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This paper integrates panel VARs and the index models into a unique 
framework where cross unit interdependencies and time variations in the 
coefficients are allowed for.  The setup used is Bayesian and MCMC methods 
are used to estimate the posterior distribution of the features of interest and to 
verify hypothesis concerning the model specification.   The approach reduces 
substantially the dimensionality of the problem, can be used to construct multi-
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setups.    The methodology is employed to construct leading indicators for 
inflation and GDP growth in the Euro area. 
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1 Introduction

There has been a growing interest in using panel VAR models for applied macroeconomic
analysis. This interest is due, in part, to the availability of higher quality data for a large
number of countries and, in part, to advances in computer technology, which make the
estimation of large scale models feasible in reasonable time. Problems concerning the trans-
mission of shocks across countries, sectors or industries; issues related to convergence and to
the evaluation of the effect of regional policies are naturally studied in this framework. Two
characteristics distinguish macro panels from micro ones: first, cross unit interdependencies
are likely to be more important in explaining the dynamics of the data in the former than
in the latter, especially once a (common) time effect is taken into account. Second, while
in micro panels the number of units is typically large and the time series short, in macro
panels the number of units is generally limited and the time series dimension is of moderate
size. These distinctive features are crucial when deciding both the setup in which to cast
the problem of interest and the procedure to be used to estimate the parameters of interest.
For example, Holtz Eakin et al. (1988) propose a GMM estimator and Binder, Hsiao and
Pesaran (2001) a QML and a minimum distance estimator, all of which are consistent and
asymptotically normal as the cross sectional dimension of the panel becomes large even when
the time series are nonstationary. Pesaran and Smith (1995), on the other hand, propose an
estimator which is consistent as the time series dimension becomes large, even when lagged
dependent variables are present.
No matter what the setup is, one is typically forced to impose strong restrictions to

obtain estimates of the parameters of interest. For example, it is typically assumed that slope
coefficients are common across units; that there are no interdependencies across units; that
the structure is stable over time or a combination of all of these. None of these restrictions is
appealing in macroeconomic frameworks: unit specific relationships may reflect differences in
national regulations or policies; interdependencies are the results of world markets integration
and time instabilities are the natural consequence of evolving economic structures. Recently,
Canova and Ciccarelli (1999) proposed a framework which allows for unit specific dynamics in
a panel VAR model with interdependencies and nonstationarities. Given the general nature
of the model, no classical estimation method is feasible and a hierarchical Bayesian approach
is used to construct posterior estimates of the features of interest. Although the framework
has several appealing features and the forecasting performance of the specification is good
relative to more parsimoniously built candidates, the estimation process is computationally
demanding whenever time variations are allowed to be different across variables and units.
The last few years have also witnessed a renewed interest in index models. Index models

are based on the idea that the dynamics of a large number of macroeconomic series can be
represented as the sum of low dimensional components which are common to all (or a subset
of the) units or variables, and of an orthogonal idiosyncratic residual. Static versions of
one-index models have been used e.g. by Stock and Watson (1989) to construct coincident
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and leading indicators of economic activity and are routinely employed in statistical and
government agencies. The static setup has been extended by Forni, Hallin, Lippi and Reich-
lin (FHLR) (2000) who allow for serial dependence in the index, by Otrok and Whiteman
(1998) who study a Bayesian version of it, and by Stock and Watson (1998) and Marcellino,
Stock and Watson (2000). Cumba Mendez et al. (2001) provide a forecasting comparison
of these models with VAR and BVAR. Despite remarkable progresses in the specification
and estimation of these models, problems still remain. For example, in the FHLR approach
estimates of the indices are functions not only of present and past dynamics but also of the
future ones, therefore preventing their use for forecasting and policy purposes. Furthermore,
all approaches but Otrok and Whiteman require a large cross sectional dimension for stan-
dard asymptotic theory to apply. Finally, structural time variations are not typically allowed
for.
The purpose of this paper is to integrate these two lines of research into a framework

which can be used to estimate multi-unit dynamic models with interdependencies and time
variations, to construct multi-step forecasts and leading indicators of economic activity, to
verify interesting hypotheses about the dynamics of the data, and to examine the responses
of endogenous variables to innovations in either the coefficients or the residuals of the model.
Our point of view is Bayesian: we assume that the vector of coefficients of the panel VAR can
a-priori be decomposed into a set of orthogonal low dimensional time-varying components.
These components capture, for example, variations in the coefficients which are common
across units and variables; variations across variables within a unit (”fixed effects”) or vari-
ations across units of a particular variable. Components, relating to lags, time periods, or
combinations of any of the above, can also be included in a straightforward manner. We com-
plete the prior specifications for these components using a hierarchical structure and derive
posterior estimates of the vector of coefficients using Markov Chain Monte Carlo (MCMC)
methods. We do so for two classes of situations: when there is some prior information on
the hyperparameters of the prior and when there is none. The first situation arises, for
example, if a training sample is available or if there are studies which report estimates of
the hyperparameters of interest. The second scenario is likely to be useful when one wants
to minimize the effect of prior information on posterior estimates.
If one treats the a-priori structure on the coefficient vector as part of the model specifica-

tion, the original panel VAR can be transformed into a multi-unit dynamic regression model
where the regressors are a set of orthogonal observable indices, constructed using particular
linear combinations of the right hand side variables of the VAR, and the loadings are the
time varying components of the coefficients. Because of the nature of the VAR this set of
indices is predetermined. Therefore this specification can be used to construct multi-step
leading indicator of interesting variables (for example, core inflation or the natural rate of
unemployment) which are used for policy purposes. Within this framework, one can select
the dimensionality of the vector of indices to be used by examining the relative out-of-sample
performance of specifications with different indices. We propose a simple approach, based

4



on predictive Bayes factors, to examine this issue. More general forms of model uncertainty
can be dealt with using a simple variant of Leamer’s measure of posterior uncertainty.The
model can also be used to compute forecast revisions (generalized impulses) in response to
unexpected perturbations in either the innovations of the VAR or in the loadings of one of
the indices and therefore can be useful to trace out distributions of future scenarios following
specific events.
The reparametrization with observable factors we employ has a number of appealing

features. First, it reduces the problem of estimating a large number of, possibly, unit specific
and time varying coefficients for each VAR equation into the problem of estimating a small
number of loadings on particular combination of the right hand side variables of the VAR.
Thus, for example, in a model with G variables, N units and k coefficients each equation, a
setup which requires the estimation of GNk, possibly time-varying parameters, our approach
requires the estimation of 1+N +G loadings when a common, a unit and a variable specific
vector of components are specified. Second, our Bayesian setup can easily allow for time
variations in the loadings - a feature which is not easily dealt with neither in standard index
models - and for cross unit interdependencies - a possibility typically excluded in micro panel
VARs - without particular complications. Third, because in a VAR current values of the
endogenous variables are explained by their past, our reparametrization is such that only
past and current information is used to construct the indices. Therefore, our indicators can
be constructed and estimated in real time and recursively and employed for a variety of
policy and forecasting purposes.
The structure of the paper is a follows: the next section describes the general setup

of the model. Section 3 provides a variety of prior restrictions and the details concerning
the construction of posterior distributions of the features of interest. Section 4 discusses
our approach to leading indicators and how to conduct a number of specification searches.
Section 5 deals with generalized impulse responses. In Section 6 we apply the methodology
to construct leading indicators for inflation and GDP growth in the Euro area. Section 7
concludes.

2 A general framework

The panel VAR model we consider has the form:

yit = Dit(L)Yt−1 + Cit(L)Wt−1 + eit (1)

where i = 1, ..., N ; t = 1, ..., T ; yit is a G× 1 vector for each i, Yt = (y�1t, y�2t, . . . y�Nt)�, Dit,j
are G×G matrices each j, Cit,j are G× q matrices each j; Wt is a q× 1 vector of exogenous
variables, common to all i, and eit is a G × 1 vector of random disturbances. We assume
that there are p lags for the G endogenous variables and l lags for the q exogenous variables.
In (1) we say that there are cross-unit lagged interdependencies whenever Di�

it 9= 0 for any
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i� 9= i. To see what this feature entails, consider a version of (1) with N = 2, G = 2, p = 2
and no exogenous variables of the form:

Yt = Dt,1Yt−1 +Dt,2Yt−2 + et (2)

where Yt = [y11t; y12t; y21t; y22t]
� and var(et) = Σe. Then, lagged cross units interdependencies

appear whenever Dt,1 or Dt,2 is not block diagonal. The presence of lagged cross unit
interdependencies adds flexibility to the specification but it is not without costs: the number
of parameters in the model is greatly increased (we have now k = NGp+ ql parameters each
equation); furthermore, the G variables entering the VAR must be the same for each i.
In (1) the coefficients are allowed to vary over time. While this feature may be of minor

importance in micro panels whenever T is short, it is crucial in macro setups where smooth
structural changes may occur continuously. A flexible specification for the law of motion of
the coefficients is specified below. Furthermore, in (1) the dynamic relationships are allowed
to be unit specific.
Rewrite the model in a simultaneous equations format as:

Yt = Xtδt + Et Et ∼ N (0,Ω) (3)

where Xt = ING ⊗X�t; Xt = (Y
�
t−1, Y

�
t−2, . . . , Y

�
t−p, W

�
t , . . . ,W

�
t−l)

�; δt = (δ�1t, . . . , δ
�
Nt)

� and
δit = (δ

1�
it , . . . , δ

G�
it )

�. Here δgit are k×1 vectors containing, stacked, the G rows of the matrices
Dit and Cit, while Yt and Et are NG × 1 vectors containing the endogenous variables and
the random disturbances.
Whenever δt varies with cross—sectional units in different time periods, it is impossible to

estimate it using classical methods. Two shortcuts are typically employed in the literature: it
is assumed that the coefficient vector does not depend on the unit, apart from a time invariant
fixed effect, and that there are no interdependencies across units (see e.g. Chamberlain
(1982), Holtz Eakin et al. (1988) or Binder et al. (2001)). Neither of these assumptions is
appealing in our context. Instead, we assume that δt can be factored as:

δt = Ξ1λt + Ξ2αt +
F+2[
f=3

Ξfρf−2,t (4)

where Ξ1 is a matrix of ones and zero of dimensions NGk × N1 << N ; Ξ2 is a matrix of
ones and zeros of dimensions NGk × N , and Ξf are conformable matrices. Here λt is a
vector of common components, αt is a vector of unit specific components (the fixed effect),
and ρf−2,t is a set of components which is indexed, in principle, by the unit i, the variable
g, the variable in a given equation m (independent of unit), the unit in a given equation s
(independent of variable), the lag h or combinations of all of the above.
Continuing with the previous example rewrite (2) as in (3) where δt now is a 32×1 vector

of coefficients where Xt = I4⊗ [Y �t−1, Y �t−2]�. Then (4) implies that a typical element of δt can
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be represented, for example, as:

δi,gm,s,h,t = λt + αit + ρg1t + ρm2,t + ρs3,t + ρh4,t (5)

Here λt is a common component, αt = (α
1
t , α

2
t )
� is a 2×1 vector of unit specific components,

ρ1t = (ρ
1
1t, ρ

2
1t)
� is a 2× 1 vector of variable specific components, ρ2,t = (ρ12,t, ρ22,t)� is a 2× 1

vector of variable specific components in equation m, ρ3,t = (ρ
1
3,t, ρ

2
3,t)

� is a 2× 1 vector of
unit specific components in variable s and ρ4,t = (ρ

1
4,t, ρ

2
4,t)

� is a 2× 1 vector of lag specific
components across variables and equations.
In principle, all the components in (4) are allowed to be time varying. Time invariant

structures can be obtained via restrictions on the law of motion of the coefficients, as detailed
below. Also, while the factorization in (4) is exact, in practice only a few components will
be specified: in that case whatever is omitted will be aggregated into an error term ut which
will be added to (4). In this sense, we can discuss estimation of (3) in terms of ”hard”
or ”soft” restrictions. When hard restrictions are specified (no ut), (3) and (4) will deliver
a restricted estimator. When soft restrictions are chosen, the framework will deliver a set
of stochastically (weakly) restricted estimators, where the multiplicity is indexed by the
assumptions made on ut.
One can interpret (4) as part of the prior or of the model specification. In the first case,

the choice is dictated by the interest of the researcher, by the convenience of the computations
or by statistical considerations. In the latter case, one may want to statistically determine
the number of components to be included. We discuss this issue in section 4.1.
One advantage of the factorization (4) is that the over-parametrization of the original

panel VAR is dramatically reduced because the NGK × 1 vector δt depends on a much
lower dimensional vector of components. Therefore, noise is averaged out and more reliable
estimates can be obtained.
An issue of crucial importance in examining cross-sections of time series is the one of

measurement error. In macro panels measurement error may emerge because of the uneven
quality of data across units or because of different definitions of the same quantity in different
units. For example, since the establishment of the European Central Bank, the harmonized
CPI has substituted nationally based CPI measures to reduce cross country biases in the
measurement of price indices. Measurement error can be easily allowed for in our specifi-
cation. Let yit and Wt be unobservable and instead y

+
it = yit + u

y
it and W

+
t = Wt + u

w
t are

available, where ujit, j = y, w are serially uncorrelated and uncorrelated with yit and Wt.
Substitution of these expressions in (3) implies

Ẽt = Et + U
y
t −Utδt (6)

where Uyt is the stacked vector of measurement errors in yit, Ut = ING ⊗ U �t and Ut =

(uy
�
t−1, u

y�
t−2, . . . , u

y�
t−p, u

w�
t , . . . , u

w�
t−q)

�. The presence of serially uncorrelated measurement
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error therefore produces moving averages terms in the residuals of the VAR. Hence, if mea-
surement error is deemed important, one has two alternatives: (i) specify a long enough lag
length for the VAR so that at least the dominant elements of the MA representation are
accounted for; (ii) impose a particular MA structure on the error of (3). We discuss this
second strategy in the next section.

3 Posterior Estimation

In this section we take (4) to be part of the prior specification and let θt = [λt,α
�
t, ρ

�
1,t, . . . , ρ

�
f1,t
, f1 <

F + 2]. Then (4) can be written as

δt = Ξθt + ut ut ∼ N(0,Ω⊗ V ) (7)

where Ξ = [Ξ1, Ξ2, Ξ3, . . . ,Ξf1] and V is a k×k matrix. We assume a hierarchical structure
for θt of the form:

θt = (I − C) θ0 + Cθt−1 + ηt ηt ∼ N (0, Bt) (8)

θ0 = Pµ+ " " ∼ N(0,Ψ) (9)

Furthermore we let

V = σ2Ik (10)

Bt = γ1 ∗Bt−1 + γ2 ∗B0 = ξt ∗B0 (11)

with ξt = γt1 + γ2
(1−γt1)
(1−γ1) where B0 = diag(B01, B02, B03, . . . B0f1+2). We assume that ut, ηt, "

are mutually independent and that γ1, γ2,P, C are known. Here C is a full rank matrix, P a
matrix which restricts (part of the) initial values for the θt’s via an exchangeable prior. Thus,
for example, if the unit specific components are drawn from a distribution with common mean
and there are, e.g. four units, two variables and three components in (4), then:

P =



1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


.

The prior in (7)-(11) is very generally specified: in (8) the components of the coefficients
evolve over time in a geometric fashion and in (9) their initial conditions are linked across
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units. In (11) the variance of the innovations in θt is allowed to be time varying to account
for heteroskedasticity and other generic volatility clustering that may appear in several, or
all, series within and across units. The specification used is very flexible, builds on the one
used by Canova (1993), and nests two important special cases: (a) no time variation in the
components, γ1 = γ2 = 0, and C = I, and (b) no heteroskedastic variance γ1 = 0 and γ2 = 1.
The spherical assumption (10) reflect the fact that components of the coefficient vector are
measured in common units, while the block diagonality of B0 is needed to guarantee the
orthogonality across factors (which is preserved a-posteriori), and hence their identifiability.
Recently, Cogley and Sargent (2002) in an attempt to capture conditional heteroskedas-

ticity in the variance of a single country VAR for the US, modelled Bt as time invariant
but specified Ω to be a function of a set of stochastic volatility processes. Their approach
is similar in spirit to ours. One advantage of our specification is that it retains linearity in
the specification therefore making simulation of the posterior distributions easier. On the
other hand, the interaction between changes in the law of motion of the coefficients and
the evolution of the variables in the VAR creates complex non-linear dynamics in the DGP
of our model which allow to capture a variety of non-normal patterns without the need of
explicitly modelling VAR residuals as heteroskedastic.
Several specifications are nested in our general framework. For example, we can accom-

modate the case where some components of δt are a-priori independent of time, by making Bt
a reduced rank matrix and setting the appropriate elements of C to zero. Thus if αt is time
invariant and three components are used then Bt = block diag [B1t, 0, B3t] and C = [C1, 0, C3].
Furthermore, if exchangeability is not appropriate a priori, we can let θ0 be loosely specified
by choosing Ψ to be large. Finally, if enough components are included, we can make (7)
exact by setting σ2 = 0. We choose to be as general as possible at this stage and examine
various hypotheses about the model specification using the constructed posterior distribution
for the parameters.
We can easily extend the model to account for aberrant observation and/or error with

fat-tailed distributions simply replacing the normal distributions at one particular stage of
the hierarchy with a family of longer-tailed distributions, for example the Student-t or the
finite mixture. In fact, if ut | ht ∼ N(0, htΩ⊗ V ) with ht ∼Inv-χ2 (ν, 1), where Inv-χ2 is an
inverted chi-squared with degrees of freedom ν and scale equal 1, then ut ∼ tν(0,Ω ⊗ V ).
This feature is easily incorporated in our posterior simulator as we show below.
To complete the specification we need prior densities for (Ω, µ, Ψ−1, σ−2, B−10 ). There

are two possible sets of alternative assumptions one can make. The first set applies when
an investigator has available a “training sample” which can be used to “estimate” prior
features of the model, or when observations on similar units provide information on how the
hyperparameters of the model are likely to behave. The second is more appropriate when
this kind of information is not available or when a researcher is interested in minimizing the
impact of the prior on the posterior. For large sample sizes, the posterior will be independent
of the set of assumptions used. When the sample size is small, a comparison of the results
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obtained with the two specifications provides important sensitivity check on the outcomes
of the estimation process.

3.1 Informative Priors

We let p(Ω−1, µ,Ψ−1,σ−2, B−1o ) = p(Ω
−1)p(µ)p(Ψ−1)p(σ−2)p(B−1o ) with

p(Ω−1) = W (z1, Q1)

p(µ) = N(µ̄,Σµ)

p(Ψ−1) = W (z0, Q0) (12)

p(σ2) = IG(z2/2, Q2/2)

p(Bo1) ∝ IG(z3/2, Q3/2)

p(B−1oi ) ∝ W (z4i, Q4i)

where N stands for Normal; W for Wishart and IG for inverted gamma. The hyperparame-
ters (z0, z1, z2, z3, z4i, vec(µ̄), vech(Σµ), vech(Q0, Q1, Q2, Q3, Q4i)) are assumed to be known
or estimated from the data where vec (·) (vech (·)) denotes the column-wise vectorization of
a rectangular (symmetric) matrix.
To calculate conditional posterior kernels of the unknowns we combine (12) with the

likelihood of the data, which is proportional to

|Ω|−T/2 exp
+
−1
2

T[
t=1

(Yt −Xtδt)�Ω−1 (Yt −Xtδt)
,

Let Y T = (Y1, ..., YT ) denote the sample data, ψ = ({δt}t ,Ω, , θo, µ, Bo, σ2,Ψ, {θt}t)
denote the unknowns whose joint distribution needs to be found and ψ−κ the vector of ψ
excluding the parameter κ. Furthermore, let Ut a NG× k matrix such that ut = vec (U �t);
θ∗t−1 = (I − C) θo + Cθt−1 and θ̃t = θt − Cθt−1. Then the conditional distribution for the
unknowns are

δt | Y T ,ψ−δt ∼ N
�
δ̂t, V̂t

�
, t ≤ T ;

Ω−1 | Y T ,ψ−Ω ∼W
�
ẑ1, Q̂1

�
;

θo | Y T ,ψ−θo ∼ N
�
θ̂o, Ψ̂

�
;

µ | Y T ,ψ−µ ∼ N
�
µ̂, Σ̂µ

�
;

σ2 | Y T ,ψ−σ2 ∼ IG
#
ẑ2
2
,
Q̂2
2

$
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Bo1 | Y T ,ψ−Bo1 ∼ IG
#
ẑ3
2
,
Q̂3
2

$
;

B−1oi | Y T ,ψ−Boi ∼W
�
ẑ4i, Q̂4i

�
;

Ψ−1 | Y T ,ψ−Ψ ∼W
�
ẑo, Q̂o

�
.

where expressions for δ̂t, V̂t, ẑ1, Q̂1, θ̂o, Ψ̂
−1, µ̂, Σ̂µ, ẑ2, Q̂2, ẑ3, Q̂3, ẑ4i, Q̂4i, ẑo, Q̂o are given in the

appendix.
Depending on the application, the conditional posterior of (θ1, ..., θT | Y T ,ψ−θt), can be

obtained recursively either with the Kalman filter or the Kalman smoother, as in Chib and
Greenberg (1995). In the first case, we initialize {θt}t for each t and save:

θ̂t|t = θ̂∗t|t−1 +Kt

�
δt − Ξθ̂∗t|t−1

�
(13)

Rt|t = (I −KtΞ)R
∗
t|t−1

Kt = R∗t|t−1ΞF
−1
t|t−1

Ft|t−1 = ΞR∗t|t−1Ξ
� +B1

where θ̂∗t|t−1 = θ̂∗t−1|t−1 and R
∗
t|t−1 = R

∗
t−1|t−1+ξtBo, and θ̂

∗
t−1|t−1 and R

∗
t−1|t−1 are, respectively,

the mean and the variance covariance matrix of the conditional distribution of θ∗t−1|t−1.

Draws from for θt are made from N(θ̂t|t, Rt|t). In the second case, the conditional posterior
of θ1, ..., θT | YT ,ψ−θt is sampled in reverse time order from

θT ∼ N
�
θ̂T |T , RT |T

�
θT−1 ∼ N

�
θ̂T−1, RT−1

�
(14)

...

θ1 ∼ N
�
θ̂1, R1

�
where θ̂t = θ̂t|t + Ξt

�
θt+1 − θ̂t|t

�
, Rt = Rt|t − ΞtR

∗
t+1|tΞ

�
t, and Ξt = Rt|tR∗−1t+1|t.

To make the updating scheme described in (13)-(14) operational, initial values at time
t = 1 must be assigned. For instance, one can choose to initialize B0 = R0 to be diagonal with
elements φi equal to small values. θ̂0 can be initialized by running a VAR for each country
and taking the constant. In the same way, Q1 can be taken as the variance covariance matrix
of a pooled VAR, and Ω can be initialized by setting it equal to Q1.
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3.2 Ignorance

When no information on the unknown elements of (8)-(11) are available, we modify the prior
as follows. We assume Bo1 = b1, B0i = bi ∗I, i = 2, . . . , f1+2 where bi controls the tightness
of component i of the coefficient vector. Furthermore we assume that p(Ω−1,σ2, µ,Ψ, bi) =
p(Ω−1)p(σ2)p(µ,Ψ)

T
i p(bi) and that

p(Ω−1) = W (z1, Q1)

p(σ2) ∝ σ−2

p(µ,Ψ) ∝ Ψ−(ϑ+1)/2

p(bi) ∝ (bi)
−1 (15)

where ϑ = 1+N+
Sm1

j=1 dim(ρj,t). Once again (z1, Q1) are assumed known or estimated from

the data. Given the likelihood and conditioning on {θt}Tt=0, the conditional distributions of
the remaining parameters can be derived easily. The conditional posterior for δt, Σ

−1, θ0
are unchanged, but now

σ2 | Y T ,ψ−σ2 ∼ IG
#
TNGk

2
,

S
t u
�
t (Ω⊗ Ik)−1 ut

2

$

Ψ−1 | Y T ,ψ−Ψ ∼W
�
2ϑ,
�
(θo − Pµ̂) (θo − Pµ̂)�

�−1�
µ | Y T ,ψ−µ ∼ N

�
µ̂,
�P �Ψ−1P�−1�

bi | Y T ,ψ−bi ∼ IG
#
T

2
,

S
t

�
θit − θ∗it−1

�� �
θit − θ∗it−1

�
2ξt

$
,

where µ̂ = (P �Ψ−1P)−1P �Ψ−1θo, and θ̂o = Ψ̂
k
Ψ−1Pµ+ (I − C)�B−1o

S
t θ̃t/ξt

l
;

Ψ̂ =
�
Ψ−1 + (I − C)�B−1o (I − C)St 1/ξt

�−1
, θ∗t−1 = (I − C) θo + Cθt−1, and θ̃t = θt − Cθt−1.

Finally, the joint conditional posterior of (θ1, .., θT | Y T ,ψ−θt), is unchanged.

3.3 A Special Case

Since δt is a NGk × 1 vector, computational problems may arise in deriving the posterior
distributions when the Panel VAR model is of large scale. To avoid them one may decide to
leave δt unidentified and write the model as

Yt = XtΞθt + vt

θt = (I − C) θ0 + Cθt−1 + ηt (16)

θ0 = Pµ+ "
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where vt = Et +Xtut has covariance matrix σtΩ = (1 + σ2X �
tXt)Ω

We maintain the same prior structure we have previously described but assume that
p(σ−1t ) = G

�
ζ
2
, ζst
2

�
with s−1t = E(σ−1t ) = (1 + σ2X�tXt)

−1
where the hyperparameters ζ, ζst

are assumed known.
Note that letting ζ → 0 the prior on σ−1t becomes uninformative. This structure is

attractive since it implies that the prior distribution for vt has the form (vt|σt) ∼ N (0,σtΩ)
where σt ∼ Inv-χ2 (ζ, st) which implies that vt is distributed as a multivariate t distribution
centered at 0, with scale matrix which depends on Ω and degrees of freedom equal to ζ.
Hence with this specification, the errors of the model can capture unusual observations in
the data or occasional extreme parameter values in the hierarchical model.
With this respecification the likelihood of the data is proportional to

∝
#

T\
t=1

σi

$−NG/2
|Ω|−T/2 exp

%
−1
2

[
t

(Yt −XtΞθt)� (σtΩ)−1 (Yt −XtΞθt)
&
.

Conditional on ({θt}Tt=0, Y T ), the distributions for ψ∗ = (Ω, {θt}t , θo, µ, Ψ, {σt}t ,φi, ) are:

Ω−1 | Y T ,ψ∗−Ω ∼W
#
w1 + T,

�
,

S
t (Yt −XtΞθt) (Yt −XtΞθt)�

σt
+Q−11

�−1$
;

σ−1t | Y T ,ψ∗−σt ∼ G
�
ζ +NG

2
,
ζst + (Yt −XtΞθt)�Ω−1 (Yt −XtΞθt)

2

�
θo | Y T ,ψ∗−θo ∼ N

�
θ̂o, Ψ̂

�
;

Ψ−1 | Y T ,ψ∗−Ψ ∼W
�
2ϑ,
�
(θo − Pµ̂) (θo − Pµ̂)�

�−1�
µ | Y T ,ψ∗−µ ∼ N

�
µ̂,
�P �Ψ−1P�−1�

bi | Y T ,ψ∗−bi ∼ IG
#
T

2
,

S
t

�
θit − θ∗it−1

�� �
θit − θ∗it−1

�
2ξt

$
,

where µ̂, θ̂o; Ψ̂, θ
∗
t−1 and θ̃t are the same as in the previous subsection. The conditional

posterior distribution of (θ1, .., θT | Y T ,ψ−θt) is unchanged.

3.4 Measurement Error

In the case measurement error is suspected, the construction of conditional posteriors is
slightly more complicated. Let Ẽt = Et + U

y
t − Utδt = ϕκt where ϕ is a r × 1 vector,

r is the length of the MA components and κt ∼ N(0, I) Then as in Chib and Greenberg
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(1995), define y∗t = yt −
Sr

i=1 ϕiy
∗
t−i, x

∗
t = xt −

Sr
i=1 ϕix

∗
t−i with y

∗
s = x

∗
s = 0 if s < 0 and

vtj = −
Sr

i=1 θivt−i,j + θt+j−1 where vsj = 0 if s < 0. With this transformation the model is:

Y ∗t = X
∗
t δt +

r−1[
i=0

vtiκ−i + κt (17)

or in matrix form
Y ∗ = X∗δ +Υ� + κ (18)

where � = (κ0,κ−1, . . .κ−r+1)�. When we add � and ϕ to the conditioning variables,
the conditional posterior distributions of θt is unchanged. The posterior distribution of �
conditional on θt,ϕ, y

∗, x∗ can be easily found by rewriting (18) as ȳ = y∗ − x∗δ = V� + κ.
Finally, if we assume that the prior for ϕ is N(ϕ̄,R−1), the conditional posterior kernel is
given by ς(θ)

TT
t=1 exp{−0.5κ2t}× exp{−0.5 (ϕ− ϕ̄)� R (ϕ− ϕ̄) } where ς(θ)is the density of

the first robservations. Sampling from this conditional posterior requires a MH step within
the Gibbs algorithm (as detailed below), but not further complications. As a candidate
density for ϕone could take exp{−0.5 �ϕ− ϕ†

��R† �ϕ− ϕ†
�} where ϕ†and R†are nonlinear

least square estimates of ϕand R.

3.5 Posterior Inference

Joint posterior estimates of the unknowns can be obtained from the various conditional
posteriors using a Gibbs sampler. Assume that ψhas jcomponents. Then, the algorithm
works as follows:

1. Start from some ψ
(o)
1 ,ψ

(o)
2 , ...,ψ

(o)
j .

2. Draw ψ� as follows

• ψ
(�)
1 from p(ψ1|ψ(�−1)2 , ...,ψ

(�−1)
j , Y )

• ψ
(�)
2 from p(ψ2|ψ(�)1 , ...,ψ(�−1)j , Y )

• ...
• ψ

(�)
j from p(ψl|ψ(�)1 , ...,ψ(�)j−1, Y ).

3. Repeat step 2. L times

The process of drawing at step 2 defines a transition from ψ�−1 to ψ�. At each step
ψ� ∼ p(ψ|Y ). Iteration on the algorithm produces a sequence which is the realization of a
Markov chain with probability kernel π(ψ�,ψ�−1) =

TJ
i=1 p(ψ

�
i |ψ�−1

i� (i
� > i),ψ�

i�(i
� < i), Y ) For

L large, ψL = (ψL1 ,ψ
L
2 , ...,ψ

L
j ) can be regarded as a draw from the joint posterior density.
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Convergence of the Gibbs sampler kernel to the true invariant distribution in our model
is somewhat standard since the panel VAR model (1) is a time-varying SUR model with
serially correlated errors (see e.g. Chib and Greenberg (1995)). Convergence in these types
of models typically occurs under a set of mild conditions. For example, a simple sufficient
is the following. Let A∗ = {ψ ∈ A, p(ψ) > 0}. If for every ψ∗ ∈ A and every A1 ∈ A with
π(ψ ∈ A1|Y ) > 0 it is the case that π(ψi+1 ∈ A1|ψi = ψ∗, Y ) > 0 where π is the probability
measure induced by the Gibbs sampler, then the transition kernel is ergodic and its unique
invariant distribution is the posterior density p(ψ|Y ) (see Geweke (2000)).
Inference on any continuous function G(ψ), of the parameters of interest can be easily

constructed using the output of the Gibbs sampler and the ergodic theorem. For example

E(g(ψ)) =
U G(ψ)p(ψ|Y )dψ can be approximated using 1

L̄
[
SL+L̄

�=L+1 G(ψ�)−1]−1.
Predictive distribution for future yit’s can be estimated using the recursive nature of the

model and the simple conditional structure of (3). In particular, let Y t+τ = (Yt+1, . . . , Yt+τ).
To compute forecasts and turning points we need to construct F (G(Y t+τ) | Yt) =U F (G(Y t+τ) | Yt,ψ) p (ψ | Yt) dψ where F (G(Y t+τ ) | Yt,ψ) is the conditional density of the
function G of future Y ’s, given ψ. Then forecasts can be obtained drawing ψ(�) from the
posterior distribution and simulating the vector Y �,t+τ from the density f

�
Yt+τ | Yt,ψ(�)

�
.�

Y �t+τ
�L+L̄
�=L+1

constitutes a sample, from which we can compute moments and function of in-

terest. A point estimate of the forecast is the ergodic average Ŷ t+τ = L̄−1[
SL+L̄

�=L+1 Y
�t+τ−1]−1

or the median of the distribution; its numerical variance can be estimated using var
�
Ŷ t+τ

�
=

L̄−1
�Qo +Sr

s=1

�
1− s

r+1

�
(Qs +Q�s)

�
whereQs = L̄−1

�SL+L̄
�=s+1+L

k
Y�t+τ − Ŷt+τ

l k
Y�t+τ − Ŷt+τ

l��−1
and interdecile ranges can be obtained by ordering the draws for each t+ τ .
Impulse response profiles can also be computed using these forecasts. We describe their

calculation in some details in section 5.

4 Leading Indicators

The panel VAR (3) with the hierarchical prior (7)- (11) provides a natural framework for
the recursive construction of leading indicators. In fact substituting (7) into (3) one obtains
the following observable index structure

Yt = Wtλt +Atαt +
[
f

Zf,tρf,t + vt (19)

where Wt = XtΞ1,At = XtΞ2 and Zf,t = XtΞf .
In (19) the NG× 1 vector of endogenous variables depends on a vector of common time

indices Wt, on a vector of unit specific indices At, and on a set of indices Zf,t indexed
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by variables, lags, unit, etc. These indices are particular combinations of lags of the right
hand side variables, while λt,αt, ρf,t play the role of loadings and measure the impact that
different linear combinations of the regressors have on the current endogenous variables.
Since the indices are combinations of predetermined and exogenous variables, it is possible
to construct leading indicators directly from the model, without any preliminary distinction
between leading, coincident and lagging variables.
For example, a leading indicator for Yt based on the common information is given by

CLIt = Wtλt; a vector of leading indicators based on the common and unit specific in-
formation is CULIt = Wtλt + Atαt; a vector of indicators based on the common and
variable specific information is CV LIt = Wtλt + Z1tρt; finally, a vector of leading indica-
tors based on the common, unit specific and variable specific information can be constructed
as CUV LIt = Wtλt + Atαt + Z1tρt. Notice that, because of the recursive nature of the
model, both single-step and multi-steps leading indicators can be easily constructed. For
example, one can construct medium term measures of core inflation, potential output and
the natural rate of unemployment using available multi-unit informations.
The output of the Gibbs sampling algorithm can, once again, be used to get both point

estimates and confidence bands for each type of indicators a researcher wants to construct.
Furthermore, as discussed in section 3.5, estimates of a number of other continuous functions
of these indicators can also be constructed.

4.1 Indices selection

Although we have setup the problem so that the components of δt are chosen a-priori by
the investigator, one could think of (19) as a reparametrization of the original panel VAR
model and therefore be interested in assessing how many indices are necessary to capture the
heterogeneities of the coefficients across time, units and variables. Given the orthogonality
of various indices, it is easy to design a out-of-sample predictive diagnostic to discriminate
across models. For this purpose consider the predictive Bayes factors,

B ≡ L(Y t+τ |Mh)

L(Y t+τ |Mh+1)
(20)

where

L(Y t+τ |Mh) =

]
p(Y t+τ |ψ∗h,Mh)p(ψ

∗
h|Mh)dψ

∗
h =

]
P (Y t+τ ,ψ∗h|Mh)dψ

∗
h (21)

is the predictive density for Y t+τ of model with h indices (Mh). Here p(ψ∗h|Mh) is the
prior density for ψ∗ in model h and p(Y t+τ |ψ∗h,Mh) the density of future data under the
parameterization given by model h. Since predictive densities can be decomposed into the
product of one-step ahead prediction errors, model h can be evaluated against model h+ 1

16



using its out-of-sample prediction record (predictive scores). When the two hypotheses
are nested, that is ψ∗ = (ψ∗1,ψ

∗
2) and ψ∗2 = ψ̄∗2 is the restriction of interest, if L(ψ∗1|Mh) =U L(ψ∗1,ψ∗2|Mh+1)dψ

∗
2 and ψ

∗
1 and ψ

∗
2 are independent, then (20) reduces toB =

L(φ̄∗1|Mh+1)

L(ψ̄∗1|Yt, Mh+1)

(see Kass and Raftery (1995)) which requires only estimates of the model h+ 1.
The predictive density of model h can be easily computed with the output of the Gibbs

sampling. To do so, draw δ�t (or θ
�
t if δ

�
t is left unidentified) from the posterior distribution,

construct forecast Y �
t+τ for each horizon τ , compute the prediction errors at each step and

for each draw and average across draws. The numerator and the denominator of (20) can
be computed using L∗(Y t+τ |Mh) =

1
L̄
[
S

�L(Y t+τ |ψ�)−1]−1 where ψ� is the �-th draws from
the posterior of model h and L∗(Y t+τ |Mh)→ L(Y t+τ |Mh) as L̄→∞.
Various other specification searches on the model can easily conducted. For example,

assuming V = σ2I, as in section 3.1., it is possible to check whether the decomposition (4) is
exact or not. As seen above, the conditional posterior distribution of σ2 is of inverted gamma
type with parameters ẑ and Q̂2(see appendix). Then if posterior draws are concentrated
around small values of σ2 this provides evidence in favor of the restriction σ2 = 0.
One way of formally evaluating the closeness of σ2 to zero is to construct the ratio S =

P (σ2≤"|y)P (σ2>"|y)
P (σ2≤")P (σ2>") where the numerator is computed using posterior draws and the denominator
using prior draws. A similar approach can be used also to examine the posterior support,
e.g., for time variations in θt or the importances of interdependencies in the model. For
example, in the case of time variations and using B0i = bi ∗ I, time variations are significant
if the posterior draws of bi are large relative to prior draws.
Instead of sequentially examining a series of hypotheses regarding the number of factors

to be included, one may want to take a general view about the uncertainty surrounding the
number of indices to be included in (7). In this case, let M1 be the model with one index
and Mh the model with h indices, h = 2, . . . H, and suppose we run a sequences of tests of
model h against model 1. Let Bh1 be the corresponding Bayes factor. Then the posterior
probability for model h is p(Mh|Yt) = ahBh1SH

h=2 ahBh1
where ah are the prior odds for model h.

Using such an expression in (21), it is immediate to recognize that model uncertainty is
accounted for by weighting the posterior density by the posterior probability of the model.

4.2 Discussion

The approach to leading indicators we laid out in this section is advantageous in several
respects. First, since (7) can be considered a part of the prior or of the model specifica-
tion, the leading indicators we construct can be given either a Bayesian or a more classical
interpretation. Furthermore, with non-informative priors, our shrinkage approach produces
indicators which are similar to those produced in a frequentist framework. Second, we do
not need to preliminary classify variables as leading, lagging or coincident: all VAR variables
are potentially useful to predict future values of the endogenous variables. By avoiding the

17



selection of particular variables, and instead constructing appropriate averages, we consid-
erably robustify the construction of leading indicators (much in the same spirit as Granger’s
(2001) robust predictors). Third, indices estimation and specification searches are feasible
even when the degrees of freedom in the original panel VAR are small, as long as the di-
mensionality of θt is substantially smaller than the size of the data. Fourth, contrary to
existing procedures, which need the size of either the cross-section or of the time series to
go to infinity for asymptotics to apply, posterior distributions for the leading indicators are
meaningfully even when both N and T are small. Fifth, contrary to FHLR (2000) our
estimation approach maintains the timing of the relationship across variables. Therefore,
indicators can be constructed recursively and used to conduct a number of real time exper-
iments. Finally, contrary to standard factor model setups, our approach works even when
series are non-stationary.

5 Dynamic analysis

Impulse response profiles for the panel VAR can be computed as posterior revisions of the
forecast errors. Since the model is non-linear, the impulse responses we compute differ
from those obtained in standard VARs. In fact, forecasts for yit+τ may change for two
reasons: because of the innovations in the model and because of changes in the coefficients.
Furthermore, since coefficients are time varying, impulse responses depend on the history and
the point in time in which these revisions are computed (as in Gallant, Rossi and Tauchen
(1993) or Koop, Pesaran, Potter (1995)).
Next we briefly illustrate how these revisions can be computed using the output of the

Gibbs sampler. Rewrite the model as:

Yt = Xtδt +Θẽt (22)

δt = Ξ((I − C)θ0 + Cθt−1 + "t) + ut (23)

where ΘΘ� = Ω, ẽt ∼ (0, I). The companion form version of (22) is

Yt = ∆tYt−1 + ιt (24)

where δt = vec(∆1t) and ∆1t is the first row of ∆t.
Iterating τ times on (24), using the matrix J = [I, 0, .., 0] such that JYt = Yt, J

�J = I
and Jιt = Θẽt, we have

Yt+τ = J(
τ−1\
s=0

∆t+τ−s)Yt +
τ−1[
m=0

Φm,t+τ ẽt+τ−m (25)

where Φm,t+τ = J(
Tm−1
s=0 ∆t+τ−s)J �Θ and Φ0,t+τ = I .
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Iterating on (23) we have

δt+τ = Ξ (C)τ+1 θt−1 + Ξ
τ[
i=1

Ci(I − C)θ0 + Ξ
τ[
i=1

Ci"t+τ−i + ut+τ (26)

Define impulse responses at step j, given information at t and terminal horizon τ as IRj,τ =
Et+jYt+τ −EtYt+τ , ∀τ ≥ j + 1. Since EtYt+τ = JEt

�Tτ−1
s=0 ∆t+τ−s

�
Yt,

IRj,τ =

j−1[
s=0

(Et+jΦτ−j+s,t+τ) ẽt+j−s

+J

%
Et+j

#
τ−j−1\
s=0

∆t+τ−s

$
τ−1\
s=τ−j

∆t+τ−s − Et
#

τ−1\
s=0

∆t+τ−s

$&
Yt

(27)

From (27) it is clear that revisions of the forecast at τ can occur because ẽt+τ−s or ut+τ−s
are different from zero.
To operatively see the content of equation (27) note for example that

IR1,2 = Et+1Yt+2 −EtYt+2
= Et+1 (Φ1,t+2) ẽt+1 + J [Et+1 (∆t+2)∆t+1 −Et (∆t+2∆t+1)]Yt

where Φ1,t+2 = J∆t+2J
�Θ, and that

IR2,3 = Et+2Yt+3 −EtYt+3

=
1[
s=0

(Et+2Φ1+s,t+3) ẽt+2−s + J [Et+2 (∆t+3)∆t+2∆t+1 −Et (∆t+3∆t+2∆t+2)]Yt(28)

where
S1

s=0 (Et+2Φ1+s,t+3) et+2−s = JEt+2 (At+3)J
�Θet+2 + JEt+2 (∆t+3)∆t+2J

�Θet+1.
Hence, for instance, forecast revisions in Yt+3 due to structural innovations are

JEt+2 (∆t+3)J
�Θẽt+2 + JEt+2 (∆t+3)∆t+2J

�Θẽt+1

while movements due to innovations in the coefficients are

J [Et+2 (∆t+3)∆t+2∆t+1 −Et (∆t+3∆t+2∆t+1)]Yt.

Equation (27) also makes it clear that impulse responses depend on the point where they
are generated (t vs t−1) and on the initial conditions. The output of the Gibbs sampling can
be used to compute these expressions. For example, consider one period revisions (one-step
ahead impulse responses) constructed at t. To construct the IR1,2 we need the following
three steps:
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1. Draw Θẽt+1 and ∆t+1,∆t+2 from the posterior distribution L+ 1 times

2. For each draw � = 2, . . . , L + 1 compute d�t = ∆�
t+2∆

�
t+1 and the quantities d̂1,t =

1
L

SL+1
�=2 d

�
t, and d̂2,t =

1
L

SL+1
�=2 ∆

�
t+2.

3. Given Yt, the draws for Θẽt+1 ∆t+1,∆t+2 from step [1], and d̂1,t and d̂2,t from step [2]
compute IR1,2

Assuming that ẽt 9= 0 and that all future values of ẽt, ut are integrated out, the above
algorithm is easily generalizable to any j-period revision as follows

1. Draw (Θẽt,Θẽt+1,Θẽt+2, . . .Θẽt+j) and (∆t+1,∆t+2, . . . ,∆t+j) from the posterior dis-
tribution L+ 1 times

2. For each � = 2, . . . L+ 1 compute d�t,j = (
Tj
s=0∆

�
t+τ−s). Calculate d̂t =

1
L

SL+1
�=2 d

�
t,j.

3. For each draw compute êt+τ =
SL+1

�=2 (Θet+τ)
�.

4. Given Yt, the draws (Θẽt+j, ∆t+j) from step [1], d̂t,j from step [2] and êt+τ from step
[3] compute IRj,τ

Note that using the output of the Gibbs sampler drastically simplifies the calculation of
the impulse response profiles relative e.g. Gallant, Rossi and Tauchen (1993). Also the state
space nature of the model allows is to characterize the changes in conditional expectations
which are typically uniterpretable in general nonlinear impulse response analyses.

6 Leading Indicators of Euro inflation and output growth

There are many interesting problems to which apply the framework of analysis we have
described in this paper. Here we discuss how to construct leading indicators of economic
activity and inflation for the Euro area using information coming from the cross section of
G-7 countries. The last twenty years have witnessed an increased globalization of world
economies. Given the current high level of integration of G-7 economies, inflation and eco-
nomic activity in the Euro area are closely related not only to those of the US but also of
the other industrialized countries. Therefore, it makes sense to try to exploit cross sectional
information to construct probability distributions of future developments in the continent.
Furthermore, the evolutionary nature of the relationship suggests that a time varying spec-
ification will be probably most useful in modelling cross country interdependencies. Given
that the Italian, French and German economies account for about 70% of total activity in the
Euro area, and since several countries in the continent have cycles which are closely related
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to those of these three countries, we approximate area wide aggregates using the information
present in real and nominal variables of these countries.
For each of the G-7 countries we use 4 endogenous variables (real GDP growth, CPI

inflation, employment growth, and rent inflation); three predetermined ones (a commodity
price index, the median stock return and the trade weighted US real exchange rate) and a
constant. The endogenous variables have been selected among a set of 14 variables, available
on a consistent basis across countries, using simple bivariate and multivariate in-sample
Granger causality tests. Interestingly, monetary variables do not seem to have predictive
power for inflation once lags of output growth and inflation are included in the model.
Five lags of the endogenous variables and two lags of the predetermined variables are used.
Therefore, each equation has k=7*4*5+2*3+1=146 coefficients. The sample we use covers
the period 1980:1-2000:4 with the last five years used to evaluate the forecasting performance
of alternative specifications. We calculate leading indicators four and eight quarters ahead,
as these are the most interesting horizons for policymakers, directly from the model, i.e. we
set up (1) with Dit(L) and Cit(L) different from zero either for L ≥ 4 or L ≥ 8. By doing so
we avoid to have a separate model to forecast future values of the predetermined variables.
We produce 30,000 iterations of the MCMC algorithm starting from arbitrary initial

conditions. Runs of 30 elements were drawn 1000 times and the last observation of the last
500 runs was used for inference. We checked convergence by calculating the mean of the
draws for 200, 300, 400, 500 observations. We found that convergence was already achieved
using 200 to 300 observations. We also split the sample in two parts and test (in a classical
sense) whether there are difference in the means. Convergence was confirmed also in this
case.
We conducted the analysis first with the non-informative specification of section 3.3

where Ψ = 0, P = I, ζ = 0. θo is initialized with a sequential OLS estimation on the sample
1975-1980 and σ2 is calculated averaging the estimated variances of NG AR(p) models. The
vector δ is decomposed into 4 elements: a vector of two common components (λt) — one for
the Euro area and one for the rest of the world; a 7×1 vector of country specific components
(αt); a 4× 1 vector of variable specific component (ρ1t); and a 3× 1 vector separating own,
other countries and exogenous effects in a given equation (ρ2t). Hence, θt = (λ

�
t, α

�
t, ρ

�
1t, ρ

�
2t)
�

is 16× 1 vector.
Using the 500 draws for θt we have examined posterior support for a number of hypothe-

ses. First, we checked whether a model with four indices can be reduced or not. We find
that the predictive Bayes factor for the 1996:1-2000:4 period always prefers a model with 4
indices to a model with any combination of three of the four indices. The least favorable
specification for a model with four indices is obtained in comparison with a model which
excludes country specific components (Bayes factor is 0.92). In all the other cases the Bayes
factor is below 0.80.
Second, we examined the support for the exactness of the four index decomposition.

That is, we examine if the posterior for σ2 is concentrated around 0. Since the prior for σ−1t
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when σ2 = 0 is centered around 1 and since figure 1 suggests that the posterior time series
for σ−1t is on average below 1, the posterior and the prior distributions are concentrated
around different values. More specifically, the analysis indicates that the posterior mean of
σ is greater than one at almost all dates and hence that the posterior support for σ2 = 0 is
small.

Figure 1: Testing exactness

Posterior distribution of inv(sigma_t) over time: prior centered on 1
mean and 68% bands
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Third, we verified whether the posterior distribution of the second element of ρ2t is
centered around zero. Since this element controls the effect that the variables of country g�

have in the equations of country g, examining whether it is zero corresponds to checking if
interdependencies are important ingredient to characterize the dynamics of the data. We
provide evidence on this issue in three ways. To start with in figure 2 we plot the time series
for the posterior mean and the posterior 68% interval for this factor: although small, the
factor is statistically significant.
Next we examine predictive Bayes factors. Comparing a model with interdependencies

vs. a model without interdependencies for the period 1996:1-2000:4 we obtain a value of
0.87, suggesting that interdependencies some play are role in the data. Finally, we com-
pare directly the MSE of the forecasts. The out-of-sample performance of a specification
with interdependencies appears superior to the one of a model without interdependencies:
the relative four (eight) steps ahead MSE for the sample 1996:1-2000:4 of a model with
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Figure 2: Testing interdependencies
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interdependencies is 0.90 (0.82) on average across variables.
Fourth, we examined whether time variations in the coefficients are important. Using

the approach described in section 4.2, we find that for " = 0.008 the statistic S in the four
cases is 1.085, >> 20, >> 20, >> 20 respectively. Hence, time variations appears to be
significant only in the common component vector. To assess the economic importance of
these time variations, figure 3 plots the profile response of EU output growth and inflation
to one standard deviation shock in the non-European part of λt. This picture is constructed
using t = 2000 : 4, τ = 8, j = 0, . . . , 7. The initial impact appears to be large but there is
little persistence in the responses. Note that the bands shrink over the horizon because the
difference between the two terms appearing in the bracket term in (28) is getting smaller as
τ increases. Interestingly, inflation and output growth react in the opposite direction over
the adjustment path as it would be typical if a supply shock was hitting the economy.
Fifth, we examined how important are cross sectional differences. We have already seen

that country specific appears to be the less important factor, at least according to predictive
Bayes factors. Here we would like to learn more how country specific indices look like.
In figure 4 we plot the time series for the posterior 68% band for αt (constructed using
information one year ahead). Visual inspection indicates that there is a modest amount of
time variation, that the seven components are small in size and insignificantly different from
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Figure 3: Impulse responses
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zero at most of the dates in the sample. Concentrating on the last five years of the sample,
we see that Germany and Japan deviate (negatively) from the time path determined by the
world factors, while Italy and again Germany display significant country specific variations
in the dynamics of the variables in the early part of the 1990’s.
To conclude our specification searches, we examine whether the predictive ability of the

model depends on the prior assumptions made. For this reason we substitute the informa-
tive prior described in section 3.1 to the non-informative one used up to now. The new
hyperparameters of this specification are estimated on the sample 1975-1980 with a rough
grid search. Table 1 reports the Theil-U statistics for GDP growth and inflation in the Euro
area at four and eight steps ahead using informative and non-informative priors, the total
number of turning points correctly recognized for seven countries and the total number of
existing turning points. Turning points here are identified using a standard two-quarters
rules. These statistics are constructed in real time and recursively over the 1996:1-2000:4
period.
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Figure 4: Fixed effects
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Table 1: EU forecasting statistics

Step Inflation GDP growth Downturns Upturns
Recorded/Actual Recorded/Actual

Non-informative 4 0.45 0.35 34/57 21/36
8 0.39 0.64 27/39 15/30

Informative 4 0.45 0.82 36/57 16/36
8 0.30 0.89 29/39 13/30

While the choice of prior does not matter much for forecasts of Euro inflation, forecast for
Euro GDP growth (as measured by the Theil-U statistics) deteriorates when an informative
prior is used. This result is somewhat independent of the statistics used: for example it
remains unchanged if the MAD statistic is used. Apparently, the period 1975-1980 is very
different from the rest and using this sample to ”tune up” the prior may not be a good
idea. Note also that since turning point statistics are essentially unchanged across the two
specifications, one must conclude that the worse performance obtained with an informative
prior for the Euro area is compensated by a better forecasting performance for non-European
countries.
Using a model with 4 indices, time variation in the common component vector and

an uninformative prior we constructed leading indicators for the two variables of interest
recursively in real time (i.e. draws for θt are from posterior estimates consistent with the
information available only up to t). Figures 5 plots posterior 68% bands for the two leading
indicators, constructed using information available one and two years ahead.
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Both indicators for inflation appears to be appropriate for the entire sample, both in terms
of levels and of turning points. For the period between 1992 and 1996 the actual value of
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inflation is at the upper edge of the posterior 68% bands suggesting a slight understatement
of expected inflation, regardless of whether information one or two years ahead is used.
The one year ahead indicator of GDP growth is also remarkably good in capturing the ups
and downs of the variable over the sample under consideration. In fact, using a simple
two quarters decline/increase rule (and one quarter tolerance on each side) we find that our
indicators miss only one turning point for the 15 years sample we consider. In terms of levels,
the one year ahead indicator is reasonably good except for the period 1992-93, a strongly
recessionary period in Europe. For example, the probability that our indicator is equal to
-1.8 in 1992:2 (the actual GDP growth level for that quarter) is less than 1.0% even though
the probability that a recession is recorder at that time is 54%. For the two years ahead
indicator, the actual values appear to be often around the hedge of the 68% posterior band,
but the probability that GDP growth fall by 1.8 of 1992:2 is now around 10%. It is also
clear from the two pictures that, thanks to time variations in the parameters, the model is
able to quickly adjust when mistakes are made without the need of any exogenous correction.
This implies that, contrary to many existing specifications which are good in capturing short
time stretches of the data, the performance of our specification for GDP growth is reasonable
good throughout the sample.
Overall, we believe the indicators we construct track cyclical fluctuations of both inflation

and output remarkably well. By exploiting time variations and cross sectional information
the model captures changes in the local trend of these two variables which tend to be common
across countries.. Therefore, it produces leading indicators which are stable and reliable over
the entire period we consider.
Finally, the output of our model can be used to construct a variety of other measures

which are of interest for policymakers. For example, we can construct a measure of potential
world output growth using available information. In figure 6 we present the time series for
the posterior 68% band for this variable obtained using information two years ahead. In
constructing potential world output we equally weight the EU and non-EU common factors.
Two features are worth emphasizing. First, the cyclical movements of potential output
roughly correspond to those of actual output. Second, there is a small trend increase in
the level of potential output growth in the last 6-7 years. The increase is not extraordinary
(3.07% as compared to 2.36% of the previous 10 years) but is significantly different. Note
also that our measure of potential output starts declining already at the beginning of 1999.

To conclude, it is worth mentioning that the computation time needed to obtain posterior
estimates for the 28 variable Panel-VAR model used in this section is relatively short. One
complete run (drawing 30,000 sequences from the posterior, calculating the predictive density,
computing impulse responses and constructing the distribution of leading indicators and
potential output growth) took about 45 minutes of CPU time on a Dell Inspiron 4000 with
a Pentium IV processor and 256Mb of RAM memory.
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Figure 5: Measure of potential output growth
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7 Conclusions

This paper attempted to integrate Panel VAR and Index models into a framework which
can be used to estimate multi-unit dynamic models with interdependencies and time varia-
tions, to construct multi-step forecasts and leading indicators of economic activity, to verify
interesting hypotheses about the dynamics of the data, and to examine the dynamic re-
sponses of endogenous variables to innovations in either the coefficients or the residuals of
the model. The approach we use is Bayesian: we assume that the vector of coefficients of
the panel VAR model can a-priori be decomposed into a set of orthogonal low dimensional
time-varying components. We complete the prior specifications using a hierarchical structure
for these components and derive posterior estimates of the coefficient vector using Markov
Chain Monte Carlo (MCMC) methods. We do so for two classes of situations: when there
is some prior information on the hyperparameters of the model and when there is none.
If one treats the a-priori structure on the coefficient vector as part of the model spec-

ification, one can transform the original panel VAR into a multi-unit dynamic regression
model where the regressors are a set of orthogonal observable indices, with the time varying
components of the coefficients playing the role of the loadings. Because of the nature of the
VAR this set of indices is predetermined and can be used to construct multi-step leading
indicator which can be used for policy purposes. Within this framework, one can select the
dimensionality of the vector of indices to be used by examining the out-of-sample perfor-
mance of the model with different sets of indices. We propose a simple specification test
based on predictive Bayes factors to examine this issue.
The reparametrization of the panel VAR we employ has a number of appealing features.

First, it reduces the problem of estimating a large number of, possibly, unit specific and time
varying coefficients for each VAR equation into the problem of estimating a small number of
loadings on particular combination of the right hand side variables of the VAR. Second, our
Bayesian setup can easily allow for time variations in the loadings and for the presence of
cross unit interdependencies without additional complications. Third, because of the nature
of the VAR , only past and current information can be used to construct the relevant indices.
Therefore, our indicators can be constructed and estimated in real time and recursively and
can be used to a variety of policy and forecasting purposes.
We illustrate the usefulness of our approach by constructing leading indicators for eco-

nomic activity and inflation in Euro area. There is a number of other applications to which
these tools can be applied: the construction of measures of core inflation and of the natural
rate of unemployment in multi-country settings, the study of the transmission of shocks
across economic areas and sectors can all be fruitfully studied with the framework described
in this paper.
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Appendix
In this appendix we report the expressions of the parameters of the posterior distributions

derived in section 3.1. They are:

δ̂t = V̂t [(Ω
−1 ⊗ σ2Ik)Ξθt +X
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where notation θit refers to the i-th sub vector of θt.
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