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ABSTRACT 
 

Choice functions on tournaments always select the maximal element (Condorcet winner), 
provided they exist, but this property does not hold in the more general case of weak 
tournaments. In this paper we analyze the relationship between the usual choice 
functions and the set of maximal elements in weak tournaments. We introduce choice 
functions selecting maximal elements, whenever they exist. Moreover, we compare these 
choice functions with those that already exist in the literature. 
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1 Introduction

In the literature on preferences, there are a great number of papers devoted

to the analysis of the existence of maximal elements, as they are considered

”the best ones”. In order to ensure the existence of maximal elements in all

feasible subsets of X, the acyclicity of the binary relation P is a necessary

condition; but there are many contexts in which requiring acyclicity of the

binary relation a priori is too rigid a restriction. This is the case of realistic

social decision mechanisms as, for instance, majority voting in which cycles

may appear. Moreover, requiring acyclicity, together with some other axioms,

in social decision functions gives rise to impossibility results. As pointed out

by Schwartz (1986), ”... the impossibility theorems show acyclicity to be

unreasonable as a general assumption about collective preference -although

not necessarily unreasonable when restricted to special situations. It seems

unreasonable as a general assumption about individual preferences as well”.

This fact has inspired many papers on the problem of choosing the

best elements when binary relations are not necessarily acyclic, as in the

case of tournaments (asymmetric and complete binary relations), or weak

tournaments where the binary relation is merely complete (this generalization

of the notion of tournaments is interesting because it allows indifferences or

ties). In these contexts, because of the non-existence, in general, of maximal

elements, it is not quite clear what the definition of ”the best elements” is,

and several solution concepts (choice functions), from both the positive and

the axiomatic points of view, have been introduced.
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In the case of tournaments, the relation between the selected elements

for any well-defined choice function and the maximal elements is always

clear: the existence of maximal elements cannot be ensured, but if there

is a maximal element, it will be the one that beats all other alternatives

(Condorcet winner) and the choice function selects precisely such an element.

In tournaments, therefore, the choice set and the set of maximals (if it is non-

empty) coincide.

In the case of weak tournaments, however, the relationship between

maximal elements and choice functions is not so clear and, as we will show,

the choice functions defined in the literature for this case do not always

coincide with the set of maximal elements: some of them select a larger set

(with regard to the inclusion relation), while others may select elements of

which none of them is in fact maximal.

We are interested in defining a choice function, in the framework of weak

tournaments, such that it chooses maximal elements, whenever they exist,

and then generalizes what happens in the case of tournaments.

2 Weak Tournaments and Maximal Elements

Let us consider the following definitions and notation.

A tournament T = (X,U) consists of a non-empty finite

set of alternatives X and a binary relation U defined on

X which is complete [∀x, y ∈ X, x 9= y ⇒ xUy or yUx] and

asymmetric [xUy ⇒ not(yUx)]. A weak tournament W =
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(X,R) is a generalization of the previous concept which

only requires strong completeness of the binary relation

R [∀x, y ∈ X, ⇒ xRy or yRx]. We denote the family of

tournaments by T , while W represents the family of weak

tournaments.

A choice function F is a map that assigns a non-empty choice

set (the selected alternatives) in X, to each tournament or weak

tournament. Given two choice functions F, G, F 9= G, it is said

that F is contained in G (or that F is more discriminating than

G), denoted as F ⊂ G, if for all weak tournaments W = (X,R),

F (W ) ⊆ G(W ).

Given a weak tournament W = (X,R), for each subset A of X,

the maximal set is denoted by M(A,R) = {x ∈ A | xRy, ∀

y ∈ A, y 9= x}. Under the standard interpretation, M(A,R) can

be interpreted as the best elements inA, for the binary relationR.

From R, its asymmetric part P is defined as follows: xPy if and

only if [xRy and not(yRx)]. The symmetric part of R, (in which

two elements tie, or are indifferent), is defined as follows: xIy

if and only if [xRy and yRx] . The transitive closure of a binary

relation R on X, denoted by R∞, is defined as follows: xR∞y if

and only if there are x1, x2, ..., xn ∈ X such that x = x1 R x2 R ...

R xn = y. The transitive closure of the relation P onX is defined

analogously: xP∞y if and only if there are x1, x2, ..., xn ∈ X such
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that x = x1 P x2 P ... P xn = y. Note that, in general, P∞ does

not coincide with the asymmetric part of R∞.

Given a weak tournamentW = (X,R) and A ⊆ X, W |A denotes

the weak tournament (A,R |A) where R |A is the restriction of

R on the subset A. We now use the following function gW :

X ×X → {−1, 0, 1} to completely represent a weak tournament

W = (X,R) :

gW (x, y) =


1 if xPy

−1 if yPx

0 otherwise

or, in a matrix form, if X = {x1, ..., xr},

GW = ((GW )ij)r×r , (GW )ij = gW (xi, xj).

Remark 1 A comparison function (Dutta and Laslier, 1999) is a

generalization of weak-tournaments in which the skew-symmetric function

gW admit the possibility of taking into account the intensity of the preference

of x over y. For comparison functions gW with values in {-1,0,1}, we obtain

the particular case of weak-tournaments.

2.1 Choice functions for weak tournaments

The choice functions defined for tournaments satisfy the following property

(Condorcet choice functions):

For all T = (X,U) ∈ T ,

F (T ) = {x} whenever xUy, ∀y ∈ X, x 9= y
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or, in other words,

F (T ) =M(X,U) whenever the maximal set is non-empty.

As we have already mentioned, this is not the case for choice functions defined

for weak tournaments. In order to show this, we analyze Condorcet choice

functions that have been generalized to the context of weak tournaments:

The top cycle, denoted as TC, is the first reference for a solution

to a tournament T = (X,U) ∈ T , and it is defined by the

elements x ∈ X such that xU∞y for all y ∈ X, y 9= x. Its

extension for weak tournaments TC(W ), known as the GOCHA

set (Schwartz, 1972), is defined as the maximal elements in X of

the transitive closure R∞.

The uncovered set (Fishburn, 1977; Miller, 1980) of a tournament

T = (X,U) ∈ T , is the subset UC(T ) of X, whose members are

maximal elements of the covering relation defined by: x covers

y if and only if [xUy and (yUz implies xUz)]. Dutta (1988),

defines the minimal covering set on T , denoted asMC(T ), based

on the idea of covering sets. A covering set of a tournament

T = (X,U) ∈ T is a non-empty subset A of X such that

UC(T |A) = A, and for all x ∈ X − A, x /∈ UC(T |A∪{x}).

The minimal covering is a covering set B such that no proper

subset of B is a covering set. Dutta (1988) proves that for any

tournament T, such a subset always exists and is unique. These

two choice functions have been extended for weak tournaments
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(Peris and Subiza, 1999) in such a way that they satisfy the same

axioms as in tournaments.

Another important solution concept for tournaments that has

been generalized to weak tournaments is the Bipartisan set

(Laffond, Laslier and Le Breton, 1993). For a tournament

T = (X,U) ∈ T , consider the following two-player symmetric

zero-sum game: both players haveX as their set of pure strategies

and the payoff of the first player is given by the function gT .

This game has a unique equilibrium in mixed strategies and the

authors define the choice function BP (T ) (the Bipartisan set)

as the support of such an equilibrium. The extension of the

Bipartisan set to comparison functions (Dutta and Laslier, 1999),

called the Essential set, ES(W ), is defined as the union of the

supports of all the Nash equilibria of the two-player symmetric

zero-sum game, in which both players have X as their set of pure

strategies and the payoff of the first player is given by the function

gW .

Laffond, Laslier and Le Breton (1995) provide a set-theoretical

comparison of the previous choice functions in the context of

tournaments. Specifically, they obtain that in T

BP ⊂MC ⊂ UC ⊂ TC.

For weak tournaments the set-comparisons are the same (see Peris

and Subiza, 1999; Dutta and Laslier, 1999),
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ES ⊂MC ⊂ UC ⊂ TC.

When applied to tournaments, all the above-mentioned solutions are

Condorcet choice functions, so that if there is a maximal element, all solutions

agree in their choice of the Condorcet winner. Let us show that this is not

necessarily true when it is applied to weak tournaments.

Example 1 Let W = (X,R) the weak tournament where X = {a, b, c}

and aIb, aPc, cPb. M(X,R) = {a}, but ES(W ) ⊇ {a, b} because

((1
2
, 1
2
, 0), (1

2
, 1
2
, 0)) is an equilibrium of the zero-sum game defined by this

weak tournament.

In the following proposition we prove that the maximal elements, when

they exist, are included in the essential set, and therefore, in the minimal

covering, the uncovered set and the top cycle.

Proposition 1 Given a weak tournament W = (X,R),

M(X,R) ⊂ ES(W ).

Proof. Consider the zero-sum game defined by the payoff function gW

associated to the weak tournament W = (X,R). Then if x ∈ M(X,R),

gW (x, y) ∈ {0, 1} for all y ∈ X; since gW (x, x) = 0, (x, x) is a saddle-point

and x ∈ ES(W ). Moreover, Example 1 shows that this inclusion may be

proper.
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2.2 Generalized Condorcet condition

To expect acyclicity of the binary relation (that is, to insist on the existence

of maximal elements in every subset of the feasible set) is not reasonable

when considered as a global assumption. Nevertheless, it is possible that

maximal elements exist in some subsets (for instance, in subsets with just

two elements). Whenever maximal elements exist, a desirable property of a

choice function is that it selects these maximal elements exclusively. Let us

call the choice functions that satisfy this property general Condorcet choice

functions:

Definition 1 A choice function F defined in the family of weak tournaments

is said to be a g-Condorcet choice function if for each weak tournament

W = (X,R) ∈W, such that M(X,R) 9= ∅ then F (W ) =M(X,R).

If we have a tournament, this notion corresponds to that of a Condorcet

choice function. Moreover, if the binary relation is acyclic, a g-Condorcet

choice function coincides with the concept of a rational choice function

(for this reason, we will call rational the choice functions satisfying the g-

Condorcet property). As shown in Example 1, the afore-mentioned solution

concepts for weak tournaments do not satisfy this condition, since they may

all choose ”bad” candidates (elements which are not in M(X,R)). This fact

is somewhat related with the notions of Type1-Type2 choice functions (Dutta

and Laslier, 1999). Most of choice functions defined in the literature about

weak-tournaments are Type 1 choice functions, which requires that in the
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situation shown in Example 1, the whole set X = {a, b, c} must be chosen.

In this paper we are interested in Type 2 (not Type 1 ) choice functions.

3 g-Condorcet Choice Functions forWeak Tournaments

Before introducing new choice functions satisfying the g-Condorcet property,

we need some notation. For any weak tournament W = (X,R), consider the

following equivalence relation defined on X : x ≈ y if and only if x = y or

[xP∞y and yP∞x] . We denote the quotient set by X, and by cl(x;W ) the

class in X containing the element x ∈ X [if there is no risk of confusion, we

merely write cl(x)]. We now define the quotient relation P on X as follows:

for all cl(x),cl(y) ∈ X ,

cl(x)Pcl(y) if and only if

a) cl(x) 9= cl(y), and

b) there exist a ∈ cl(x), b ∈ cl(y) such that aP∞b.

And, from P we define

cl(x)Rcl(y) if and only if not[cl(y)Pcl(x)].

It is easy to prove that P is an asymmetric and transitive binary relation,

so that M(X,R) is a non-empty set (see Peris and Subiza, 1994). We know

that, given a preference relation R, maximal elements exist if and only if

the quotient relation has maximal classes with cardinality 1. Therefore, if

we wish to define a choice function that satisfies the g-Condorcet condition,
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we must consider only the classes with cardinality 1, whenever they exist.

This fact induces us to select the maximal classes with the lowest possible

cardinalities: we denote the classes in M(X,R) with minimal cardinality by

mcM(W ),

mcM(W ) = {cl(x) ∈M(X,R) | #(cl(x)) ≤ #(cl(y)), ∀ cl(y) ∈M(X,R)}

where

#(·) denotes the cardinality of a finite set.

Definition 2 The Rational Top Cycle choice function assigns, to each

weak tournament W = (X,R), the set

TC∗(W ) =
V

cl(x)∈mcM(W )

cl(x).

In the following theorem, we prove that the Rational Top Cycle is a g-

Condorcet choice function that generalizes the top cycle to the case of weak

tournaments.

Theorem 1

a) The Rational Top Cycle is a g-Condorcet choice function.

b) For all tournaments T = (X,U) ∈ T , TC∗(T ) = TC(T ).

c) TC∗ ⊂ TC.

Proof.

a) For each weak tournament W = (X,R) such that M(X,R) 9= ∅, each

maximal element constitutes, by itself, a maximal class inM(X,R), although

other maximal classes may exist in the quotient relation. The union of the

classes with minimal cardinality coincides with the maximal set.
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b) If T = (X,U) ∈ T , there is just one maximal class on M(X,R) which

is precisely the Top Cycle of this tournament, TC(T ).

c) The inclusion is obvious from the fact that the top cycle may be written

as:

TC(W ) =
V

cl(x)∈M(X,R)
cl(x)

and Example 1 shows that TC∗(W ) may be strictly included in TC(W ),

TC∗(W ) = {a}, TC(W ) = {a, b, c}.

Definition 3 The Rational Essential choice function assigns, to each

weak tournament W = (X,R), the set

ES∗(W ) =
V

cl(x)∈mcM(W )

ES(W |cl(x)).

Theorem 2

a) The Rational Essential is a g-Condorcet choice function.

b) For all tournament T = (X,U), ES∗(T ) = ES(T ).

c) ES∗ ⊂ ES.

Proof.

a) Analogous to part a) in the previous Theorem.

b) If T = (X,U) ∈ T , there is just one maximal class on M(X,R) which

is precisely the Top Cycle of this tournament, TC(T ). Therefore,

ES∗(T ) = ES(T |TC(T )) = ES(T ).

c) Let x ∈ ES∗(W ); then x ∈ ES(W |cl(x)), where cl(x)∈mcM(W ). Let

gWcl(x) be the payoff function associated to the weak-tournament (W |cl(x)).

Then, x ∈ supp(p∗), where (p∗, p∗) is a Nash equilibrium of the zero-sum game
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with payoff function gWcl(x). Let us consider the following strategy of the game

defined by gW , the payoff function associated to the weak-tournament W ,

p�(y) = p∗(y) for all y ∈ cl(x),

p�(y) = 0 otherwise.

Let us see that (p�, p�) is a Nash equilibrium of the game gW . To do so, it is

sufficient (see, for instance, Owen, 1982) to prove that

(1) ∀z ∈ supp(p�)
S
zPy

p�(y) =
S
yPz

p�(y), and that

(2) ∀z /∈ supp(p�)
S
zPy

p�(y) ≤
S
yPz

p�(y).

Condition (1) is fulfilled, since supp(p�) = supp(p∗). In order to verify (2),

let us suppose first that z /∈ supp(p�), and z ∈ cl(x). Then,

S
zPy

p�(y) =
S
zPy

p∗(y) ≤
S
yPz

p∗(y) =
S
yPz

p�(y).

In this case, therefore, condition (2) is fulfilled. If, on the other hand,

z /∈ cl(x), then for all y ∈ supp(p�), no(zPy) and therefore

S
zPy

p�(y) = 0 ≤
S
yPz

p�(y).

Finally, Example 1 shows that the inclusion may be proper.

Remark 2 In order to show that the inclusion may be proper even in the

case where no maximal element exists, we use the following example: let

W = (X,R) be the weak tournament in which X = {x1, ..., x7} and the

function gW is given by the following matrix

jteschen
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

0 1 −1 0 0 0 0

−1 0 1 0 0 0 0

1 −1 0 0 0 0 0

0 0 0 0 1 0 −1

0 0 0 −1 0 1 0

0 0 0 0 −1 0 1

0 0 0 1 0 −1 0


Then, ES∗(W ) = {x1, x2, x3} and ES(W ) = X.

Just as we did with the Rational Essential choice function, we can also

define the Rational Uncovered Set, or the Rational Minimal Covering as

extensions of the corresponding choice functions on T that satisfy the g-

Condorcet property by setting:

UC∗(W ) =
V

cl(x)∈mcM(W )

UC(W |cl(x)).

MC∗(W ) =
V

cl(x)∈mcM(W )

MC(W |cl(x)).

We have focused our attention on the Essential set, since it is more

discriminating than the other choice functions.

4 An Undominated Selection

Apart from introducing the Essential Set (in the more general framework

of comparison functions), Dutta and Laslier (1999) analyzed it axiomatically

and found that, although it is contained in the Minimal Covering, it may still
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contain elements that are weakly dominated. To obtain an undominated

selection of the Essential Set, they define a sequential elimination of

dominated elements. But, in Dutta and Laslier’s words, ”...this process

does produce a well-defined choice function. Unfortunately, the function

does not have very good axiomatic properties [in particular, it does not

satisfy Monotonicity]. Hence, it seems that the selection of weakly dominated

alternatives is one price that has to be paid in the transition [from the case

of tournaments] to the more complex world of comparison functions [which

includes, as a particular case, weak tournaments].”

As we have proven in Theorem 2, the Rational Essential set is included in

the Essential set, but as we will see in Example 2, it may still contain weak

dominated alternatives. In this section, we define a selection of the Rational

Essential set satisfying monotonicity, which no longer contains dominated

alternatives. First of all, definitions of weak dominance and monotonicity are

introduced, and then it is proven that a g-Condorcet choice function is not, in

general, compatible with the elimination of weakly dominated alternatives.

Definition 4 Given a weak tournament W = (X,R), it is said that

alternative y is weakly dominated by alternative x in such a weak

tournament if for all z ∈ X, gW (x, z) ≥ gW (y, z), with at least one strict

inequality. The undominated set is defined as those alternatives in X

which are not weakly dominated by any other alternative,

UD(W ) = {x ∈ X | no element in X weakly dominates x}.

Definition 5 A choice function F defined in the family of weak tournaments
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satisfies Undominance if for all weak tournaments W = (X,R), F (W ) ⊆

UD(W ).

Undominance is a desirable property, but it is, in general, incompatible

with the g-Condorcet property, since maximal elements may be weakly

dominated. The following example shows this fact.

Example 2 Let W = (X,R) be the weak tournament in which X =

{x1, x2, x3} and x1Px2, x1Ix3, x2Ix3. Then, any choice function which

contains M(X,R) = {x1, x3} does not satisfy Undominance, since x1 weakly

dominates x3.

If we apply Undominance several times,

UD1(W ) = UD(W ); UD2(W ) = UD(UD(W ), R); ...

we are eliminating, in a sequential way, alternatives that are weakly

dominated in successive subsets of undominated elements of X. This

sequence converges to a set UD∞(W ) that represents the elements that

”survive” sequential elimination (Dutta and Laslier, 1999). Another desirable

property of choice functions is that of Monotonicity, which can be stated in

the following way:

Definition 6 A choice function F defined in the family of weak tournaments

satisfies Monotonicity if for all weak tournaments W = (X,R), W � =

(X,R�) such that:

W =W � except for some pair of elements (x, y) such that

gW (x, y) > gW (x, y);
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then, x ∈ F (W )⇒ x ∈ F (W �).

Dutta and Laslier (1999) provide an example showing that the choice

function defined by

S(W ) = ES(UD∞(W ))

does not satisfy Monotonicity. We will use the same example to show the

impossibility of finding a choice function that satisfies Monotonicity and

sequential elimination of weakly dominated alternatives:

Example 3 (Dutta and Laslier, 1999) Let X = {a1, a2, a3, b1, b2, b3} and

the weak tournaments defined below

gW ≡



0 1 0 0 0 0

−1 0 1 0 0 0

0 −1 0 0 0 0

0 0 0 0 1 0

0 0 0 −1 0 1

0 0 0 0 −1 0


gW = gW except gW (a1, a3) = 1 gW (a3, a1) = −1

gW = gW except gW (b1, b3) = 1 gW (b3, b1) = −1

If we consider a non-empty valued choice function S satisfying sequential

Undominance, then:

S(W ) ⊆ {a1, b1} S(W �) = {b1} S(W ��) = {a1}

which is incompatible with Monotonicity.

We now introduce a selection of the Rational Essential choice function

by choosing, from the elements in ES∗(W ), those that are not weakly
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dominated.

Definition 7 To each weak tournament W = (X,R), the Undominated-

Essential choice function assigns the set

UES(W ) = ES∗(W ) ∩ UD(W ).

Theorem 3

a) ∅ 9= UES ⊂ ES∗.

b) For any weak tournament W = (X,R) such that M(X,R) 9= ∅,

UES(W ) ⊆M(X,R).

c) The UES choice function satisfies Monotonicity.

d) The UES choice function satisfies Undominance.

Proof.

a) The fact that UES ⊂ ES∗ follows directly from the definition.

Therefore, we must only prove the non-emptiness of this choice function.

(1) Suppose that there is a maximal element; then it can only be

dominated by another maximal element, so there is a maximal element which

is not dominated and the choice function is non-empty, since it coincides with

the maximal elements which are undominated.

(2) Suppose now that there are no maximal elements (in this case, the

classes in M(X,R) will contain, at least, 3 elements). First note that an

element in a maximal class can only be dominated by another element in

that class. If, in the contrary, cl(x) is a maximal class such that there is

y /∈ cl(x) weak-dominating x, we know that xPz for some z ∈ cl(x) and then
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domination implies yPz, that is, cl(y)Pcl(x), contradicting that cl(x) is a

maximal class.

We know that the Essential set, applied to the maximal classes of minimal

cardinality, contains undominated elements in this class (see Dutta and

Laslier, 1999), and then undominated in the whole set of alternatives.

b) Obvious from the definition of UES and from the fact that ES∗ is a

g-Condorcet choice function.

c) Let W = (X,R), W � = (X,R�) be two weak tournaments such that

W =W � except for some pair of elements (x, y) such that

gW (x, y) > gW (x, y);

and suppose x ∈ UES(W ). Then, cl(x;W ) ∈ mcM(W ). We have the

following possibilities:

(1) y /∈ cl(x;W ):

then cl(x;W �) = cl(x;W ), and x ∈ ES∗(W �). Moreover, it is obvious

that if x ∈ UD(W ), then x ∈ UD(W �), so x ∈ UES(W �).

(2) y ∈ cl(x;W ): then, as W = W � except for x and y, the other classes

remain unchanged, and for the class cl(x,W �) we have two possibilities:

cl(x;W �) = cl(x,W ) or cl(x,W �) ⊂ cl(x,W ).

(2a) cl(x;W �) = cl(x;W ):

The same argument as in case (1) applies, by virtue of the fact that the

Essential choice function, which is applied to the maximal class, satisfies

Monotonicity.

(2b) In this case, we can write

cl(x;W ) = cl(x;W �) ∪B
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As xP∞b for all b ∈ cl(x;W ), then x(P �)∞b, so cl(x;W �) is a maximal

class. If for some b ∈ cl(x;W ), b(P �)∞x, then b ∈ cl(x;W �). In other case,

b ∈ B, so we obtain that for all a ∈ cl(x;W �) and b ∈ B, a(P �)∞b. Then

x belongs to a maximal class with minimal cardinality (the cardinality of

this class has decreased and the other classes are not modified). Let us

show that x ∈ ES(W � |cl(x,W )). We know that x ∈ ES(W |cl(x,W )) and, by

Monotonicity, x ∈ ES(W � |cl(x,W )), so there is an equilibrium (p, p) in the

game defined by (W � |cl(x,W )) such that p(x) > 0. Consider the following

splitting of the equilibrium vector and the payoff matrix, where the first

component corresponds to the alternatives in cl(x,W �), and the second one

to the ones in B,

p = (p1, p2), GW |cl(x;W ) =

 G11 G12

G21 G22

 ,
where we know that:

G12 0, G21 = −G12 0.

It is now easy to prove that

_
p1= α−1p1, where α =

S
z∈cl(x;W )

p(z),

is an equilibrium in the game with payoff matrix G11, which implies x ∈

ES(W � |cl(x;W )). Therefore, x ∈ UES(W �).

d) Follows directly from definition.
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