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FORECASTING TIME-VARYING COVARIANCE MATRICES
IN INTRADAILY ELECTRICITY SPOT PRICES

Ángel León a nd Antoni o Rubi a

A B S T R A C T

This paper deals with analysing and forecasting intradaily volatility
in electricity spot prices. We analyse the hourly spot prices from the
Argentine Electricity Market by grouping prices in three daily series (block
bids). We estimate the VAR model for the conditional mean structure
and several multivariate analysis based on the multivariate GARCH models,
specifically the orthogonal GARCH by Alexander (2000) and the constrained
multivariate GARCH by Engle and Mezrich (1996). We also measure the
forecasting performance of the daily block bid volatilities and covariances
under both approaches obtaining similar results. This methodology could be
used for managing risk of block bid portfolios and also for the valuation of
derivatives on intradaily time-blocks of electricity spot prices.

Keywords: Electricity Industry, Intradaily Volatility, value-at-risk
models.
JEL Classification: C32,C53.
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1 Introduction

Due to the recent deregulation process in the electricity industry, electricity
is traded nowadays as a commodity in many countries. However, this is
not a standard commodity since it is a non-storable good. This nature is
responsible for the key features that electricity prices display, such as high
volatility and infrequent jumps. Since demand needs to be continuously
balanced with power supply without the possibility of handling stores,
electricity markets are typically organised as competitive pools where all
the generated electricity is pooled and scheduled to meet the overall
electricity demand. This deregulation process has been accompanied by
the introduction of competitive wholesale electricity markets and power
derivative contracts in both OTC and exchange-traded markets. These
financial tools are useful in managing risk because of the high volatility of
electricity prices. Since the deregulation process has been recently carried
out over a large number of countries worldwide, a very few markets have
an organised derivatives market so far. For example, in the Nordic Power
Exchange (NordPool), which is the most advanced power exchange, we can
find power contracts of one-hour duration along with block bids in the spot
power exchange (Elspot market), meanwhile forwards, futures (Eltermin
market) and options (Eloption market) are traded in the financial power
exchange.

Block bidding is the more recent innovation in the trading process of
power markets. Under this trading modality, prices and volumes are settled
in the day-ahead spot market by taking as a reference periods of time covering
different intevals within the day, rather than the standar hour-to-hour basis.
Block contracts are designed to attract trade by producers and consumers
alike. Interest has been greatest among thermal-power producers: block
bidding ensures an average price for a specified number of hours, which
provides more efficient handling of start-up and shut-down costs, for example,
than reliance on hourly bidding1.

1Note that power-thermal generation is much less flexible than hydraulic generation,
and power stations work only efficient if they produce uninterrumped. Thus,
holding a portfolio of block contracts is specially indicated to these sellers. For
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In this paper, we adjust both the conditional mean and variance
dynamics of intradaily electricity prices for block bids under a multivariate
environment. This analysis suggests an immediate financial application in
forecasting conditional covariance matrices, which are useful in managing
the portfolio risk through the value-at-risk measure for those market agents
holding block contracts portfolios. Since the portfolio value-at-risk analysis
requires the correlation estimates as one of the inputs, the multivariate
methodology has been selected.

We estimate the conditional mean of intradaily series by means of both
the autoregressive vector (VAR) methodology and a deterministic function
capturing the strong seasonal behaviour implied in the power commodities.
Then, taking the multivariate residual error series from VAR model, we
estimate the conditional covariance matrix by the multidimensional GARCH
model. More specifically, we estimate the models proposed by Alexander
(2000) and Engle and Mezrich (1996), which are easier to estimate than the
Engle and Kroner (1995) multivariate simultaneous GARCH model. The
latter is extremely difficult to implement because of the large number of
parameters to be estimated in practice. With so many parameters, the
likelihood function becomes very flat and severe convergence problems are
very likely to occur in the optimization routine.

The data used in this paper are based on the hourly electricity prices from
the Argentine Wholesale Electricity Market (MEM). The electricity industry
in Argentina is the most important one after Brazil and Mexico in the Latin-
American area. Thermal and nuclear resources mainly constitute the whole
generation resources, while hydraulic resources are about the 46% of the
whole production2. The MEM has carried out its progressive deregulation
process early in the last decade and, therefore, it is possible to get long
enough series quoted in a stable and fully competitive environment. This is
the reason why this work has focused on this market.

further details about this trading modality, see the oficial Webpage of Nord-Pool
(http://www.norpdpool.com/products).

2A deeper analysis covering all the characteristcs of this power market is beyond the
scope of this paper. See Mastrangelo (2001) for a review of this topic.
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The outline of our paper is as follows. In Section 2 we estimate the VAR
structure for the MEM block bid price series. In Section 3 we estimate the
multivariate GARCH model under two different methodologies. Section 4
measures the forecasting performance of the two alternative multivariate
GARCH models under both the in-sample and out-of-sample analyses.
Finally, the main conclusions are summarised in Section 5.

2 VAR anlysis for block bids

The Argentine wholesale electricity market (MEM) consists mainly of an
organised Spot Market where electricity is traded on an hourly basis in
the market sessions. The time series we analyse in this paper are several
intradaily averages obtained through subsets of the 24 hourly spot price
series (measured in dollars per megawatt hour, $/MWh) that balance the
aggregated supply and demand on the Spot Market every hour each day3.
To avoid market irregularities in the early years, the sample period was
restricted to the period from 1/01/1996 to 30/06/2000, i.e., 1,643 daily
observations covering each hour of the day4. We thereafter denote Pjt as
the spot price traded each hour, j = 1, ..., 24, during the daily sample period
t = 1, ..., T = 1643. In this paper, we consider three intradaily blocks of
hours. The main structures are called ‘off-peak hours I ’ (comprising hours of
minimum demand, that is, from 24.00 to 5.00) and ‘peak hours’ (comprising
hours of maximum demand, that is, from 19.00 to 23.00). The third block
comprises the leaving hours (i.e., hours from 6.00 to 18.00), which will be
referred through the paper as ‘off-peak hours II ’. Notice that in the NordPool
market there are also three block biddings which divide the 24-hour period
roughly the same as here, and market agents are allowd to trade electricity
by fixing prices and volumes for each block.
Let Zt = (z1t, z2t, z3t) , where z1t = ln P24t + j=1,5 Pjt /6 denotes

the daily observation of the log transformation for the mean corresponding

3The data used in this paper are available from the official Webpage of the Argentina’s
Power Market Operator (www.//cammesa.com.ar).

4The latest reforms were developed in 1995. The Power Market is considered stabilised
since that date. Authors are indebted to Sabino Mastrangelo (CAMMESA) for his valuable
suggestions about this issue.
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to the off-peak block I, z2t = ln j=6,18 Pjt/13 for the off-peak II block

and finally, z3t = ln j=19,23 Pjt/5 for the peak block. We apply the usual
log transformation on each average series since the volatility does not remain
constant over the sample period. It is well known that a fundamental feature
in electricity prices is the existence of a strong intradaily seasonality pattern,
that is, prices show a characteristic pattern regarding the particular hour in
which is traded. Figure 1 displays the graphics of the above series, showing
quite clearly similar, although different, dynamics in the intradaily average
prices. For instance, notice that the peak mean price series exhibits a more
volatile behaviour than the others series, as well as a larger mean value.

01/96 01/97 01/98 01/99 01/00
1

2

3

4
Figure 1: Off-Peak I/ Off-Peak II / Peak Hours Average Price Series
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Since we are modelling multivariate time series, the VAR approach is
used for Zt. It is worth noting that this method fits the dynamics of a
set of endogenous, covariance-stationary variables, which are assumed to be
observed simultaneously. The latter statement is of particular application in
data from power markets, since intradaily electricity prices are day-ahead
prices and are settled at the same time. Regarding to the assumption
of stationarity, the seasonal unit roots test by Hylleberg et al. (1990)
(HEGY henceforth) was implemented to test for stationarity in the long run
(zero frequency) as well as for all the seasonal frequencies related to weekly
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seasonality, since daily electricity prices series show a strong weekly seasonal
pattern5. The test results show that the three series are stationary in both
the zero and seasonal frequencies.
Definitively, the autoregressive vector model of order p, denoted as

VAR(p), for a covariance stationary random vector Zt = (z1t, z2t, ...zNt) is
represented as follows:

Zt = µt +

p

j=1

BjZt−j + εt (1)

where εt = (ε1t, ε2t, ..., εNt) is a white noise vector with zero mean
and positive-definite covariance matrix E (εtεt) = Ω. The Bj are unknown
diagonal coefficient matrices and, finally, µt denotes the deterministic mean
vector to which the system reverts. This term might include (deterministic)
seasonal and nonseasonal trends. Wolak (1997) applied this methodology
on electricity spot prices by fitting VAR models on time series quoted in an
hourly and half-hourly basis from several deregulated markets. In our case,
we have constrained the dimension of the multivariate system to N = 3. The
identification of model (1) is performed by the usual Schwartz Information
Criterion (SIC) on different specifications about µt and different values of p.
The SIC statistics for the more plausible specifications are shown in Table 1.

Table 1: SIC Statistics VAR(p): SIC statistics given different lag-orders of
the VAR(p) process (first column) and given the following specifications for the

deterministic mean of the process:

Zt = µkt+
j=1,p

BjZt−j +εt µ2t= µ1t+λt

µ1t = c+
j=2,7

γjD(day)jt; µ2t= µ1t+λt

µ3t = µ1t+α cos (2πt/365) ; µ4t= µ1t+β cos (2πt/365 + φ)

5The extension of the HEGY test to the case of weekly seasonality in daily data is due
to León and Rubia (2001) and Rubia (2001). The results of applying such test are not
presented here but are available from authors on request.
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p µ1t µ2t µ3t µ4t

1 -3.684 -3.683 -3.750 -3.745
2 -3.758 -3.754 -3.795 -3.787
3 -3.776 -3.770 -3.800 -3.791
4 -3.748 -3.742 -3.768 -3.758
5 -3.745 -3.738 -3.759 -3.748
6 -3.749 -3.742 -3.758 -3.747
7 -3.807 -3.799 −3.814 -3.802
8 -3.776 -3.768 -3.783 -3.772
9 -3.745 -3.736 -3.751 -3.740
10 -3.731 -3.722 -3.734 -3.723
14 -3.620 -3.611 -3.621 -3.609
21 -3.394 -3.833 -3.397 -3.385

According to Table 1, the VAR process seems to include a significant
deterministic seasonal term, fitted by 1/0 dummies in each day of the week
(the best model is remarked in that table). The effect of annual seasonality
seems to be less important since the gain from including a sinusoidal function
on the annual frequency is rather poor, though it seems to be relevant in
statistical terms. Including other explanatory terms such as a linear time
trend, however, does not seem to be appropriate. Finally, the lag order that
performs better results is equal to seven. This order seems to be not casual,
since it is likely that the seasonal dynamics of electricity prices includes
stochastic terms. So, the selected specification, which clearly reflects the
main stylised features in the dynamics of electricity price series, is given by:

Zt = c+ δ cos (2πt/3654) +
7

j=2

γjD(day)jt +
7

j=1

BjZt−j + εt (2)

The above regression model is then estimated by maximum likelihood
(ML) under the usual assumption of normality in the error term. The
goodness of fit (see Table 2), measured by the usual R̄2, varies from an
85% for off-peak hours to a 62% in the peak hours. Meanwhile, the fit in the
remaining hours is about a 76%.ε
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Table 2: Estimation Results of the VAR(7) model: Main results from
the estimation of the VAR(7) model:

Zt= c+
j=2,7

γjD(day)jt +α cos (2πt/365)
j=1,7

BjZt−j +εt

Statistics z1t z2t z3t

R2 0.85 0.77 0.63
R̄2 0.85 0.76 0.62
Std. Dev. 0.10 0.13 0.19

Residuals
Q(100) 108.5 (0.26) 116.8 (0.12) 113.4(0.17)
Q(200) 216.7 (0.20) 203.1 (0.42) 189.2 (0.70)
Q∗(100) 766.9 (0.00) 758.0 (0.00) 249.3 (0.00)
Q∗(200) 950.6 (0.00) 868.8 (0.00) 379.69 (0.00)

Q(m) and Q∗ (m) denote the Ljung-Box statistics (p-value in brackets) for both
the standard residual and the squared residuals.

In order to ensure that the past of each variable is really useful in
forecasting the remaining variables, the Granger (1969) causality test is
applied by performing an F-test on the joint significance of the coefficients
of all lags of each time series in the VAR representation. These results are
reported in Table 3 showing a clear Granger-causality relationship between
off-peak and remaining hours in both directions. The peak price series seems
to be little useful when forecasting the other two variables, meanwhile the
evidence that both z1t and z2t do Granger-cause z3t seems to be somewhat
weak.

Table 3: Granger Causality Test Statistics: Statistics of joint significance
(p-values in brackets) of the Granger Causality test. The null hypothesis states

that the i-th variable of the VAR model (first column) does not Granger-Cause

each one of the remaining variables of the system.
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z1t z2t z3t

z1t - - - 11.552 (0.00) 1.690 (0.10)
z2t 37.006 (0.00) - - - 1.975 (0.05)
z3t 8.054 (0.00) 9.795 (0.00) - - -

As it could be expected, a sight at the squared residuals in Table 2 reveals
a clear evidence for conditional heteroskedasticity through the statistical-
significant Ljung-Box tests, denoted as Q∗ (m). These patterns are treated
in greater detail in the next section.

3 Modelling conditional covariance matrix

In this section we estimate alternative time-varying covariance matrix
models for the residuals from equation (2). Since the multivariate GARCH
representation by Engle and Kroner (1995) involve very complex models
characterised by the estimation of a large number of parameters as well
as heavy restrictions to ensure positive-definite covariance matrices, more
suitable alternatives satisfying both a few parameters to estimate and a few
constraints to guarantee positive definiteness are widely used in practice.
Specifically, we will estimate the conditional covariance matrix (CCM
onwards) through the Orthogonal GARCH (OGARCH) model (Alexander,
2000) and the constrained multivariate GARCH (MGARCH) model proposed
by Engle and Mezrich (1996). Both models have been developed to cope with
the time-dependent volatility of portfolios that include a great number of
assets in financial and capital markets. Recently, the OGARCHmethodology
has also been applied on electricity spot prices and future prices from
NordPool in order to obtain the hedging ratio (Byström, 2000).
Rewritting equation (2) in a more general setting to explicitly recognise

the time-varying conditional volatility:

Zt = E (Zt | Ψt−1) + εt; εt ∼ Niid (0,Ω) ; εt|Ψt−1 ∼ Niid (0,Ht) (3)
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where E (Zt | Ψt−1) denotes the conditional mean, and the unconditional
and conditional covariance matrices of the unpredictable term are denoted
as Ω = {σij} and Ht = {hij,t} respectively. The complete estimation is
performed in two stages, as follows: In the first stage, we determine the ML
estimations of the conditional mean of the process, so the results are just the
same than those obtained in Section 2. We then compute the VAR residuals
and describe the CCM dynamics of the unpredictable component using both
the OGARCH and MGARCH models, by applying the ML procedure once
again.

3.1 Orthogonal GARCH (Alexander, 2000)

Denote by P the N ×N orthonormal matrix of eigenvectors of Ω. Thus, the
symmetrical covariance matrix can be decomposed as Ω = PΛP , where Λ is
the diagonal matrix of eigenvalues of Ω. The Orthogonal GARCH is based
on the application of the principal component analysis (PCA hereafter) to
identify the main sources of variation of the multivariate system associated
to each eigenvalue of Ω. This allows us to generate a basis of orthogonal
factors whose volatility is then individually treated from the univariate
perspective. The set of principal components of a multivariate system, say
Yt = (y1t,y2t, ...,yNt) , is just defined as Yt = P εt where E (YtYt) = Λ due
to the orthogonal property of P. Under the assumptions of the OGARCH
model, the conditional covariance matrix of Yt, Et−1 (YtYt) = PHtP, is
also a diagonal matrix that we denote as Vt. Since E (Vt) = Λ, we can
estimate the CCM of εt as Ĥt= PV̂tP , denoted as HO

t and its elements as
hOij,t henceforth. This conditional covariance matrix is called OGARCH when
the diagonal matrix Vt of conditional variances for principal components is
estimated by using the univariate GARCH (1,1) method.
The results of the PCA show that the variability of the whole system is

mainly explained through a first factor associated with the highest eigenvalue.
This factor is able to forecast about a 71% of the total variance. The
second factor can explain about a 21% and the last factor only explains
the 8% of common variability. The univariate GARCH(1,1) estimations on
each principal component are exhibited in Table 4, being all the relevant
parameters significant.
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Table 4: Principal Components GARCH estimates: Main results of the
GARCH(1,1) estimation on the i-th principal component. In brackets, p-values

from the robust estimations (Bollerslev and Wooldridge, 1992). The diagnosis of

the residual shows the statistics of the normality test of Jarque-Bera (J-B test),

and their p-values in brackets. Q(m) and Q*(m) represent the Ljung-Box statistics

for the residuals and the squared ones respectively. (p-values in brackets).

Factor I Factor II Factor III

ωi 0.04 (0.00) 0.001 (0.00) 0.000 (0.00)
αi 0.231 (0.00) 0.094 (0.00) 0.088 (0.00)
βi 0.704 (0.00) 0.867 (0.00) 0.887 (0.00)

Residuals
Average 0.000 0.000 0.000
Std. Dev. 0.210 0.115 0.072
Skewness 1.029 0.714 -0.423
Kurtosis 10.119 5.757 7.344
J-B test 3743 (0.00) 656 (0.00) 1335 (0.00)
Q(100) 102.72 (0.40) 138.01 (0.00) 114.74 (0.00)
Q(200) 181.05 (0.82) 222.88 (0.12) 231.20 (0.06)
Q∗(100) 62.05 (0.99) 124.40 (0.05) 107.01 (0.30)
Q∗(200) 113.10 (0.99) 210.69 (028) 250.48 (0.00)

3.2 Multivariate GARCH model (Engle and Mezrich,
1996)

Useful restrictions are obtained from the multivariate GARCH representation
by Engle and Kroner (1995). The simple multivariate GARCH model that
is analized in this paper is the one discussed by Engle and Mezrich (1996)
and Bourgoin (2000). This model proposes the restriction that the long
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run covariance matrix equals the sample covariance matrix. Specifically, we
estimate the following restricted model in the CCM dynamics:

Ht = (1− α− β)S+ αεt−1εt−1 + βHt−1 (4)

where S is the sample covariance matrix and α,β are non-negative
parameters constrained to sum to less than one. Note that the number of
parameters in this specification is constant and always equal to 2, regardless
the dimension of Zt, so that this method is very efficient from a computational
point of view. Since the assumption εt|Ψt−1 ∼ Niid (0,Ht) still holds, the
log-likelihood function of the model (dropping the constant term) is given
by:

L (α,β;Zt) = −1
2

T

t=1

ln |Ht|− εtH
−1
t εt (5)

The results of the MGARCH estimation are also consistent in showing
once again the strong persistence of power price volatility. The estimated
parameters are α̂ = 0.081 and β̂ = 0.871, so that the sum is close to one.

4 Forecasting conditional covariance matri-
ces

We now compare the forecasting performance for both MGARCH and
OGARCH models under both in sample and out of sample environments.
The benchmark mean squared error (MSE) is selected to measure forecasting
ability. The MSE will be computed in both the univariate and multivariate
frameworks as follows:

MSE1 =
1

T

T

T=1

εi,tεj,t − ĥij,t
2

; i, j = 1, 2, 3.

MSE2 =
1

T

T

T=1

vec St − Ĥt

2

(6)

where the vec(·) operator stacks the columns of a matrix in a column
vector and · denotes the Euclidean norm of a vector6. Finally, St = εtεt is

6Notice that MSE2 is based on matrix metric, which is not subordinate to any vector
norm, known as the Euclidean matrix norm of Frobenius.
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the realised covariance matrix and the sequence of matrices Ĥt
t=1,T

, whose

elements are denoted by ĥij,t, are the estimations of the conditional covariance
matrix through both methods, i.e., either HO

t (when the OGARCH model is
used) or HM

t (when the MGARCH is applied).
The results about the performance under the in-sample context are shown

in Table 5. The MGARCH performance seems to be slightly better than
the OGARCH for both MSE1 and MSE2 metrics in the covariance cases,
although it does not in the variance analysis. Anyway, there seems to be
minor differences in the performance of both models.

Table 5. In-sample MSE: In-sample MSE (x100) from OGARCH and

MGARCH models. Columns show the univariate MSE measurements (i.e., MSE1
in (6)) for both the conditional variance (hii,t) and the conditional covariance

(hij,t). The last column shows the multivariate MSE metric (i.e., MSE2 in (6) for

each method).

h11,t h22,t h33,t h12,t h13,t h23,t MSE2

OGARCH 0.0587 0.0911 0.299 0.0601 0.0858 0.106 0.953

MGARCH 0.0594 0.0915 0.290 0.0601 0.0858 0.105 0.943

The OGARCH forecast of the covariance matrix for period t+ k at time
t is given by the proyection Et HO

t+k = PEt (Vt+k)P , where the diagonal
matrixVt+k contains the GARCH (1,1) forecasts of the principal components
for period t+ k at time t, that is:

Et (vii,t+k) = ω̂i

1− α̂i + β̂i
k−1

1− α̂i + β̂i

+ α̂i + β̂i
k−1
vii,t+1 (7)

where vii,t+1 = ω̂i + α̂iy
2
it + β̂ivii,t is the forecast for period t + 1 for the

i-th principal component.
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The MGARCH forecasts are determined by the proyection Et HM
t+k ,

whose elements are:

E hMij,t+k = sij + α̂+ β̂
k−1
(hij,t+1 − sij) ; i, j = 1, 2, 3; k ≥ 2 (8)

where hMij,t+1 = sij + α̂εi,tε,t + β̂hij,t is the forecast for period t+ 1.
We consider the out-of-sample period from 01/07/2000 to 18/09/2000.

Table 6 shows the forecasting performance under both MSE1 and MSE2
metrics over different horizons, specifically 1, 5, 10 and 15 days. As in
the previous case, the analysis of the forecasting performance does not
seem to find significant differences between the OGARCH and MGARCH
methods. As a result, the MGARCH model seems to be more suitable than
the OGARCH method in the case analysed in this paper, since it yields
similar performance results and implies a lesser computational burden.
Table 6. Out—of-sample MSE: Out-of-sample MSE from OGARCH and

MGARCH models. Columns show the univariate MSE measurements (i.e., MSE1
in (6)) for both the conditional variance forecasts (hii,t+k) and the conditional

covariance ones (hij,t+k) at time t for different periods at time t + k where

k=1,5,10,15. The last column shows the multivariate MSE2 measurement (see

equation (6)) for each method.

h11,t h22,t h33,t h12,t h13,t h23,t MSE2

OGARCH
1 day 0.0130 0.0217 0.08044 0.0137 0.0097 0.0188 0.1994
5 days 0.0142 0.0232 0.0829 0.0135 0.0095 0.0186 0.2035
10 days 0.0131 0.0242 0.0862 0.0151 0.0097 0.0185 0.2101
15 days 0.0155 0.0246 0.0855 0.0140 0.0095 0.0180 0.2083

MGARCH
1 day 0.0140 0.0224 0.0796 0.0134 0.0099 0.0193 0.2013
5 days 0.0147 0.0236 0.0805 0.0136 0.0095 0.0188 0.2028
10 days 0.0148 0.0246 0.0832 0.0141 0.0095 0.0182 0.2062
15 days 0.0152 0.0250 0.0852 0.0141 0.0197 0.0187 0.2103
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5 Concluding remarks

The aim of this paper is to forecast the multivariate conditional volatility for
portfolios containing intradaily spot electricity block bids, after proposing a
suitable modelling. These contracts are being successfully implemented in
the more recent power markets, since they provide a natural way of facing
the uncertainty implied in electricity prices. The method proposed in this
paper could be a useful tool in order to manage the risk implied by the high
volatility of the intradaily power price. We have applied some methodologies
characterized as simple multivariate conditional volatility models by using
the OGARCH and MGARCH models. Both models get the estimation of
parameters under a feasible computational way. The main conclusion of the
forecasting performance between both approaches is that they give similar
results.
A priority in this paper has been to provide an intuitive tool which could

be really implemented by market agents. Of course, there is an implicite
trade-off between simplicity and realism in doing so. This methodology could
be appropiate to the development of some extensions trying to cover more
complex structures, such as the infrequent extreme jumps, or pricing basket
options taking a block bid portfolio as underlying asset. These topics are
undoubtedly interesting challenges for further research.
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