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1 Introduction

Financial crises appear correlated across markets or countries. As a consequence, there has been

a growing interest in “contagion”, broadly defined as the transmission of shocks (or crises) across

markets (or countries). Crises may be transmitted in two qualitatively different ways: (i) either

through stable cross-country linkages (or channels) or through sudden changes (or shifts) in these

linkages of varying persistence.

From a policy perspective, it is important to discriminate between these two alternative trans-

mission mechanisms. Short-term “insulation” policies through public sector intervention in the

economy may be desirable and effective in the presence of temporary shifts in the transmission

mechanism, but may not be the best (nor even a viable) policy response in presence of stable but

strong linkages or a permanent change in the transmission mechanism. For instance, the temporary

effects of a crisis in a neighboring country on the local foreign exchange market might be worth a

currency defense by means of interest rates or official reserves under certain circumstances. But

if the foreign exchange market reaction reflects strong trade and financial linkages in all states

of nature between these two countries, or is the result of a permanent shift in the transmission

mechanism of shocks, it is unlikely that such a defense would be worthwhile its cost.

In this paper, we narrow the scope of a contagion definition well known in the literature and focus

on measurement problems, with a view to distinguish between changes in cross-markets linkages

during a crisis on the one hand, and strong but stable cross-markets linkages in all states of the

world and permanent shifts in these linkages on the other hand. Specifically, we define contagion

as a “temporary shift in the linkages across markets following a shock in one or more markets”.

We then show that a Bayesian time-varying coefficient model may be used to measure contagion so

defined without knowing the timing of the crisis and in the joint presence of heteroskedasticity and

omitted variables. This is achieved by (i) modelling cross-market linkages empirically as changing

randomly all the time, (ii) estimating the time profile of these links with a numerical Bayesian

procedure, (iii) and finally looking at quantitatively sizable and economically plausible temporary

shifts in the estimated links. Finally, the performance of the proposed measurement method is

assessed by means of both simulated and actual data.

The Contagion definition we adopt is that proposed by Rigobon and Forbes (2000) and Forbes

and Rigobon (2002) (henceforth, RF), used also by King andWadhwani (1990). FR define contagion
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as a “significant change in cross-country linkages following a crisis in one or more countries” and call

this “shift-contagion.” As known, a strong association between two markets, both before and after

a crisis in one market, is not an instance of “shift-contagion” but of “interdependence” according

to this definition. We narrow the scope of this intuitive definition, by requiring that the shift in

the linkages is temporary, to distinguish “contagion” from a permanent (or at least very persistent)

shift in the transmission channels, which are usually called a “structural breaks” in the econometric

literature.

Measuring contagion also poses a host of statistical problems and defining it as clearly as

possible is only a first step in trying to discriminate between different channels of transmission of

crises across countries. In theory, one would like to use a two-steps approach to measure contagion

(Favero and Giavazzi, 2002): first, by identifying the channels of transmission by estimating a

model of interdependence; second, by checking whether the strength of the transmission channel

has changed significantly following a crisis. However, in practice, there is a trade off between the

efficiency costs of identifying all channels with large models (we shall call this full information

methods) and the potential bias deriving from omitting relevant variables, observable or latent

that may distort the analysis in smaller set ups (we shall call this limited information methods).

There are several approaches to measure contagion, in the existing literature.1 These include

methods based on simple rolling correlations, OLS regressions, regressions with dummy variables,

and also principal component analysis. Typically, once assumed that a particular market or country

is the source of the crisis, the empirical model is estimated before and after the crisis period or

including dummy variables for the crisis period. Then, the statistical significance of the dummy

variables or the statistical significance of the estimated differences in the coefficients before and

after the crisis, is checked. Thus, all these methods assume that both the source and the precise

timing of the crisis is known. This is a drawback, especially for the analysis of those crises that are

difficult to date clearly, as in the case of Argentina and Turkey in 2001 and Brazil in 2002.

There are also other problems in measuring contagion of a more statistical nature. In a limited

information setting, cross-market correlations may shift even without a shift in the underlying

linkages when volatility increases in the crisis country, and this (upward) bias can be corrected

only if we do not have simultaneity and/or omitted variables. OLS-based and principal component

methods can be safely applied in the absence of simultaneity and omitted variable problems, with

1For a survey of the recent literature, see Pericoli and Sbracia (2002).
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the advantage that they provide also evidence on the specific channels through which shocks or

crises are transmitted across markets (e.g., trade, finance, investors preference and technology, etc.).

However, in the joint presence of heteroskedasticity and either omitted variables or simultaneity,

these methods too are biased and inconsistent in the case of simultaneity. Moreover, under these

circumstances, there are no simple corrections that can be implemented, as extensively documented

by Rigobon (2001). Finally, in a full information setting, some of the relevant variables may not

be available if they are unobservable (e.g., global risk aversion).

As the limited information approaches proposed by RF, but unlike OLS and principal compo-

nents methods, the measurement method we propose works in the joint presence of heteroskedastic-

ity and omitted variables. Unlike any of these methods, there is no need to know the timing of the

crisis, as coefficients are allowed to change all the time.2 More generally, the framework allows for

analysis of both interdependence and contagion, as full information specifications are more easily

estimated without running into overfitting problems using Bayesian procedures. It may distinguish

between temporary shifts and structural breaks, as well as positive from negative contagion.

We apply the proposed framework to both artificial and actual data and find that (i) it detects

false positives even in the most adverse experimental conditions and (ii) when applied in a limited

information setting correcting for omitted variable bias, it replicates the results obtained in a fuller

information setting. Except for the large computing costs involved, the procedure can be easily

implemented.

The paper is organized as follows. Section two presents the econometric framework proposed

to measure contagion as well as interdependence and discusses its main features and properties.

Given its importance in this context, the problem of omitted variable bias is dealt with separately in

Section three, in which we present and discuss a correction for omitted variable bias. Section [four]

analyzes the performance of the overall framework proposed by using both artificial and actual

data. Section five concludes. Some technical details of the estimation procedure used are provided

in appendix.

2Gravelle and Morley (2002) propose to use regime switching models to measure contagion. Their measure does
not need to assume either the timing or source of the crisis. Their framework, however, is limited information and has
only two states: contagion and normalcy. “Positive” contagion, which is important to prevent crises in the first place
(as pointed out by Bayoumi et al., 2003), therefore, cannot be accommodated in their two-states regime-switching
model.
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2 Modeling Contagion and Interdependence

In this section we present a general econometric model that may be used to measure both contagion

and interdependence and discuss its specification and estimation.

The transmission of shocks or crises across markets or countries, either through stable channels

and linkages or though shifts or changes in these links, may be modelled by means of a standard

vector-autoregression (VAR) with time-varying coefficients:

�� (�)�� = �� (�)�� +�� + ��� (1)

where �� = [	
1
� � · · · � 	�� ]0 is a 
×1 vector of asset prices or quantities, �� = [�

1
� � · · · � ��

� ]
0 is a �×1

vector of controls and sources of shocks, �� (�) and �� (�) are respectively (
 × 
) and (
 ×�)

time-varying polynomial matrices in the lag operator � with lag length  and � respectively, and

�� is a 
×1 vector of constants. �� = [�1� � · · · � ��� ]0 is a (
×1) vector of country or market specific
shocks with variance-covariance matrix Σ. Thus, in principle, this specification allows for both

interdependence and shift-contagion: a stable association between two markets before and after a

crisis may be traced in the usual manner through impulse response analysis, while contagion can

be detected by temporary a shift in the model parameters.

This approach to the measurement of shift-contagion has other advantages. First, as coefficients

are allowed to change randomly all the time, we do not require knowledge of the precise timing of

the crisis. Second, as in the case of OLS-based methods, it may provides evidence on the specific

channels of transmission of shocks across markets and is not biased by shifts in volatility alone.

Third, as we shall discuss in section three, unlike OLS-based methods, the approach may be adjusted

to take possible omitted factors into consideration. Fourth, potential simultaneity problems may

be resolved either by focusing at the variance-covariance matrix of the reduced form residuals (Σ)

rather than on the estimated coefficients, or by modeling Σ as in the structural VAR literature.3

In practice, one estimates parameter values for all time observations and then look at the time

profile of this series for sizable temporary shifts. As estimation is Bayesian, there is a lesser need

to test the statistical significance of any economically significant shift identified. This is because

the posterior distribution of the parameter of interest already summarize the uncertainty around

the point estimate, as opposed to one draw from such a distribution under a classical approach.

The analogous of a classical test for parameter stability, however, could be easily implemented.

3See Ciccarelli and Rebucci (2001) and Primiceri (2002) for examples of Structural time-varying coefficients models.
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2.1 Specification

Collect �� and �� with all their lags and the constant term in �� and all parameters in ��. Then

the model may be rewritten as:

�� = ���� + ��� (2)

where �� and �� have dimension 
× � and �× 1 respectively, with � = 
+�� +1, while �� and

�� are 
× 1 vector stochastic processes.
To fit (2) to the data, following Canova (1993), we assume, for all �:

(i) �� | �� ∼ ��� with �[�� | ��] = 0 and �[���
0
� | ��] = Σ;

(ii) �� = ���−1 + ��0 +��� with �� ∼ ��� � (0�Φ) ;

(iii) ��, �� and �� are conditionally independent.

In addition, innovating upon Canova (1993), we assume that:

(iv) �� | �� ∼ ��� �� (0�Ω) � with Ω =
�−2
� Σ and � � 2 (so that�[�� | ��] = 0 and �[���0� | ��] = Σ).

Here, �[·] is the expectation operator, “ ∼ ���” means identically and independently distributed,

and � (0�Φ) denotes a multivariate normal distribution with zero mean and variance-covariance

matrix Φ� �� (0�Ω) a centered multivariate t-student distribution with � degrees of freedom–� ∈
(0�∞)–and (symmetric and positive definite) scale matrix Ω, while �, � , and � are known

matrices of conforming dimension.

The first assumption is standard for stationary time series. The second assumption specifies

the (stochastic) law of motion of the parameter vector as a general class of VAR process–including

VAR processes with discrete regime shifts a-la Hamilton, as for instance used by Sims (1999), or

the kind of process specified by Cogley and Sargent (2002). The third assumption is also standard

and helps keeping the model as simple as possible, but could be relaxed in principle. The fourth

hypothesis generalizes the more common ��� � (0�Σ) assumption for the vector of error terms and

takes the likely presence of outliers in high frequency data into account.

In the latter regard, note first that assuming �� | �� ∼ �� (0�Ω) is equivalent to assume �� =
√
���� with �� | �� ∼ � (0�Ω) and �� | �� ∼Inv- 2 (�� 1), where Inv- 2 (�� 1) denotes an inverted

chi-squared distribution with � degrees of freedom and unit scale. Thus, if �� | �� ∼ �� (0�Ω), then

�� | !�� �� ∼ � (0� ��Σ). Second, note that the t-student assigns higher probability mass on the tails
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of the distribution of the vector of error terms than the normal–i.e., higher probability on extreme

values or outliers–and the extent to which �� | �� departs from normality depends on the number

of degrees of freedom, �. In fact, �� | �� converges in distribution to � (0�Σ) as � approaches

infinity as in the limit �[�� | ��] tends to one and its variance, �[�� | ��], tends to zero.

Substitute assumption (ii) in (2) and take the conditional expectation with respect to the

distribution of �� under (i)-(iii), then we have:

�� = ���̃�−1 + e���
where

�̃�−1 = ���−1 + ��0 and e�� = ����� + ���

with

�[�� | ��] = ���̃�−1 and " [�� | ��] = Σ+���Φ�
0� 0

�#

Thus, under assumptions (i)-(iii), �� is a conditionally heteroskedastic process, with non-linear

conditional mean and variance (in the vector of variables ��). Further, under assumption (iv), �� is

a non-normal process (i.e., with fat tails). Hence, despite its simplicity, this specification captures

many typical features of high frequency financial data.4

2.2 Bayesian Estimation

Although simple versions of (2) under assumptions (i)-(iv) could also be estimated in a classi-

cal fashion (e.g., by using the Kalman filter, rolling regressions, or other recursive procedures),

a Bayesian approach allows to estimate more general specifications for a non-trivial number of

equations.5 As we shall discuss below, a Bayesian approach also allows to correct for the presence

of omitted variables in a quite simple manner, while a classical procedure would not allow to do so.

Bayesian estimation is simple in principle, though may be computationally demanding. Prior

distributions are assigned to the hyperparameters of the model (in our case, Σ� �̃0� Φ� and �), and

are combined with the information contained in the data (in the form of a likelihood function),

together with a set of initial conditions, to obtain a joint posterior distribution of the parameters

4For more details on our model’s ability to fit financial, high frequency time series, see Canova (1993). For a survey
of the recent literature on the specification and estimation of Bayesian VARs, see Ciccarelli and Rebucci (2003).

5For specification and estimation of a time varying SUR model, see Chib and Greenberg (1995). For extension of
this model to a panel data framework, see Canova and Ciccarelli (2000).

8



of interest via the Bayes rule. Marginal posterior distributions are then obtained by integrating

out other parameters from the joint posterior distribution.

In many applications analytical integration of the joint posterior distribution may be difficult

or even impossible to implement. This problem, however, can often be solved by using numerical

integration methods based on Markov Chain Monte Carlo simulation methods (MCMC). In this

paper, we use the Gibbs sampler, which is a recursive simulation method requiring only knowledge

of the conditional posterior distribution of the parameters of interest.6

In the rest of this subsection, we describe the specific prior assumptions suggested, discuss the

posterior distributions of the parameters of interest, and show how the estimation procedure may

be corrected for omitted variable bias. The derivation of the posterior distributions is reported in

appendix.

2.2.1 Priors

By assuming prior independence, as customarily done, the joint prior distribution of the model

parameters can be expressed as the product of the marginal priors:

 (Σ� ��� Φ� �) =  (Σ)  (��)  (Φ)  (�) �

where ‘’ denotes a probability density function. On these marginal priors we assume:7

(Σ−1) = � ($� %)

(��) = �(�∗� �Θ)

(Φ−1) = � (��&) (3)

(�) = Uniform (2� ') �

where � ($� %) (� (��&)) denotes a Wishart distributions with degrees of freedom $ (�) and

symmetric, positive definite scale matrix % (&). The hyperparameters of these distributions

((� �� �∗� � )*+ (%), )*+ (Θ) � )*+ (&) � and ', with )*+ (·) denoting the column-wise vectorization of
a matrix) are also assumed to be known.

Denote � � = (�1� ###� �� ) the sample data and , = ({��}� � {��}� � Σ� ��� Φ� �) the set of para-
meters of interest. Given prior independence and assumption (iii) above, the joint posterior density

6See Gilks (1996) and Geweke (2000) on MCMC methods in general and Gelfand et al. (1990) for a detailed
discussion of the Gibbs sampler.

7See, for instance, Chib and Greenberg (1995) and Canova and Ciccarelli (2000).
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is:


³
, | � �

´
∝ |��Σ|−��2 exp

(
−1
2

�X
�=1

(�� −����)
0 (��Σ)−1 (�� −����)

)

× ¯̄�Φ� 0¯̄−��2 exp(−1
2

�X
�=1

³
�� − �̃�−1

´0 ¡
�Φ� 0¢−1 ³�� − �̃�−1´

)

×
Y
�

�
−(��2+1)
� exp

(
−1
2

X
�

�

��

)

×|Θ|−1�2 exp
½
−1
2
(�� − �∗�)0Θ−1 (�� − �∗�)

¾
×|Σ|− 1

2
(	−�−1) exp

½
−1
2
�' (%)Σ−1

¾
×|Φ|− 1

2
(
−�−1) exp

½
−1
2
�' (&)Φ−1

¾
× 1

'− 2 (4)

where the first line corresponds to the likelihood function, while the others represent the prior

information described above, with �̃�−1 = ���−1 + ��0 as before.

2.2.2 Posteriors

As known, to implement the Gibbs sampler, we need to derive analytically conditional posterior

distributions of the parameters of interest. Given the conditional posterior distributions of the

parameters of interest, the Gibbs sampler produces an approximation to the joint posterior density.8

Marginal posterior densities are then obtained by integrating out of these joint posterior numerically

within the Gibbs sampler. Moreover, inference on any continuous function of the parameters of

interest, G(,), can be constructed using the output of the Gibbs sampler and the ergodic theorem.
For example

�(G(,)) =
Z
G(,)(,|� )�,

can be approximated using

1

�̄
[
�+�̄X

=�+1

G(,)−1]−1

where , is the --�� draws of vector ,� (� + �̄) is the total number of iterations in the Gibbs

sampler, and �̄ is the number of discarded iterations.

8Convergence of the Gibbs sampler to the true invariant distribution in our case is subject to standard, mild
conditions since the model (2) is a time-varying SUR with serially correlated errors. See Geweke (2000) for more
details.
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The conditional posterior distributions needed to implement the Gibbs sampler in our model

are derived in appendix. Here we focus only on the interpretation of the marginal posterior means

of �� and ��, the shift factor in variance of the error term ��. In particular, defining ,−� ≡
({��}� �Σ� ��� Φ� �) and ,−� ≡ ({��}� �Σ� ��� Φ� �), in appendix we show that:

�� | ��� ��� ,−� ∼ �
³
�̂�� "̂�

´
� (5)

with

�̂� = �̂�−1 + "̂�−1��

³
��Σ+��"̂�−1� 0

�

´−1 ³
�� −���̂�−1

´
(6)

"̂� = "̂�−1 − "̂�−1� 0
�

³
��Σ+��"̂�−1� 0

�

´−1
��"̂�−1# (7)

while

�� | ��� ��� ,−� ∼ Inv- 2
³
��� $

2
�

´
(8)

with

��$
2
� = ��−1$2�−1 +

¡
�� −� 0

���
¢0
Σ−1

¡
�� −� 0

���
¢

(9)

�� = ��−1 + 1# (10)

Consider the expression for the posterior mean of the parameter vector, �̂�, equation (6). This

can be written as:

�̂� =
h
� 0

� (��Σ)
−1�� + "̂ −1�−1

i−1 h
� 0

� (��Σ)
−1 �� + "̂ −1�−1�̂�−1

i
# (11)

This, in turn, shows that, for each �� �̂� is centered on the OLS estimator, and is identical to the

OLS estimator (and thus also to the MLE estimator) if we assume that the prior distribution is

non-informative–i.e., if its prior variance is set arbitrarily large or its precision arbitrarily small

(Φ−1 = 0). The posterior mean of the parameter vector, �̂�, in (5) is as unbiased as an OLS

estimate, but is more efficient if the prior information is not diffuse (i.e., it entails more than

complete ‘ignorance’).

To see this, note first that (6) may be written as (11). In fact, as

.−1 − (.+ /)−1 /.−1 = (.+ /)−1 �

the following holds: ³
��Σ+��"̂�−1� 0

�

´−1
= (��Σ)

−1 −
·³
��Σ+��"̂�−1� 0

�

´−1 ³
��"̂�−1� 0

� (��Σ)
−1´¸ #
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Now, substituting this in (6), we have that

�̂� = �̂�−1 +

+"̂�−1� 0
�

·
(��Σ)

−1 −
³
��Σ+��"̂�−1� 0

�

´−1
��"̂�−1� 0

� (��Σ)
−1
¸
�� +

−"̂�−1� 0
�

³
��Σ+��"̂�−1� 0

�

´−1
���̂�−1

=

·
"̂�−1 − "̂�−1� 0

�

³
��Σ+��"̂�−1� 0

�

´−1
��"̂�−1

¸
×h

� 0
� (��Σ)

−1 �� + "̂ −1�−1�̂�−1
i
#

But since ¡
�+�0�0

¢−1
= �−1 −�−1�

³
�0�−1� +0−1

´−1
�0��

we also have that

�̂� =
h
� 0

� (��Σ)
−1�� + "̂ −1�−1

i−1 h
� 0

� (��Σ)
−1 �� + "̂ −1�−1�̂�−1

i
#

Now remember that

"̂ −1�−1 =
¡
" ∗�−1 +�Φ� 0¢−1

= " ∗−1�−1 − " ∗−1�−1 �
³
� 0" ∗�−1� +Φ−1

´−1
� 0" ∗−1�−1 #

Note then that "̂ −1�−1 = 0 whenever Φ−1 = 0, provided � is non singular, and hence we also have

that,

�̂� = [����]
−1 [����] #

if Φ−1 = 0.9

Consider then the expression for the posterior distribution of �� in (8). The conditional posterior

distribution of �� also has an interesting interpretation, which helps to appreciate the role of the

t-distribution in the model. As we can see from (9), the expression for ��$
2
� , which apart from a

multiplicative factor provides the posterior mean of ��, evolves as a random walk without drift.

Therefore, the assumed prior structure generates a posterior conditional heteroschedasticity effect

of the type assumed a priori by Cogley and Sargent, 2002. Thus, this effect allows for a permanent

shifts in the innovation variance, even in a specification which does not assume it a priori.

9Note that our posterior estimates of the model parameters at time � depend on the information of the whole
sample period. In a rolling OLS estimate, instead, only the information up to period � would be used.
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As an OLS estimate, however, this estimation procedure is not robust to the possible presence

of omitted variables, even though a correction for omitted variables bias can be easily implemented

in our model by following Leamer (1978, Chapter 9).

3 Correcting for Omitted Variable Bias

It is well known that omitting a relevant variable in the estimation of a linear model biases the

estimation results and may produce false inference, even if the omitted variables are orthogonal

to the variables included in the analysis. This is because of the lack of association between the

omitted and the included variables produces unbiased estimates of the coefficients, but it is not

sufficient to yield an unbiased estimator of their variance.

Consider a non-stochastic linear regression function:

�� = ��� + 1�2 (12)

where � and � are 
 × 1 and 
 × � matrices, respectively, 1 is 
 ×  matrix (with  3 �) and

could be unobservable, while � and 2 are parameter vectors. Assume, for instance, that

(1 | �) = �4+ 5 (13)

where 5 is a vector of random variables independent of �, and 4 is known. Thus, the true model

is

� = �� +�42 + 52 (14)

If instead we estimate the model

� = �� + �� (15)

we b� will be biased unless 4 = 0 (omitted variables are uncorrelated with the included variables)
or 2 = 0 (omitted variables have no effect on � ).

However, inferences about � may be made based on � and � alone in a Bayesian estimation

framework, provided we have a (probabilistic) view about 1. To see this, assume that the true

model is as in (12)-(13). The model

� = �� +��� + 6� (16)
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where �� = 42 and 6 = 52� approximates (14) by admitting the possibility of omitted variables.10

Evidently, (16) could not be estimated in a classical way because of the perfect collinearity among

the regressors included, but its analysis is feasible in a Bayesian context by choosing an appropriate

prior to identify �� from ��� .

More specifically, following Leamer (1978), assume data normality and let the prior be normal

with mean and variance, respectively,

�

Ã
�
��

!
=

Ã
�∗

0

!
� (17)

"

Ã
�
��

!
=

Ã
�∗ 0
0 �

!−1
� (18)

where �∗ and � are positive semi-definite matrices. Leamer (1978, p. 295) shows that the posterior

mean and variance are given by, rispectively,

�

Ã"
�
��

#
| �
!

=

Ã
�∗ +� �
� � +�

!−1Ã
�∗�∗ +��̂���
��̂���

!
(19)

"

Ã"
�
��

#
| �
!

=

Ã
�∗ +� �
� � +�

!−1
(20)

with �̂��� = � 0�−1� 0� and � = � 0�. By the algebra rules of partition matrices we also have:Ã
�∗ +� �
� � +�

!−1

=

Ã
�−1 −�−1� (� +�)−1

−�−1� (�∗ +�)−1 �−1

!−1
where

� =
³
�∗ +� −� (� +�)−1�

´
� =

³
� +� −� (�∗ +�)−1�

´
#

Hence,

�

Ã"
�
��

#
| �
!

(21)

=

 �−1
n
�∗�∗ +

h
� −� (� +�)−1�

i
�̂���

o
�−1� (�∗ +�)−1�∗

³
�̂��� − �∗

´  #
10The fundamental difference between (15) and (16) is that the latter includes a statement about the quality of

the experiment (a prior on ��), while the former does not. In the literature, the parameter vector ��
� is called the

contamination vector (or the experimental bias) because it summarizes the bias in the information about � due to
omitted variables. The model in (15) is misspecified because it sets the contamination vector to zero.
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The posterior mean of � in (21), as usual, is a weighted average of the prior mean (�∗) and the

sample OLS estimate
³
�̂���

´
. However, the weight of the latter is (� − � (� +�)−1�) rather

than � as it usually happens in the absence of such a correction. Thus, the corrected estimate

weights the OLS estimate less than in a model without correction. Also note that the “discount

factor”, � (� +�)−1�� depends on � (the prior precision of ��). Hence, as � grows, the posterior

mean converges to its value in a model without correction.

The posterior mean of �� in (21) is a weighted average of zero and
³
�̂��� − �∗

´
, the difference

between the OLS estimate and the prior mean. Hence, the posterior distribution of �� is centered

away from zero, so as to correct for the excess of skewness toward �∗ in the posterior distribution of

�, compared to the case in which there is no correction in the model. In fact, if the posterior distrib-

ution of �� were centered on zero and the weight of �̂��� in (21) was discounted by � (� +�)−1� ,

we would overweight �∗. To correct for this distortion induced by the correction, the posterior

mean of �� must be different from zero and depends on the excess of �̂��� over �
∗.11

Leamer’s (1978) correction for omitted variable bias was designed for a standard linear regression

model in which the omitted variable depends on the variable included in the regression. However,

it can be easily adapted to our time-varying, non-normal model, or to cases in which the omitted

variable is a common factor as often assumed in the contagion literature (See, for instance, Rigobon,

2001). To adapt the correction to a time-varying model in which the omitted variable is a common

factor, the prior of the parameter vector can be expressed as:

7� = 7̃�−1 + 8�

where

7̃�−1 =

Ã
�̃�−1 = �1��−1 + �1�0
�̃��−1 = ����−1 + � ��0

!
�

8� =

Ã
�1 0
0 ��

!Ã
�1�
���

!
= ����

with

" (��) = "

Ã
�1�
���

!
=

Ã
Φ1 0
0 Φ�

!
= Φ#

Thus, the model (2) becomes

�� =��7� + 9�
11For more details, see Leamer (1978, page 297).
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where�� = [�� ��] and 7� = [�� ��� ]. Then, the the joint posterior distribution of the parameters

is given by (4), after replacing �� with ��, �� with 7�� and �� with 9�.
12

The intuition of why Leamer’s correction works also in cases in which the omitted variable is

a common factor is simple. The correction exploits the correlation between the included and the

excluded variables in the true model and may be interpreted as an instrumental variable estimate

that uses the included regressor as instrument for the omitted regressor. For this purpose, it does

not matter whether the omitted variable is common to both the dependent and the independent

variable, assuming it is not endogenous to the dependent variable. We also conjecture that, when the

omitted variable is a common factor, its performance might improve with the number of variables

included in the model. This suggests potential scope for combining common factor analysis with

Bayesian estimation methods to improve upon its performance.

4 How Does the Proposed Measure Perform?

To assess the performance of the measurement method proposed, in this section, we run two set

of experiments. The first set, is based on artificial data and thus a known data generating process

(DGP). Here we analyze a worse-case, false-positive example and hence assess the “power” of the

proposed procedure. The second set, is based on actual data and thus an unknown DGP. Here we

revisit an application in which both contagion and interdependence were detected and ask whether

the finding of contagion survives the omission of an identified important source of interdependence.

Hence, with this second set of experiments, we assess “size” of the proposed procedure. As we shall

see our procedure turns out to perform remarkably well when applied to both artificial and actual

data.

4.1 Evidence Based on Artificial Data

In the first set of experiments, we consider a case in which there is both heteroschedasticity and

omitted variable bias, but no contagion, and ask whether our proposed procedure could instead

erroneously lead us to conclude that there is contagion. Thus, we apply our measurement procedure

to a case in which the true linkage across market remains stable over time, there is interdependence,

a common shock causes volatility to increase, and the model used to measure contagion omits this

12The block diagonality of the variance-covariance matrix of �� is a necessary prior identification assumption, but
does not need to be preserved a posteriori.
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common source of volatility, say because this is an unobservable variable. However, the estimation

procedure corrects for potential omitted variable bias.

We generate the data from the following univariate, time-invariant model, consistent with model

three of Rigobon (2001):

	� = �!� + 2:� + �� (22)

!� = 7:� + ���

:� = ;:�−1 + 5��

� = 1� ###� 200#

In this model, the omitted variable (:�) is a factor common to the market or country assumed to

be the source of the shock or crisis (!�) and the target country (	�). This common factor may be

an observable variable, such as shock in a third market, or unobservable, such for instance a shift

in investors preferences as discussed by Kumar and Presaud (2001).

The model is parametrized in the most unfavorable manner to the measurement procedure

we propose by selecting the worst-case among those considered by Rigobon (2001 pages 30-31).13

Hence, the parameters and error terms of the model are drawn under the assumption that:

• � ∼ �
³
�̄� <2�

´
and 2 ∼ �

³
2̄� <2�

´
with<� = �̄=4, <� = 2̄=4, <��� = 0, �̄ = 2̄ = 1, and 7 = 1;

• �� ∼ �
¡
0� <2�

¢
and �� ∼ �

¡
0� <2�

¢
with <� = <� = 1 and <��� = 0;

• 5� ∼ �
³
0� <21��

´
for � = 1� 100 and 5� ∼ �

³
0� <22��

´
for � = 101� 200, with :0 ∼ �

µ
0�

�2�
1−�2

¶
,

<1�� = 1� <2�� =
√
10, and ; = 0#5.

We then estimate this model with our time-varying procedure, omitting :� from the first regres-

sion above, with and without Leamer’s correction.

The model estimated without correction is:

	� = ��!� + ��# (23)

13It would be simple, albeit very time consuming, to consider other points in the parameter space and run a
proper Monte Carlo simulation experiment. For the purpose of verifying the maintained statement that the proposed
measure of contagion is robust to the joint presence of heteroschedasticity and omitted variable bias, however, it
suffices to consider the most unfavorable point of those considered by Rigobon (2001) in his Monte Carlo simulation
experiments.
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The prior assumptions for �� and �� and the required initial conditions, consistent with assumptions

(i)—(iv) in section 2, are:

• � = � = >, � = 0 and Φ = ?" ∗� with ? = 0#001;

• �� | �� ∼ �
¡
0� ��<

2
¢
with <2 = <̂2���;

• �� ∼ >
) −  2 (�� 1) with � = 5;

• �� ∼ � (�∗� � " ∗� ) with �∗� = ;∗ and " ∗� = <2 (� 0�)−1 ∗102, where ;∗ is the sample conditional
correlation coefficient corrected as suggested by FR.

In this case, the OLS bias is given by 2 �� (�)
�2� (�)+� (�) , which is increasing in " (:) and decreasing

with " (�). If these variances change in turmoil periods, we can expect the bias to change accord-

ingly, thus erroneously revealing presence of contagion when in fact the cross-market linkages have

not changed.14

Volatility may shift because either " (:) or " (�) change. In our example, we focus on changes

of " (:) # Therefore, we expect that a our estimate of �� is biased, with a larger bias in the second

part of the sample (� ∈ [100� 200]), following the increase in the variance of 5�, erroneously leading
the analyst to detect presence of contagion.15

The model estimated with Leamer’s correction is:

	� = ��!� + ���!� + ��# (24)

In this second case, we expect the posterior estimate of �� is not biased and hence does not change

following the increase in " (:). Specifically, in this case, we assume:

• � = �� = >, � = � � = 0, � = �� = >, Φ1 = ?" ∗� and Φ� = ?" �
� with ? = 0#001;

14Baig and Goldfajn (2000) note that increased volatility in the crisis country may be seen as the source of
“contagion”, and the consequent strengthening of cross-market correlations even in the absence of a shift in the
underlying relations is part of the “contagion” process. In this case, cross-market correlations continue to provide
useful information, even though they cannot be used to disentangle a shift in the linkage from other reasons for the
increased co-movement across markets following a crisis. In our view, this perspective is more appealing to portfolio
managers than policy makers. From a portfolio management standpoint, what matters is the extent to which asset
prices co-move regardless of the reasons why they do so. From the standpoint of a policy maker, who must decide
how to respond to a shock it is certainly important to be able to discriminate among different sources of fluctuations
in asset prices.
15Note that an increase in � (�) decreases the bias, thus potentially leading to erroneously detect presence of

positive contagion.
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• �� ∼ � (�∗� � " ∗� ) and ��� ∼ � (0� " �
� ) with �

∗
� = ;∗, " ∗� = <2 (� 0�)−1 · 102, " �

� = <2>, and

+@) (��� �
�
�) = 0.

Figure 1 reports the posterior mean and 68-percent bands of the estimated posterior distribution

�� for the model estimated without correction as in (23). For each sample observation, as already

noted, the mean of the posterior distribution–the central line in these plots–may be compared

to a rolling OLS estimate. The two bands contain 68 percent of the probability mass under the

estimated posterior distribution of �� and may be compared to a one-standard deviation, classical

confidence interval. Thus, when the posterior mean at time � moves outside its 68 percent band at

time �− 1, we can assume this is a statistically significant shift.
As we can see from this figure, when the model is estimated without correction, the posterior

mean is severely biased (on average by more than 50 percent), thus not only providing a potentially

misleading assessment on the presence of contagion, but also of the extent to which these two

markets co-move in all states of nature. The variability of the omitted variable also induces a

marked, seemingly random time-variation in the posterior mean of �� that makes it even harder to

draw any conclusions. Then, as expected, the shift in the variance of the omitted common variable

at � = 100 produces an upward shift in the estimated coefficient of about 20 percent. This pushes

the lower band of the posterior distribution above its upper bound before the shift, possibly leading

the (Bayesian) analyst to conclude that this could be evidence of contagion.

Figure 2 plots the results in the case in which we estimate the model Leamer’s correction. As

we can see, Leamer’s correction works remarkably well in this case. It reduces the bias, which on

average is now only about 5 percent of the true value. It removes the random movements in the

parameter due to the omitted movements of : and, most importantly, it also eliminates the shift in

the coefficient due to the shift in the bias. Thus suggesting that our proposed procedure to measure

contagion detects false positive effectively, even under rather adverse conditions.

4.2 Evidence Based on Actual Data

In this subsection we assess how the framework proposed to measure contagion works when we don’t

know the true DGP. We do so by revisiting the application by Rebucci (2002) of our framework

to the investigation of contagion from the Argentine crisis on the Chilean foreign exchange market

in 2001. Rebucci (2002) concludes that, once controlled for other factors, fundamental linkages

between Chile and Argentina were not strong enough to explain the exchange rate movements in
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Figure 1: Posterior distribution of βt. Without correction
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Figure 2: Posterior distribution of βt. With Correction
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the second part of 2001 and that the presence of contagion could not be ruled out. Here, we shall

omit the control variables used and found to have considerable explanatory power by Rebucci and

apply the Leamer’s correction to see whether a “corrected, limited information” model yields the

same results.

More specifically, we use two empirical models here. A “full” information model, which considers

the same comprehensive set of potential explanatory factors used by Rebucci (2002), and a “limited”

information model, which includes only two variables, as in the experiments with simulated data in

the previous subsection and as one would have to do in a multi-country application. We estimate

both models with and without correction for omitted variable bias and then compare the results.

This permits to see clearly the extent to which the proposed framework replicates the results of a

fuller information setting when applied in a limited information setting with correction for omitted

variable bias.

The application we consider is interesting for several reasons. First, because it’s a natural

experiment in which both an approximate “full” and a “limited” information model can be specified.

Chile is relatively small, even compared to other Latin American countries; there are no evident

endogeneity problems, and it is possible to consider a large set of potential explanatory factors in

a single equation model.

Second, this is a case in which other measurement approaches would be difficult to apply. The

Argentine crisis unfolded slowly and was far from over by the time the sample period used ended

(i.e., January 2002). It would have been hard to define the right estimation window for a “before

and after crisis” approach. Even assuming a window of interest could have been established, there

probably would have been too few observations for efficient estimation after the crisis, while our

method can be applied in real time. For the same reasons, selecting a suitable number of dummy

variables could also have been difficult.

Finally, it is also an interesting case from a policy standpoint. On the one hand, the Chilean

peso depreciated sharply in 2001, and there was no consensus on which were the main driving

forces. The fall in the copper price, the loosening of domestic monetary policy, fundamental trade

and investment linkages with Argentina, and also contagion have all been considered by financial

commentators and policy analysts.16 On the other hand, the central bank of Chile intervened in

the foreign exchange market in August-December 2001 for the first time since the free floatation

16See Rebucci (2002) for more details on the context of the experiments we run.
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of the peso in September 1999, motivating its decision by invoking “exceptional circumstances”

consistent with its previously stated intervention policy. In addition, Rebucci (2002) does not

control for possible omitted variable bias. Therefore, it is interesting to see whether his finding of

contagion, which lends support to the central bank’s decision to intervene, would survive controlling

for such a possibility.

The full information model is the following auto-regressive distributed lag (ADL):

��*� = A0� + A1���*�−1 + Z
0
�2� + ���

where *� denotes the nominal exchange rate vis-a-vis the US dollar, �!� = !�−!�−1, �!� = log(!�),
and Z� represents a comprehensive set of potential explanatory variables, as listed and explained in

Table 1. These include (i) a terms of trade variable (the copper price), (ii) a set of domestic factors

(i.e., a set of return differential with US comparable assets), (iii) a set of regional factors (Argentine

and Brazilian country and currency risk indicators, and their nominal exchange rate vis-a-vis the

US dollar), and finally (iv) a set of global factors (the dollar/euro rate and a semiconductor price

index).

Although this is a fairly comprehensive list, the “full” information model considered may still

omit relevant variables, observable or unobservable. These might include, for instance, other

terms of trade variables and domestic factors (such as the oil price–apparently not significant

statistically–the long-run equilibrium relation with copper, and at least a Chilean corporate bond

spread), regional factors (such as Mexico, the only other investment grade country in the region),

global factors (such as US corporate bond spreads and a stock return differential with the Nasdaq),

and unobservable variables such as global risk aversion and the like. Thus, there is plenty of scope

for potential omitted variable bias.

The limited information model we consider is an ADL including only a one-day lag of the

exchange rate log-change and the contemporaneous change in the Argentine country spread:

��*� = A0� + A1���*�−1 + 2���
��
� + ��#

Thus, the second model omits all control variables included in the first model, and particularly two

(observable) common factors between Chile and Argentina found to have significant explanatory

power by Rebucci (2002)–the Brazilian country risk indicator and nominal exchange rate (See,

for instance, correlation matrix in Table 3). In fact, the second model is analogous to a rolling-

correlation or rolling-OLS analysis, except for the lagged endogenous variable included to capture
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Acronimous Name Definition Unit of Measure Sampling Source

DLe Chilean spot rate Log-change in the Chilean peso /U.S. dollar rate Daily return in percent Closing quote Bloomberg

DLc Copper price Log-change in the London metal Exchange spot copper 
price

Daily return in percent Closing quote Bloomberg

m Interest rate differential Short-term interest rate differential (TAB-90 rate minus 
federal fund rate) (TAB-90 rate in UF)

Percentage point per year Daily average Bloomberg and Associacion de 
Bancos

Dm Interest rate differential change Change in short-term interest rate differential (TAB-90 rate 
minus federal fund rate)

Percentage point per year Daily average Bloomberg

DiCHL Chilean sovereign risk Change in the Chilean component of the EMBI Global 
index

Percentage point per year Unknown Bloomberg

DfCHL Chilean currency risk Change in the differential between the implied one-year 
NDF interest rate and the one-year U.S. Treasury yield 
(constant to maturity)

Percentage point per year Mid-yield Bloomberg and IMF ICM 
Department

s Stock market differential Stock market daily return differential (IGPA index minus 
S&P500 index)

Percentage point per day Closing quote Bloomberg

DiAR+ Argentine sovereign risk Change in the Argentine component of the EMBI+ index Percentage point per year Closing quote Bloomberg

DfAR Argentine currency risk Change in the differential between the implied one-year 
NDF interest rate and the one-year U.S. Treasury yield 
(constant to maturity)

Percentage point per year Mid-yield Bloomberg and IMF ICM 
Department

DLeAR Argentine spot rate Log-change in the Argentine peso/U.S. dollar rate Daily return in percent Closing quote Bloomberg

DiBR+ Brazilian sovereign risk Change in the Brazilian component of the EMBI+ index Percentage point per year Closing quote Bloomberg

DfBR Brazilian currency risk Change in the differential between the implied one-year 
NDF interest rate and the one-year U.S. Treasury yield 
(constant to maturity)

Percentage point per year Mid-yield Bloomberg and IMF ICM 
Department

DLeBR Brazilian spot rate Log-change in the Brazilian real/US dollar rate Daily return in percent Closing quote Bloomberg

DLb Semiconductor price Log-change in a semiconductor spot price (DRAM module, 
100 mghz bus 128 MB)

Daily return in percent Unknown Datastream (DRMU03S)

DLeEU Euro spot rate Log-change in the Euro/U.S. dollar rate Daily return in percent Closing quote Bloomberg

   All exchange rates are expressed in units of national currencies per U.S. dollar.

Table 1. The Set of Potential Explanatory Factors Considered



Table 2. Sample Correlation Matrix (June 2, 1999 - January 31, 2002)

Chilean 
Spot Rate

Semi-
conductor 
Price

Euro 
Spot 
Rate

Interest 
Rate 
Differen-
tial

Interest 
Rate 
Differen-
tial Change

Chilean 
Sovereign 
Risk

Chilean 
Currency 
Risk

Stock 
Market 
Differen-
tial

Copper 
Price

Brazilian 
Sovereign 
Risk

Brazilian 
Currency 
Risk

Brazilian 
Spot Rate

Argentine 
Sovereign 
Risk

Argentine 
Currency 
Risk

Argentine 
Spot Rate

Dle DLb DLeEU m Dm DiCHLg DfCHL s DLc DiBR+ DfBR DLeBR DiAR+ DfAR DLeAR

Chilean spot rate 1,00

Semiconductor price -0,07 1,00

Euro spot rate 0,01 0,03 1,00

Interest rate differential -0,06 0,15 0,01 1,00

Interest rate differential change -0,03 0,03 -0,01 0,11 1,00

Chilean sovereign risk 0,01 0,00 -0,03 -0,03 -0,04 1,00

Chilean currency risk -0,07 0,00 0,01 -0,05 -0,07 0,06 1,00

Stock market differential 0,09 -0,06 -0,06 0,01 -0,03 0,04 0,03 1,00

Copper price -0,04 0,14 -0,02 0,07 0,05 0,03 -0,02 -0,11 1,00

Brazilian sovereign risk 0,33 -0,07 -0,07 -0,08 -0,11 0,10 0,07 0,22 -0,10 1,00

Brazilian currency risk 0,15 -0,05 -0,01 -0,03 -0,05 0,03 0,05 0,05 0,00 0,24 1,00

Brazilian spot rate 0,37 0,01 0,02 -0,06 -0,06 0,00 0,02 0,09 -0,08 0,41 0,18 1,00

Argentine sovereign risk 0,19 -0,02 0,06 0,11 -0,02 0,02 -0,02 -0,01 0,01 0,36 0,14 0,19 1,00

Argentine currency risk 0,18 -0,02 0,00 0,12 -0,03 -0,10 0,06 -0,06 0,03 0,25 0,18 0,22 0,34 1,00

Argentine spot rate 0,05 0,03 0,02 0,22 0,00 0,02 -0,07 -0,03 0,01 0,02 0,01 0,06 0,11 -0,07 1,00

   Sources: Bloomberg; Datastream; Fund database (ICM Dept.); and Fund staff calculations.



Table 3: Sample Descriptive Statistics (June 2, 1999-January 31, 2002)

Chilean 
spot rate

Semi-
conductor 
Price

Euro spot 
rate

Interest rate 
differential

Interest rate 
differential 
change

Chilean 
sovereign 
risk

Chilean 
currency 
risk

Stock 
market 
differential

Copper 
price

Brazilian 
sovereign 
risk

Brazilian 
currency 
risk

Brazilian 
spot rate

Argentine 
sovereign 
risk

Argentine 
currency 
risk

Argentine 
spot rate

Dle DLb DLeEU m Dm DiCHLg DfCHL s DLc DiBR+ DfBR DLeBR DiAR+ DfAR DLeAR

Mean 0,05 -0,19 0,03 0,28 0,00 0,00 -0,01 0,05 0,02 0,00 0,00 0,05 0,06 0,21 0,10

Median 0,04 0,00 0,04 -0,04 0,00 0,00 -0,01 0,07 0,00 -0,01 -0,01 0,08 0,01 0,00 0,00

Standard 
Deviation

0,49 4,17 0,69 1,57 0,18 0,08 0,15 1,28 1,18 0,18 0,40 0,88 0,72 3,16 1,67

Kurtosis 2,62 27,48 3,17 3,15 19,35 15,74 4,42 1,67 6,18 1,73 5,86 4,51 45,13 65,17 266,33

Skewness 0,35 2,84 -0,56 1,88 0,02 -0,33 0,04 -0,08 0,77 0,27 0,68 -0,07 0,51 -0,60 14,26

Minimum -1,92 -17,89 -4,47 -1,42 -1,41 -0,55 -0,72 -4,88 -4,77 -0,71 -1,96 -4,40 -7,96 -38,88 -7,84

Maximum 2,43 42,02 2,03 6,00 1,39 0,55 0,86 6,54 8,90 0,69 2,16 5,21 7,15 33,30 33,65

Number of 
observations

641 641 641 641 641 641 641 641 641 641 641 641 641 641 641

   Sources: Bloomberg; Datastream; Fund database (ICM Dept.); and Fund staff calculations.



some predictability detected in the data (result not reported). Finally, note that this is the same

specification one would likely want to adopt in a multi-country application because of the need in

that case to keep the model as parsimoniously parametrized as possible.

Defining 	� ≡ ��*� and collecting right-hand-side variables of both the full and the limited

information model in !� we have:

	� = !0��� + ��# (25)

For both the full and limited information model, the prior assumptions for �� and ��� and the

required initial conditions, consistent with assumptions (i)-(iv) and (3) in section 2, are:

• � = � = >, � = 0 and Φ = ?" ∗� with ? = 0#001;

• �� | �� ∼ �
¡
0� ��<

2
¢
with <2 = <̂2���;

• �� ∼ >
) −  2 (�� 1) with � = 5;

• �� ∼ � (�∗� � " ∗� ) with �∗� = ;∗ and " ∗� = <2 (� 0�)−1 ∗ 102.

Both models are then estimated with and without Leamer’s correction. With correction, we

initialize the model in three steps. First, we estimate the model

	� = !0��� + !0��
�
� + ��� (26)

without time variation, specifying the prior assumptions (19) and (20), assuming ��∗ = 0, �∗ = ;∗,

� = <2��� (�
0�)−1, �∗ = B1� , and � = B2 (�

∗ +�), and estimating the two hiperparameters B1

and B2 by maximizing the likelihood of the data as suggested by Doan et al. (1984). Second, we

initialize �∗� , ��∗� , " ∗� , and " �∗
� in the time varying model with the time-invariant posterior mean of

� and �� and their variance-covariance matrices, as we do with artificial data. Finally, we assume

� = �� = >, � = � � = 0, � = �� = > and Φ1 = Φ� = ?" ∗� , setting ? to an arbitrarily small

number (i.e., 0.001), as commonly done in the literature.17

Without correction, we set " ∗� and <2 equal to the OLS estimates of (25) assigning the corre-

lation coefficient corrected for the presence of heteroschedasticity by FR as the prior mean of ��,

�∗� .
17Setting � arbitrarily small implies assuming relatively little parameter time-variation, a priori. However, a proper

prior assumption could also be given to � to increase the efficiency of the estimates obtained.
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In both the corrected and not corrected specification we set �� to 5. The Gibbs sampler

then iterates 5000 times and discards the first 2500 draws to guarantee independence from initial

conditions. We check for convergence by calculating the mean of the draws for 500, 1000, 1500, 2000

observations respectively and find that convergence is achieved after the first 1000 observations.

All experiments with actual data are based on the same sample period and use daily data

from June 2, 1999 to January 31, 2002. This sample includes 641 observations obtained by taking

only common trading days across different markets. The first difference of the level, or the log-

level, of the variables are calculated with respect to the previous trading day included in the

sample. By proceeding in this manner, consistency across variables at any given point in time is

assured. Because of this, however, the first difference following a holiday may refer to more than

one trading day. This potentially creates outliers artificially. Alternatively, observations following

non-overlapping holidays would reflect different information sets across variables and time. Either

way, we would introduce some noise into the data. Given that the estimation procedure used is

robust to the presence of outliers, the former approach is preferable.

Figure 3 reports the posterior mean of 2� and 68 percent bands of the estimated posterior

distribution for each trading day in the sample, in all cases considered. To help assessing these

results, Figure 3 also reports an 80-day rolling correlation between the log-change of the Chilean

peso and the change in the Argentine country risk indicator (upper, left panel) and a plot of their

levels (upper, right panel).18

The results for the full information model not corrected (lower, left panel), also reported by

Rebucci (2002), show clear evidence of a temporary change in the linkage between these two coun-

tries, and thus indicate the presence of contagion according to the definition adopted. In fact, we

can clearly see a temporary increase in the strength of the association between the Chilean foreign

exchange market and the Argentine country risk indicator, and the magnitude of these changes

leave little doubt on their economic significance.

The coefficient of the Argentine country risk indicator starts to increase markedly at the be-

ginning of July 2001 (upper, right panel), around the time the Chilean peso first jumped, after the

Argentine “mega-swap” failed to restore investor confidence, following some decline in the proceed-

ing two-three months. The magnitude of this coefficient more than doubled in a few days after

18We report summary statistics and a correlation matrix for all time series used in the analysis for completeness
in Tables 2 and 3.
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Figure 3. Alternative Measures of Shift-Contagion
(Chilean Peso and Argentine Country Spread)

Source: Authors' calculations based on data described in Table 1.
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July 3, to reach a relative peak at about three times its end-June level on August 1, following a

second downgrade of the Argentine sovereign rating in a few weeks. The coefficient reached its

maximum on October 10, declining gradually thereafter, to bottom out on December 28 and revert

to its per-June 2001 values in early January 2002, despite the Argentine country risk remaining at

very high levels.

In the full information model corrected (middle, left panel) the evidence of contagion is slightly

weaker, statistically, as the lower band during the turmoil period remains below the posterior mean

during the proceeding tranquil period. Nonetheless, the economic significance of the shift in this

cross-market linkage remains: the coefficient of the Argentine country risk indicator peaks during

the turmoil period at about two times its value during the proceeding tranquil period, even after

controlling for potential omitted variable bias. Hence, the observed shift does not appear as the sole

artefact of increased volatility in Argentina or the result of an estimation bias due to the omission

of other factors, and confirm the finding of contagion of Rebucci (2002).

The results in the case of the limited information model not corrected (lower, right panel) are

clearly different from those obtained in full information settings and show the large impact of the

omitted variable bias on the estimated posterior distribution. As a result, had we used such an

approach, it would have been more difficult to draw inference on the extent to which the Chilean

foreign exchange market was affected by contagion from Argentina. Even though a strengthening of

the cross-country linkage is evident also in this case, its quantitative magnitude is greatly overstated,

and it would have been difficult to identify when contagion started.19

Finally, as expected, we can see that a corrected, limited information model (middle, right panel)

performs almost as well as the corrected, full information model. There is almost no bias compared

to the latter and the inference one could draw based on this evidence is the same as that one would

have drawn in full information settings.

5 Conclusions

In this paper we have proposed to use a time-varying coefficient model estimated with a numerical

Bayesian procedure to measure contagion. We have shown that this framework works well in the

19This conclusion is similar to that one could have drawn based on the rolling correlation analysis reported in the
upper, left panel. Note, however, that rolling correlations are biased also in the sole presence of increased volatility
in the crisis country, while our procedure as well as OLS regressions are not.
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joint presence of heteroskedasticity and omitted variables bias. In addition, it does not require

knowledge of the timing of the crisis and not only may distinguish contagion from interdependence

but also from structural breaks. The proposed framework may be applied both in a full or limited

information setting and can be used to investigate positive and negative contagion.

Evidence based on a worse-case scenario generated with artificial data shows that the proposed

framework effectively detects false positives in the joint presence of heteroschedasticity and omitted

variable bias. Evidence based on actual data shows that the results obtained in a limited infor-

mation setting correcting for potential omitted variables bias are comparable to those obtained in

a full information setting. Overall, this evidence suggests that the proposed framework measures

contagion effectively.
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A Deriving Conditional Posterior Distributions

In this appendix we derive the conditional posterior distributions of the parameters of interest

needed to implement the Gibbs sampler.

Assume a fixed number of degrees of freedom of the �—distribution of the error term, �.20 Lete��−1 = ���−1 + ��0 and �
†
� = �� −���−1. Recall that , = ({��}� � {��}� � Σ� ��� Φ) and focus first

on ,−�����
= (Σ� ��� Φ).

From (4), the following three posterior distributions can be derived analytically. First,

Σ−1 | � � � ,−Σ ∼�
³
(̂ � %̂

´
� (27)

where

(̂ = ( + C�

%̂−1 = %−1 +
X
�

³
�−1�

´
(�� −����) (�� −����)

0 ;

second,

Φ−1 | � � � ,−Φ ∼�
³
�̂� &̂

´
� (28)

where

�̂ = � + C

&̂−1 = &−1 +
X
�

h
�
³
�� − �̃�−1

´i h
�
³
�� − �̃�−1

´i0
;

and third

�� | � � � ,−��
∼ �

³
�̂�� Θ̂

´
� (29)

where

�̂� = Θ̂

"X
�

� 0
¡
�Φ� 0¢−1 �†� +Θ−1�∗�

#
�

Θ̂ =

"X
�

� 0
¡
�Φ� 0¢−1 � +Θ−1#−1 #

20The assumption of a fixed � could be relaxed. In this case, the Gibbs sampler should be augmented by a step
for sampling from the conditional posterior of �. No simple method exists for this step, but a Metropolis step could
be easily used instead. A complication, however, is that such models usually have multimodal posterior densities,
requiring to search for all modes and jump between modes in the simulation (see Gelman et al., 1995, Chapter 12).
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Since the conditioning on other parameters assumed independent is irrelevant, the first conditional

posterior is obtained from the first and fifth lines of (4), the second from the second and sixth lines

of (4), and the third and fourth lines of (4).

Focus now on the conditional posterior distributions of �� and ��, and particularly on (�� |
� � � ,−��). Assume further that, a priori,

�̃�−1 ∼ �
¡
�∗�−1� "

∗
�−1
¢
# (30)

Given �� = e��−1 +��� (e��−1 = ���−1 + ��0) and (30), it follows that:

�� | �� ∼ �
³
�̂�−1� "̂�−1

´
(31)

where

�̂�−1 = �∗�−1� and "̂�−1 = " ∗�−1 +�Φ� 0#

Now given the conditional normality of the data and (31), the joint conditional density of ��

and ��, (��� �� | ��� ��), is:Ã
��
��

| ��� ,−��

!
∼ �

"Ã
���̂�−1
�̂�−1

!
�

Ã
��"̂�−1� 0

� + ��Σ ��"̂�−1
"̂�−1� 0

� "̂�−1

!#
#

Then, by using the properties of the multivariate normal distribution, from this joint posterior

distribution it is possible to compute the posterior distribution of �� conditional on ��, �� and the

other parameters as:

�� | ��� ��,−��
∼ �

³
�̂�� "̂�

´
(32)

where

�̂� = �̂�−1 + "̂�−1� 0
�

³
��Σ+��"̂�−1� 0

�

´−1 ³
�� −���̂�−1

´
(33)

and

"̂� = "̂�−1 − "̂�−1� 0
�

³
��Σ+��"̂�−1� 0

�

´−1
��"̂�−1#

Consider now the posterior distribution of ��� (�� | ��� ��� ,−��
)# The joint density function

of �� and �� can be obtained as the product of the likelihood function (first line of 4) and the

prior density of �� (the third line of 4), which as noted has the form of an inverted chi—square

distribution. For instance, for � = 1, it is

|��Σ|−��2 exp
½
−1
2
(�1 −�1�1)0 (�1Σ)−1 (�1 −�1�1)

¾
(34)

× (�1)−(
��
2
+1) exp

·
− ��
2�1

¸
�
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where the second line is proportional to the density of an inverted chi-squared distribution with ��

degrees of freedom and scale $2� = 1. The product in (34), in turn, is proportional to

(�1)
−( ��+12 +1) exp

·
− 1

2�1

³
�
0
1Σ
−1�1 + ��

´¸
�

which is an inverted chi-squared distribution, with �1 = �� + 1 degrees of freedom and scale $21,

where

�1$
2
1 = ��$

2
� + �

0
1Σ
−1�1

with �� = (�� −����)# Hence, by iterating recursively find that, for any �:

�� | ��� ��� ,−��
∼ >
) −  2

³
��� $

2
�

´
(35)

with

��$
2
� = ��−1$2�−1 + �

0
1Σ
−1�1

and

�� = ��−1 + 1#

The Gibbs sampler cycles through (27)—(35). To operationalize the entire procedure, one finally

needs values for the hyperparameters of the model and suitable initial conditions for the parameters

of (30), which in turn requires to specify the matrix " ∗�−1 and the vector �∗�−1. For instance, to

derive the results in Figure 3 we set �∗� and " ∗� equal to OLS estimates of (25), while �� was set

arbitrarily to allow for the maximum degree of departure from normality.
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