆ Ωi.
To prove Corollary 1 we need the following lemma which establishes that

given (S, p) ∈ SPE∗-outcome set then, the net price vector (pS − c(S)) is a
solution of DLP, where vector pS is defined from p as in page 11.

Lemma 9 If (S, p) ∈ SPE∗-outcome set, then
i) S ∈ sol(LP) and
ii) (πb, (πi), (π

i
Ti
)) ∈ sol(DLP) where πb = v(S) −

k∈F (S) pk(Sk) and

πi = pi(Si)− ci(S) for all i ∈ F (S), πi = 0 for all i /∈ F (S) and πiTi =

πiTi =


pi(Si)− ci(Si) if i ∈ F (S), pi(Ti)− ci(Ti) ≥ pi(Si)− ci(Si)
pi(Ti)− ci(Ti) if i ∈ F (S), pi(Ti)− ci(Ti) < pi(Si)− ci(Si)

0 if i /∈ F (S)

for all i ∈ N,Ti ⊆ Ωi.

Proof of lemma 9: S ∈ sol(LP) by Corollary 3. Now, let us prove
that (πb, (πi), (π

i
Ti
)) ∈ sol(DLP):

Step 1: Constraints (4).
Given S ⊆ Ω, let A = F (S)\F (S) and B = {i ∈ F (S)|(pi − ci)(Si) ≤

(pi − ci)(Si)} ∩ F (S). Thus, πkSk = 0 for all  k ∈ A and π  kSk = πk
Sk
for all
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k ∈ B. By FC3 it is verified that,
πb = v(S)−

k∈F (S)
pk(Sk) = (v − c)(S)−

k∈F (S)
πk
Sk

≥ (v − c)(S)−
k∈F (S)\(A∪B)

(pk − ck)(Sk)−
k∈B

(pk − ck)(Sk)

= (v − c)(S)−
k∈F (S)\(A∪B)

πkSk −
k∈B

πk
Sk

= (v − c)(S)−
k∈F (S)\(A∪B)

πkSk −
k∈B

πkSk −
k∈A

πkSk

= (v − c)(S)−
k∈F (S)

πkSk

Hence, πb + Sk∈S π
k
Sk
≥ (v − c)(S).

Step 2: Constraints (5).
By definition πi − πiTi ≥ 0.
We have seen that (πb, (πi), (π

i
Ti
)) is a feasible solution. In the next step

we will see that is also optimal
Step 3: Optimality.
Given that,

πb+
k∈N

πk = (v−c)(S)−
k∈F (S)

(pk−ck)(Sk)+
k∈F (S)

(pk−ck(Sk) = (v−c)(S) = V (Ω)

thus, (πb, (πi), (π
i
Ti
)) ∈ sol(DLP).

Proof of corollary 1: By Proposition 2 when µ = {N}, then (S, p) ∈
SPE∗-outcome set. Now, let us consider any other (S, p) in set SPE∗. By
lemma 9, (πb, (πi), (π

i
Ti
)) ∈ sol(DLP) where (πb, (πi), (πiTi)) is defined as

above. Moreover, by Corollary 3, (v − c)(S) = (v − c)(S).
Thus, given that (πb, (πi), (π

i
T )) ∈ sol(RDLP) it must be verified that

k∈N πk ≥ k∈N πk. Hence,

v(S)−
k∈F (S)

pk(Sk) = πb = (v − c)(S)−
k∈N

πk

≤ (v − c)(S)−
k∈N

πk

= πb = v(S)−
k∈F (S)

pk(Sk)
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and the consumer surplus associated to (S, p) is the lowest among all the
SPE-outcomes.

Proof of Proposition 3: Let (S, pS) be in set SPE∗. By Corollary 3,
S ∈ sol(LP) and by Lemma 9, (πb, (πi), (πiTi)) ∈ sol(DLP).

Moreover, by Lemma 4, (p − c) is not Pareto dominated by any other
SPE∗-net price vector and nor is (πi).

Now, suppose that S ∈ sol(LP), (πb, (πi), (πiTi)) ∈ Π. Let pS be such
that pSi (Si) = πiSi + ci(Si) for all i ∈ N,Si ⊆ Ωi

Step 1: Condition BC.
Given S ⊆ Ω, by constraint (4) πb + Si∈S π

i
Si
≥ (v − c)(S), but πb =

(v − c)(S)−
Si∈S π

i
Si
thus,

(v − c)(S)−
Si∈S

πi
Si
≥ (v − c)(S)−

Si∈S
πiSi

and hence v(S)−
k∈F (S) p

S
k (Sk) ≥ v(S)− k∈F (S) p

S
k (Sk).

Step 2: Condition FC1.
If πb = 0 then FC1 holds for Sj = ∅. If πb > 0 then suppose there exits

j ∈ F (S) such that for all S ⊆ Ω\Ωj it is verified that

v(S)−
k∈F (S)

pSk (Sk) > v(S)−
k∈F (S)

pSk (Sk)

We can define (πb, (πi), (π
i
Ti
)) as in step 2 of the proof of the Propo-

sition 2 which verifies all the constraint in DLP and Pareto dominates
(πb, (πi), (π

i
Ti
)), contradiction.

Step 3: Condition FC4, reproduce the same reasoning that step 3 of the
proof of Proposition 2.

Hence (S, pS) ∈ SPE∗-outcome set.
Proof of Proposition 5: W.l.o.g., we prove the proposition assuming

for simplicity that marginal costs are zero. Given that v is monotonic v(Ω) ≥
v(S). Moreover,

p∗i (Ti) ≥ v(Ω\(Ωi\T ))− v(Ω\Ωi)
Thus, prices are all positive and p∗i (Ωi) = v(Ω)− v(Ω\Ωi).
First we prove that (Ω, p∗) ∈ SPE∗-outcome set, by showing that Ω ∈

sol(LP) and (πb, (πi), (π
i
Ti
)) ∈ sol(RDLP) where πiTi = p∗i (Ti), πi = p∗i (Ωi)

and πb = v(Ω)− i∈N p
∗
i (Ωi).
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Step 1: πb ≥ 0. By (FS) c∗(Ω) = v(Ω) ≥ i∈N c
∗(Ωi) = i∈N p

∗
i (Ωi),

thus πb ≥ 0.
Step 2: Constraints (4) in RDLP are verified.
Given S ⊆ Ω, by (FS), c∗(Ω\S) = v(Ω)− v(S) ≥ i∈N c

∗(Ωi\S), but

v(Ω)− v(S) ≥
i∈N

c∗(Ωi\S) =

=
i∈N
[v(Ω)− v(Ω\(Ωi\S))] =

=
i∈N
[v(Ω)− v(Ω\Ωi) + v(Ω\Ωi)− v(Ω\(Ωi\S))] ≥

=
i∈N
[πiΩi − πiSi ]

then v(Ω)− i∈N πiΩi + i∈N πiSi = πb + i∈F (S) π
i
Si
≥ v(S).

Step 3: Constraints (5) in RDLP are verified.
Given S ⊆ Ωi and i ∈ N ,

πiSi = p
∗
i (Si) ≤ v(Ω)− v(Ω\Ωi) = p∗i (Ωi) = πi

Step 4: Constraint (6) in RDLP is verified.
Notice that πiΩi = p

∗
i (Ωi) = πi, thus

πb +
i∈N

πiΩi = v(Ω)−
i∈N

p∗i (Ωi) +
i∈N

p∗i (Ωi)

= v(Ω) = V (Ω)

Thus, we have proved that (πb, (πi), (π
i
Ti
)) ∈ sol(DLP). To show that

(πb, (πi), (π
i
Ti
)) ∈ sol(RDLP) we need the following last step.

Step 5: (πb, (πi), (π
i
Ti
)) ∈ sol(RDLP)

Consider any (πb, (πi), (π
i
Ti
)) ∈ sol(RDLP). Then, by monotonicity of

v and Proposition 2, (Ω, p) ∈ SPE∗-outcome set, where pi(Si) = πiSi and
pi(Ωi) = πi. By Lemma 5, pi(Ωi) ≤ v(Ω)− v(Ω\Ωi) = p∗i (Ωi), thus

i∈N
πi =

i∈N
pi(Ωi) ≤

i∈N
p∗i (Ωi) =

i∈N
πi

and (πb, (πi), (π
i
Ti
)) ∈ sol(RDLP).
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Now, consider S∗ such that v(S∗) = v(Ω). Then by (FS),

0 = v(Ω)− v(S∗) ≥
i∈N

p∗i (Ωi)− p∗i (S∗i ) ≥ 0

thus, p∗i (Ωi) = p
∗
i (S

∗
i ) for all i ∈ N . Moreover, for all i ∈ N\F (S∗) and all

Ti ⊆ Ωi , p∗i (Ti) = 0, given that

0 ≤ v(Ω\(Ωi\Ti))− v(Ω\Ωi) ≤ p∗i (Ti)
≤ v(Ω)− v(Ω\Ωi) ≤ v(Ω)− v(S∗) = 0

Then (πb, (πi), (π
i
Ti
)) ∈ sol(DLP), where πiTi = p∗i (Ti), πi = p∗i (S∗i ) and

πb = v(S∗)− i∈F (S∗) p
∗
i (S

∗
i ). That (π

b, (πi), (π
i
Ti
)) ∈ sol(RDLP) is proved

in the same way as above.
Running the argument of step 2 in reverse yields the equivalence.

Proof of Proposition 6:
Step 1: conv{xσ(v − c)|σ ∈ Σ} = core(v − c).
Let Σ be the set of permutations (orderings) of N = {1, 2, ..., n} and let

σ ∈ Σ be any of its elements. Let P σ
i be the set of firms which precede firm

i with respect to permutation σ, i.e., for all i ∈ N and σ ∈ Σ,

P σ
i = {j ∈ N |σ(j) < σ(i)}

Define, following Shapley (1971), the marginal contribution vector xσ(v−
c) ∈ Rn of (v − c) with respect to ordering σ by,

xσi (v − c) = V (P σ
i + i)− V (P σ

i ), for all i ∈ N

If (v − c) is convex, then the marginal contribution vector xσ(v − c) is
positive.

The equality between the sets conv{xσ(v − c)|σ ∈ Σ} and core(v − c) is
given in Driesen 1993.

Step 2: core(v − c) = P (Π)
Proof of core(v−c) ⊆ P (Π). Let x ∈ core(v−c). Define πb = 0,πi = xi

and πiTi = xi for all i ∈ N,Ti ⊆ Ωi It is straightforward that (πb, (πi), (πiTi))
verifies all the constraints of DLP. Moreover, by convexity of (v − c),

i∈N
πi =

i∈N
xi = V (N) = (v − c)(Ω)
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so that (πb, (πi), (π
i
Ti
)) ∈ sol(RDLP) and component (πi) cannot be Pareto-

dominated by any other solution, hence (πb, (πi), (π
i
Ti
)) ∈ Π and (πi) ∈

P (Π).
Proof of P (Π) ⊆ core(v − c). Suppose on the contrary that P (Π)

core(v − c). Then there exists z ∈ P (Π) such that z /∈ core(v − c)̇. By
proposition 3, vector z is not Pareto-dominated by any other vector in P (Π).
However, the equality between the sets core(v − c) and conv{xσ(v − c)|σ ∈
Σ}, jointly with z /∈ core(v − c) yields the existence of io such that zi0 >
V (N)− V (N\i0) = (v − c)(Ω)− (v − c)(Ω\Ωi0).

On the other hand, by monotonicity of (v − c) and Proposition 3, we
have that (Ω, p) ∈ SPE∗-outcome set, where pi(Ti) = zi + c(Ti) for all
i ∈ N,Ti ⊆ Ωi; and by Lemma 5, pi(Ωi) ≤ v(Ω) − v(Ω\Ωi) for all i ∈ N .
Now we obtain

pi0(Ωi0) = zi0 + c(Ωi0) > (v − c)(Ω)− (v − c)(Ω\Ωi0) + c(Ωi0)
= v(Ω)− v(Ω\Ωi0)− c(Ω) + c(Ω\Ωi0) + c(Ωi0)
= v(Ω)− v(Ω\Ωi0)

We conclude that pi0(Ωi0) > v(Ω)− v(Ω\Ωi0) which contradicts Lemma
5.
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