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OPTIMAL SHARING OF SURGICAL COSTS

IN THE PRESENCE OF QUEUES

Paula González-Rodríguez and Carmen Herrero

A B S T R A C T

We deal with a cost allocation problem arising from sharing a medical service in the presence

of queues. We use a standard queuing theory model in a context with several medical proce-

dures, a certain demand of treatment and a maximum average waiting time guarantee set by the

government. We show that sharing the use of an operating theatre to treat the patients of the

di¤erent procedures, leads to a cost reduction. Then, we compute an optimal fee per procedure

for the use of the operating theatre, based on the Shapley value. Afterwards, considering the

post-operative time, we characterize the conditions under which this cooperation among treat-

ments has a positive impact on the average post-operative costs. Finally, we provide a numerical

example constructed on the basis of real data, to highlight the main features of our model.

KEYWORDS: Surgical Waiting Lists; Queueing Theory; Cost-Sharing Game.
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1 INTRODUCTION

The widespread access to Public Health Care in western European countries is placing the system

at a point in which optimal allocation of resources becomes a major management problem. On

the one hand, and since health services are among the critical aspects to control the quality

of public services, the regularity and adequacy of hospital services turn out to be crucial for

the support of a certain government. On the other hand, management mistakes could have a

tremendous impact on the Health Administration budget.

Citizens are particularly sensitive to some phenomena related to health services. One of those

phenomena is the persistency of waiting lists for surgical treatment. The popular discomfort

under this phenomenon forces the government to perform some especial programs to temporarily

alleviate the problem. Notwithstanding, temporary programs cannot solve the problem, and may

be extremely costly.

In the existing literature on waiting lists for surgical treatment there seems to be two separate

traditions: the queueing theory tradition, which considers that the arrivals and service times

are stochastic events, and the welfare economics literature, where queues are understood as a

system for the distribution and allocation of resources.

Queueing theory studies this kind of problems from a statistical or operational research point

of view.1 Any system in which arrivals place demands upon a …nite-capacity resource may be

termed a queueing system. In particular, if the arrival times of the demands are unpredictable,

then con‡icts for the use of the resource will arise and queues of waiting customers will form.

The main idea to predict the behavior of the system, is, nonetheless, extremely simple: the

length of the queue depends upon the average rate of arrivals, and on the statistical ‡uctuations

of this rate. Certainly, if the average rate of arrivals exceeds the capacity, then the system breaks

down, and unbounded queues will form. However, when the average rate is less than the system

capacity, then here too, we have the formation of queues due to the statistical ‡uctuations and

spurts of arrivals that may occur.

The formation of waiting lists to get elective surgery, can be framed as a queueing system.

Queueing theory predicts several characteristics of the waiting lists such as the average waiting

time of the agents or the average length of the queue. Assuming that the agents are served

respecting their arrival order, the only control variable is the capacity to install. Consequently,

the theory can help us to take decisions concerning that capacity, taking into account that the

higher the capacity the higher the associated costs, but the shorter the expected queues.

The queueing system arising in surgical treatment has some speci…c characteristics: (1)

1 For a general view of this topic see Gross and Harris (1997), Hillier and Lieberman (1995), Kleinrock (1975)

and Prabhu (1997).
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There are two sources for the formation of waiting lists. On the one hand, the capacity of the

operation theatre, and, on the other hand, the bed capacity of the hospital; (2) Several medical

procedures share both servers, namely, customers from di¤erent treatments need to use both

the operation theatre and the beds; (3) Each of those procedures have their own rate of arrival;

(4) Not all medical procedures are considered as equally urgent, in the sense that the average

waiting time politically considered as adequate di¤ers among procedures.

In the managing of such a situation, a cost allocation problem arises: Since di¤erent proce-

dures share both the operation theatre and the hospital beds, we have to design a cost allocation

rule in order to share the joint costs. This is the main purpose of this paper. In order to con-

struct a cost allocation rule, we use a game theoretical perspective, designing a cost allocation

game. In the …rst part of the paper we concentrate ourselves on the costs associated to the

operating theatre. Then, we construct a game by confronting two situations: one in which each

medical procedure has its own operating theatre, and another one in which there is a unique

theatre that serves all the diseases. We show that sharing the use of the operating theatre to

treat the patients of the di¤erent medical procedures, leads to a cost reduction. Then, we con-

struct a cost-sharing game and, given the characteristics of the game, we suggest a cost-sharing

rule that recommends the Shapley value allocation of the cost-sharing game. Thus, our optimal

tari¤ has all the nice properties of the Shapley value.2 The fact that this cooperative solution

can be computed easily, is certainly an important property in a practical environment.

The cost-sharing game emerging among the treatments is the sum of an additive game plus

an “airport game”,3 where the di¤erent landing track capacities are translated in our model to

the capacity required by the operating theatre in order to satisfy its demand, according to the

maximum average waiting time guarantee. A similar idea has been applied in Fragnelli et al.

(2000) to the construction of a railway path, as a proposal for the reorganization of the railway

sector in Europe. In their case, as we do here, the proposed solution to the cost-sharing game

is the Shapley value.

Up to this point, only the direct costs derived from surgical interventions were considered.

However, we have to take into account that an operation generates also other costs, more pre-

cisely the costs incurred during the patients’ hospitalization time for recovering. Then, we

introduce in the model the post-operative costs and we study how they are a¤ected by the

cooperation among medical procedures. Treating the beds as servers, we may model the hos-
2 See Shapley (1953), Tijs and Driesen (1986), Young (1994) and Moulin and Shenker (1996).
3 It is a game-theoretic approach to a cost- allocation problem arising at airports. Di¤erent types of airplanes

need di¤erent runway lengths, but the largest runway is su¢cient for all of them. Then, the problem lies in

allocating the capital costs of constructing the largest track among the set of users. See Littlechild and Owen

(1973) and Littlechild and Thompson (1977).
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pitalization stage also as a queueing system. Then, the number of servers (beds) required to

guarantee the service, can be computed in di¤erent scenarios. Nonetheless, there is no possibility

of arriving at general results, due to the lack of analytical solvability of the model.

In spite of that, something general can be said about the average number of beds. By

so doing, we show that sharing the use of the operating theatre has an ambiguous e¤ect on

average post-operative costs. If the medical procedure with the highest priority level, has a

higher recovering time than the average hospitalization time of the rest of the pathologies, we

can ensure that in average terms cooperation leads to post-operative cost savings.

A numerical example with real data is analyzed then. In this example, we compute the

distribution of surgical costs, applying the theoretical results obtained previously. As for the

number of beds required, we also compute them, under di¤erent scenarios. Also, we estimate

the distribution of bed costs among the procedures, provided that an upper bound of :1 is set

on the probability of waiting after the intervention.

Most of the contributions to the literature of hospital waiting lists have focused on the

demand side. Culyer and Cullis (1976) and Cullis and Jones (1985) highlight demand factors as

the ones a¤ecting the waiting list problem.

However, some papers address the problem from the supply side. For instance, Iversen (1993),

shows that the non-cooperative character of resource allocation in Public Health Services may

contribute to excessive waiting lists. Our work …ts in this supply side branch of the literature,

since we study the costs derived from increasing the capacity of the operating theatre in order

to decrease the time spent by the patients on the waiting list.

Recent papers mainly focus on the e¤ects of such waiting lists on patients’ welfare and on

the purchase of private health insurance. Johannesson (1998) develops a model of the bene…ts

and costs of being on a waiting list. Since changes in the length of the waiting time causes

complex shifts in utility streams, shorter waiting time need not necessarily be preferred to a

longer one. Besley (1999) shows that longer waiting lists for public treatment, are associated

with greater purchases of private health insurance. In our analysis, neither patients’ welfare nor

private provision is considered.

The problem of the hospital bed supply has been also treated in the literature. Joskow (1980)

and Worthington (1987) use a queueing model to analyze the characteristics of the hospital bed

supply. They both consider that the beds are the servers of the system. Hence, the waiting

lists are determined by the interaction between two facts: on the one hand, the arrival of new

patients and their lengths of stay and, on the other hand, the amount of available beds. Instead,

we consider that the queue is formed in the previous stage. Then, when a patient leaves the

queue and enters the operating theatre, we put a small upper bound to the probability that
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there is not a bed prepared for him.

The rest of the paper is organized as follows: Section 2 presents the model with its basic

assumptions. Section 3 studies the operating theatre costs. Section 4 computes the optimal

cost sharing. Section 5 introduces in the model the post-operative time. Section 6 provides a

numerical example. Finally, Section 7 gives some concluding remarks.

2 THE MODEL

We consider the basic queueing process: customers requiring a service are generated over time by

an input source. These customers arrive to the system and join a queue. In di¤erent moments,

one of the customers is selected to receive the service by means of a queue discipline. Then, the

mechanism of service provides the service and the customer leaves the system.

In our problem, the customers are patients that require surgical treatment and the mechanism

of service is a hospital. Actually, there are two di¤erent sort of servers in our model: (1) the

operating theatre, and (2) the hospital beds. Any individual entering the system should go …rst

throughout the operating theatre, and once he/she is out of this server, a bed should be waiting

for him/her. The patient only leaves the system once he is released from the hospital.

Let us consider a situation in which we have n kind of diseases or medical procedures

and a certain number of patients requiring a service from the di¤erent procedures. Let N =

f1; 2; :::::; ng denote the set of …elds of treatment.

We assume that the number of potential patients is in…nite. This is a standard assumption

in queueing theory, which simply makes the model analytically more tractable. The main im-

plication of this assumption is that the number of individuals in the queue does not a¤ect the

amount of potential entrants. It seems reasonable in our framework, since the probability of

needing some medical treatment is, in principle, independent from the amount of people requir-

ing it.4 We put no restriction on the length that the queue can reach, which is also standard in

the literature even when dealing with situations where actually a …nite upper bound exists, but

it is large enough.

We assume that the patients’ arrivals to the medical system follow a Poisson process. This

means that every period of certain length, has the same probability of receiving a patient. We

can de…ne ¸i 2 R++ as the average number of arrivals per unit of time, from the ith medical

procedure. This is equivalent to say that the time between arrivals of patients of the same type

is given by an exponential distribution with mean 1
¸i

:

4 In our work, we completely abstract from physicians’ strategic behavior. If we consider this possibility, this

assumption would be di¢cult to sustain, since the lenght of the waiting lists could a¤ect the incentives of the

General Practitioners to send more or less patients to an elective surgery treatment.

6



The work an arriving patient brings into the operating theatre, equals the time of service

he requires. We consider this service time to follow a random process. Even if in principle

the length of a surgical intervention from a given medical procedure is …xed, an operation can

unexpectedly become more complicated, and hence require some extra time. Therefore, it is

necessary to consider some randomness in the service process.

We measure the service time not in absolute terms (length of the operation) but in relative

ones, using as reference the total time that the operating theatre is opened per day. For example,

if an intervention lasts 2 hours (in expected terms) and the service is opened 8 hours per day,

the expected service time of a patient would be 1
4 : The interpretation would be that each patient

covers one-fourth of the total time the server is working in a day.

With this construction, the service time of the ith medical procedure would follow an expo-

nential distribution with average 1
¹i

; and ¹i 2 R++; where 1
¹i

captures the fraction of the total

working time of the server employed in one patient.

Analogously, ¹i would stand for the maximum expected rate (capacity) at which the system

can perform its work (di¤erent among treatments), i.e., the potential average rate of type i

patients’ departures per unit of time.

We require that ¸i < ¹i 8i 2 f1; 2; :::::; ng, otherwise the queue would “explode” and the

system will break down.

We also assume that the queue discipline is “…rst come, …rst served”, i.e., the patients will

be chosen to receive the service by their order of arrival.5

As in many queueing theory models, we assume that the arrivals and departures from the

system behave as a “birth and death process”. Hence, we impose that in any given instant, only

one “birth” (arrival of a patient to the queue) and one “death” (departure of a patient from the

operating theatre) can occur.

Finally, we perform our analysis considering that we are in a situation in which the steady

state of the system has been reached.

3 OPERATING THEATRE COSTS

In order to characterize the costs associated with giving the operating theatre enough capacity

to provide the service in the legal maximum time, we consider two alternative scenarios. Recall

that in this Section, the system is simply the operating theatre.

In the …rst scenario, each surgical procedure has its own operating theatre to treat its pa-

5 Another possibility would be to consider the case in which the queue discipline is based in some priority rule.

However, the mathematical analysis becomes more complicated and only limited results are available.
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tients. Let us denote by Wi the average waiting time of an individual of type i in the system.

Notice that this time includes not only waiting in the queue, but also the time spent in the

operating theatre.6 If we considered only the time in the queue, what in principle could seem

more reasonable, the qualitative results would not change and the model would become less

tractable. Moreover, the time spent in the operating theatre is negligible with respect to the

total time in the system. Under all previous assumptions, it is well-known that the average time

of an individual in the system is given by:

Wi =
1

¹i ¡ ¸i
: (1)

In the second scenario the di¤erent medical procedures share the use of a unique operating

theatre. Proceeding analogously, and denoting by W the average time of an individual in the

system, independently from his type, we have:

W =
1

¹ ¡ Pn
i=1 ¸i

; (2)

where ¹ is the average number of patients that leave the operating theatre per unit of time

(coming from any of the treatments) and
Pn

i=1 ¸i is the total average number of arrivals per

unit of time. Since the arrivals of patients are independent events across specialities, the total

number of arrivals follows also a Poisson process and its average is computed as the sum of the

average of the arrivals of the patients coming from the n medical procedures.

Finally, we consider that the government sets that, on average, the maximum waiting time in

the system for the ith medical procedure can not exceed ti, i.e., a maximum average waiting time

guarantee is provided.7 Moreover, these times di¤er across treatments (applying, for example,

an urgency criterium) and we suppose, without loss of generality, that t1 ¸ t2 ¸ ::: ¸ tn.

In the following subsections, we will study the costs required to ful…ll the government’s

objective under the two scenarios mentioned above. In order to do it, we will assume that the

costs are proportional to the amount of patients treated per unit of time. We interpret this as

having costs that are linear in the capacity of the server. In our case, an increase in the capacity

could be understood as having the operating theatre opened more hours, to be able to serve

more patients.
6 As in this section we are only studying the direct costs derived from the operating theatre, we exclude from

our analysis the post-operative time spent at hospital.
7 There exists evidence about the implementation of this kind of measures, by some Public Health Administra-

tions in Europe. For instance, a maximum waiting time guarantee was introduced in Sweden in 1992 to shorten

waiting times (see Hanning and Wimblad Spånberg (2000)). In Spain, the Ministry of Health and Consump-

tion has recently design a program (Programa Avance INSALUD) that tries to ensure an average waiting time

guarantee to those patients demanding elective surgery.

8



3.1 Di¤erent Operating Theatres

Since the costs of operating are proportional to the amount of patients treated, the overall costs

arising from the n operating theatres are just the sum of the individual costs. The explicit shape

of the individual costs is the following:

Ci = k¹i(ti);

with k 2 R++.

We have to set ¹i (the potential amount of patients from medical procedure i that leave, on

average, the theatre per unit of time) in order to guarantee the corresponding legal maximum

waiting time (ti). What indirectly we are setting is the number of hours that the theatre should

stay opened per day. Formally:

Wi =
1

¹i ¡ ¸i
= ti () ¹i(ti) =

1

ti
+ ¸i: (3)

Hence, the costs per medical procedure are:

Ci = k

·
1

ti
+ ¸i

¸
; 8i 2 f1; 2; :::::; ng : (4)

As we can see these costs are increasing in the ratio at which the patients arrive (¸i), and

decreasing in the maximum average waiting time guarantee (ti). The two features are reasonable,

the more patients that arrive and the lower the average time we can keep them waiting, the

higher will be the costs.

The overall costs from keeping n operating theatres opened are, therefore:

CN =
Xn

i=1
Ci = k

µXn

i=1

1

ti
+

Xn

i=1
¸i

¶
: (5)

3.2 A Single Operating Theatre

In this scenario, as there is only one operating theatre, the total costs will be given by:

C1 = k¹(T );

where ¹(T ) is the potential number of patients treated, on average, per unit of time from any

medical procedure, and T is the lowest value that the maximum average time guarantee takes

across treatments. Formally:

T = min fti=i 2 Ng : (6)

This means that if the system has enough capacity to guarantee the legal average time ti for the

ith medical procedure, then it has to be able to serve also any medical procedure j with j < i

according to its legal maximum average time (recall that if j < i then tj > ti).
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Proceeding analogously as in the previous subsection, we compute ¹(T ) :

W =
1

¹ ¡ Pn
i=1 ¸i

= T () ¹(T ) =
1

T
+

Xn

i=1
¸i: (7)

Therefore, the overall costs are:

C1 = k

µ
1

T
+

Xn

i=1
¸i

¶
: (8)

3.3 Comparing the Costs in both Scenarios

We proceed now to compare the costs obtained in the two analyzed situations. The aim is to

check if there is any kind of saving, understood as lower aggregate costs, in the scenario in which

the medical procedures share the use of the operating theatre.

Proposition 1 Sharing the use of the operating theatre leads to a cost reduction.

Proof. Using Equations (5) and (8) and, taking into account (6), it is straightforward to

compute the sign of the di¤erence between the costs keeping opened n operating theatres and

the costs maintaining only one which serves all the medical procedures. We obtain:

CN ¡ C1 = k

µXn¡1

i=1

1

ti

¶
> 0;

since both k and ti 8i 2 f1; 2; :::::; ng are strictly positive.

Hence, we can see that it is possible to make savings if the di¤erent surgical procedures

cooperate and share the use of the operating theatre. Let us explain the reason for this. When

each medical procedure maintains its own server, it has to su¤er not only a cost that is propor-

tional to the average number of patients demanding surgical attention (k¸i), but also a …xed

cost depending on the maximum average waiting time guarantee for the medical procedure ( 1
ti

).

This is due to the randomness of the process we are dealing with. Both the number of patients’

arrivals and the number of patients departures, are measured in expected terms, since we are

working with variables distributed according to random processes. Therefore, every operating

theatre should maintain some additional capacity, to prevent a situation in which a number of

patients higher than the expected one would arrive in a certain instant of time, or an operation

gets complicated, requiring some extra time. If there is cooperation among the medical proce-

dures, they maintain this necessary additional capacity just supporting together the …xed extra

cost of the most priority one. The degree of priority is understood in our model as the average

waiting time guarantee, and the lower the waiting time guarantee the higher the priority degree.

We can interpret the lower necessary capacity in terms of optimal risk-sharing among treat-

ments. When a medical procedure is on its own, it has to cover all the risks, understanding
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them as an excessive arrival of patients or a hard intervention. This means that it has to …x

supplementary capacity to be able of guaranteeing the legal average waiting time, even when

the circumstances are worse than expected during a certain period of time.

However, when this medical procedure shares the use of the operating theatre with others,

the “bad luck” in one treatment in a given day, may get compensated with the good one of

another. It is not so important if one medical procedure performs badly one day because it

can take some extra time from any other which has been more lucky in the realization of the

uncertainty. This is a similar phenomenon to risk spreading. As we can compensate the results

among medical procedures, we can serve the demand in the legal average time with less installed

capacity (and therefore, at a lower cost).

Since the scenario in which cooperation appears is cheaper than the other one, what is

interesting now is how to distribute among the medical procedures this bene…t from working

together or, equivalently, what is the optimal tari¤ that each treatment should pay for the use

of the service. In the following section, we will model this problem as a cost-sharing cooperative

game and we will compute an optimal fee.

4 OPTIMAL COST SHARING

Summarizing, the problem we are facing is the following: we have an operating theatre used by

patients coming from di¤erent surgical procedures and we try to divide across them the costs of

using the service. Then, we have to study how the operating theatre costs should be allocated

to the medical procedures through an optimal tari¤.

We shall construct now a cost-sharing game. Let us consider that the players are the di¤erent

surgical procedures, N = f1; :::; ng: The cost-sharing game is de…ned as follows: c : 2N ! R;

assigns to any non-empty coalition S of medical procedures the minimum cost c(S) under which

the time guarantee is ful…lled, for all the surgical procedures in S: For the empty coalition we

have c(;) = 0. Since sharing the operation theatre always conveys to a cost reduction, this

minimal cost will coincide with that necessary to keep functioning a single operation theatre,

shared by the pathologies in set S: Namely,

c(S) = k

µ
1

TS
+

X
i2S

¸i

¶
;

where TS = minfti : i 2 Sg is the shortest average time guarantee within S; namely, the average

time guarantee established for the most urgent procedure in set S: Note that previous cost

function can be divided into two parts:

c(S) =

µ
k

TS

¶
+

³
k

X
i2S

¸i

´
;
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there is a variable expense, which is proportional to the number of patients of each medical

procedure that demand the service cv(S) =
¡
k

P
i2S ¸i

¢
, and a …xed cost cf (S) =

³
K
TS

´
, which

is independent of the medical procedure the agents belong to. So, our cost-sharing game is the

sum of two other games, c = cv + cf :

We shall adopt the recommendation given by the Shapley value of the game as a way of

distributing the costs among the surgical procedures. This solution has the following properties:

1. It is optimal, namely, it recommends to go for the largest possible cost reduction. In our

case, for the use of a single operating theatre. It divides the total cost c(N) = C1(N)

among the pathologies.

2. It is linear, namely, in order to solve a game which is the sum of two other games, we

simply solve them separately, and add. In our case, Sh(c) = Sh(cv) + Sh(cf ):

3. It is symmetric, namely, if two procedures are indistinguishable in cost terms, they should

contribute the same amount to the total cost.

4. It is fair, namely, we cannot manipulate the outcome by introducing arti…cial procedures

with zero cost.

Our cost-sharing game is the sum of two other cost-sharing games: the variable cost-sharing

game, cv, and the …xed cost-sharing game, cf : Because of property (2), Sh(c) = Sh(cv)+Sh(cf ):

It turns out that the variable cost-sharing game, cv, is a linear game. In this game there are no

cost reductions due to cooperation between di¤erent procedures. Consequently, Shi(c
v) = k¸i;

for all i 2 N:

Notice that the …xed cost-sharing game, cf , is an analogous problem to the one appearing in

the“airport game”. In our case, instead of needing di¤erent landing track capacities for di¤erent

types of planes, we deal with several operating theatre capacities, depending on the maximum

average waiting time guarantee set by the government for the di¤erent surgical operations. This

is a concave game. Consequently, the Core of the game is not empty, and the Shapley value

allocation belongs to it. Taking into account (6) we know that:

k

t1
· k

t2
· :::: · k

tn
=

k

T
:

So, the …xed cost of that operating theatre with enough capacity to serve all the procedures

depends essentially on the time guarantee of the procedure with the highest priority level (the

nth medical treatment in our case).

Baker (1965) and Thompson (1971) proposed a simple cost allocation rule to solve this type

of cost-sharing problems. Littlechild and Owen (1973) showed that the above mentioned cost
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allocation coincides with the cost allocation based on the Shapley value. We can express this

rule in the following way: each procedure contributes equally to the cost needed in order to

maintain opened an operating theatre for the medical treatment with the least priority; then

the contribution of the procedure with the least priority level is completely computed. Now, all

remaining procedures also contribute equally to the additional cost needed to maintain opened

a theatre for the treatment next in the …nite order. This way, the second procedure contribution

is completed, and so on.

Formally, the cost that should be charged to the jth procedure is given by:

Sh1(cf ) = k
nt1

Sh2(cf ) = k
h

1
nt1

+ 1
(n¡1)

³
1
t2

¡ 1
t1

´i
Sh3(cf ) = k

h
1

nt1
+ 1

(n¡1)

³
1
t2

¡ 1
t1

´
+ 1

(n¡2)

³
1
t3

¡ 1
t2

´i
¢ ¢ ¢

Shn(cf ) = k
h

1
nt1

+ 1
(n¡1)

³
1
t2

¡ 1
t1

´
+ 1

(n¡2)

³
1
t3

¡ 1
t2

´
+ ¢ ¢ ¢ +

³
1
tn

¡ 1
tn¡1

´i
:

(9)

Consequently, if in a certain period of time, we receive a set of patients M; where M =

M1 [ ¢ ¢ ¢ [ Mn and Mi stands for the set of patients for procedure i, mi = #Mi; we have the

following result:

Proposition 2 An optimal schedule of fees for any user j 2 M of the operating theatre
³

¾¤
j (c)

´
is given by:

¾¤
j (c) = k

m1

h
¸1 + 1

nt1

i
if j 2 M1

¾¤
j (c) = k

m2

h
¸2 + 1

nt1
+ 1

(n¡1)

³
1
t2

¡ 1
t1

´i
if j 2 M2

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::

¾¤
j (c) = k

mn

h
¸n + 1

nt1
+ 1

(n¡1)

³
1
t2

¡ 1
t1

´
+ ¢ ¢ ¢ +

³
1
tn

¡ 1
tn¡1

´i
if j 2 Mn:

(10)

Under our construction, M corresponds to the aggregate capacity set for the surgical theatre,

hence M = ¹ (T ). Analogously, the number of patients of each medical procedure will be

computed as a fraction of this total capacity. Formally:

mi =
¸iPn

j=1 ¸j
¹ (T ) :

5 EFFECTS ON THE POST-OPERATIVE COSTS

We have to take into account that a surgical intervention generates more costs than the direct

ones derived from the operation. In almost every case, the patient has to spend some time

in the hospital recovering, what is called “Post-Operative Time”.8 This time di¤ers across
8 There are exceptions, like the interventions for miopic reduction, in which the patient leaves the hospital just

after being operated.
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medical procedures, and has a random component, because not everybody reacts equally to an

intervention.

The possibilities of ful…ll a certain maximum average waiting time guarantee depend not only

on the capacity of the operating theatre, but also by the availability of beds to treat the patients

during their post-operative time. Actually, there is a second set of servers in the system: the

beds to be used on post-operative patients. We may think of the operating theatre as the source

of patients for this second set of servers. Once a patient exits the theatre, he should enter a

bed. Thus, the system will work properly only if there are enough available beds for the patients

leaving the theatre.

To compute the number of servers (beds) we need for the adequate functioning of the hospital,

we make again use of queueing theory. If patients exit the operation theatre at a rate ¸; they have

a length of stay in the server of 1
¹ ; and there are b servers (beds) in the system, the probability

that a patient has to wait for a server to be free is given by the Erlang’s C formula. Denoting

by N the number of patients in the system, we have:

P (queueing) = P (N ¸ b) =

³
(b½)b

b!

´ ³
1

1¡½

´
hPb

k=0
(b½)k

k! +
³

(b½)b

b!

´ ³
1

1¡½

´i ; (11)

where ½ = ¸
b¹ < 1 is the necessary and su¢cient condition for ergodicity in the system.

We can set a maximum value to this probability, and then, by solving previous equation, we

can estimate the number of beds needed, b:

Erlang’s formula can be used to compute the required number of beds under di¤erent sce-

narios: (1) If the procedures share neither the theatre nor the beds; (2) If they share the theatre

and they do not share the beds; (3) If they do not share the theatre but they do share the beds;

and (4) If they share both theatre and beds.

Obviously, and since we cannot analytically solve by Erlang’s formula previous values, it will

be only used for computational purposes. In Section 6 we deal with a numerical example, and

there we illustrate the method to compare all mentioned scenarios.

Nonetheless, what we can do is to introduce in our analysis the impact of sharing the use

of an operating theatre, on the average costs derived from the post-operative period, assuming

that the procedures do not share the use of the beds. That is, we can compute the average

number of beds required in scenarios 1 and 2 of those previously described.

5.1 Average Post-Operative Costs

Considered n …elds of treatment, ordered inversely to their urgency (de…ned by ti), so that the

one with the highest priority (the one with the lowest average waiting time guarantee) is the

14



nth medical procedure.

Let di with i = 1; 2; :::n, denote the average number of units of time that a patient of type i

spends recovering at the hospital after the intervention. Again, the service time is exponentially

distributed.

Then, the average number of beds required for medical procedure i in the absence of coop-

eration
¡
¹bi

¢
depends on the capacity …xed by its operating theatre in the previous stage and on

its patients expected post-operative time. Formally:

¹bi = ¹i(ti)di =

µ
1

ti
+ ¸i

¶
di; i = 1; 2; :::; n: (12)

Therefore, the expected number of beds needed in the system in the absence of cooperation in

the use of the operating theatre is:Xn

i=1
¹bi =

Xn

i=1

di

ti
+

Xn

i=1
¸idi:

When the medical procedures share the use of the operating theatre, they need an amount of

beds according to:

¹bN = ¹(T )

ÃXn

i=1

¸iPn
j=1 ¸j

di

!
=

µ
1

T
+

Xn

i=1
¸i

¶ ÃXn

i=1

¸iPn
j=1 ¸j

di

!
: (13)

In this situation, as all the patients are treated in the same theatre, when we compute the ex-

pected number of beds, we need to take into account the proportion of individuals of each type³
¸iPn

j=1 ¸j

´
treated in the considered period of time, and their corresponding average hospital-

ization times.

Finally, we assume that the post-operative costs are linear in the number of beds. This

reduces the analysis of the costs to the computation of the required amount of beds.

Let us call ¤ =
Pn

j=1 ¸j: Comparing scenarios 1 and 2, therefore, we obtain the following

result.

Proposition 3 Sharing the operating theatre reduces the average post-operative costs if and only

if:

nX
i=1

¸idi < ¤T
nX

i=1

di

ti

Proof. We have to compute the di¤erence
Pn

i=1
¹bi ¡ ¹bN :

We can rewrite (13) as:

¹bN =
1

T

Xn

i=1

¸i

¤
di +

Xn

i=1
¸idi:
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Then,
Pn

i=1
¹bi ¡ ¹bN =

Pn
i=1

di
ti

+
Pn

i=1 ¸idi ¡
³

1
T

Pn
i=1

¸i
¤ di +

Pn
i=1 ¸idi

´
:

¹bN <
Xn

i=1
¹bi , 1

T

Xn

i=1

¸i

¤
di <

Xn

i=1

di

ti
:

Namely,

¹bN <
Pn

i=1
¹bi , Pn

i=1 ¸idi < ¤T
Pn

i=1
di
ti

:

This completes the proof.

Previous result can be read in the following way: It is not always true that sharing the use

of the operating theatre can lead to smaller average costs in the second stage of the treatment

process (post-operative time). Formula
Pn

i=1 ¸idi < ¤T
Pn

i=1
di
ti

can be read as follows: On the

left hand side we have the aggregate expected time of hospitalization in a certain period of time

of all individuals entering the queue (if they were going to be served). On the right hand side we

can think of a similar hospitalization time, in which the average stay is given by d =
Pn

i=1
T di
ti

:

There are savings in the costs of the post-operative period if and only if
Pn

i=1 ¸idi < ¤d:

The explanation for this result has to do with the fact that the number of beds is proportional

to the capacity installed in the previous stage. When the medical procedures cooperate they

agree to set a common capacity, which is composed by a variable factor depending on each and

every medical procedure (¸i) and a constant additional term determined by the most demanding

one
¡

1
T

¢
. We already proved in Section 3 that this cooperation ensures savings in the direct costs

of the interventions. However, the less urgent …eld has the potential capacity to perform more

interventions per unit of time, than if it were working on its own (since it is guaranteeing a lower

average waiting time to its patients). Depending on its rate of patients’ arrivals, it will make use

of all this additional capacity or not, and this will determine the resulting amount of expected

beds needed. Following this reasoning, we can see how the condition found in Proposition 3

to guarantee savings, is more di¢cult to be ful…lled the smaller the ratio T
ti

for each and every

medical treatment. This ratio provides us with a measure of how much the capacity of the

pathologies, which are not …rst in the priority order, increases with respect to the reference

non-cooperative situation.

We will now provide two su¢cient conditions that ensure savings in the average post-

operative costs, from sharing the operating theatre, and which have a clearer intuition. The

next one is an immediate consequence of Proposition 3:

Corollary 4 If ¤T > ¸iti; 8i = 1; 2; :::; n; sharing the operating theatre reduces the average

post-operative costs.
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This condition is enough for making savings in the required number of beds, since it ensures

that all …elds of specialization (for the one with the highest priority it is trivial), use in expected

terms a fraction of the total capacity that is smaller than the one it would set when being

alone. Whereas the capacity of medical procedure i when being alone was ¹i(ti) = 1
ti

+¸i; when

cooperating its share of the global one is given by ¸i
¤

1
T + ¸i: Therefore, the smaller expected

capacity required implies a reduction in the average amount of beds for post-operative treatment.

When some of the conditions of Corollary 1 do not hold, it means that some medical pro-

cedures would demand more beds. If this is the case, the e¤ect over the total average costs is

ambiguous, since the extra demand of some medical procedures could be compensated with the

smaller requirement of others. This possibility is analyzed in the following Corollary.

Corollary 5 If dn >
Pn¡1

i=1 ¸idi

¤¡¸n
; sharing the operating theatre reduces the average post-operative

costs.

Proof. If:

dn >
Pn¡1

i=1 ¸idi

¤¡¸n
; then dn >

Pn¡1
i=1 ¸i

¤¡¸n
di

³
1 ¡ tn¤

ti¸i

´
; and thus,

dn >
Pn¡1

i=1 di

³
¸iPn¡1

i=1 ¸i
¡ tn

ti

¤Pn¡1
i=1 ¸i

´
, dn

³Pn¡1
i=1 ¸i

¤

´
>

>
Pn¡1

i=1 di

³
¸i
¤ ¡ tn

ti

´
, Pn¡1

i=1 di

³
¸i

tn¤ ¡ 1
ti

´
< dn

tn

¡
1 ¡ ¸n

¤

¢ ,
() 1

tn

¸n
¤ dn + 1

tn

Pn¡1
i=1

¸i
¤ di < dn

tn
+

Pn¡1
i=1

di
ti

,
() 1

T

Pn
i=1 ¸idi < ¤

Pn
i=1

di
ti

that is, Proposition 3 holds.

Corollary 2 states that, if the medical procedure with the highest priority has a longer ex-

pected hospitalization time than the average hospitalization time of the rest, then by cooperating

in the use of the operating theatre we reduce the expected amount of required beds.

The longer is the recovering time at hospital, the higher is the impact of an increase in the

capacity of a medical procedure on the amount of beds. This makes that when dn is su¢ciently

high, the decrease in the expected number of beds needed for medical procedure n surely exceeds

the possible increase in the requirements of the others.

6 A NUMERICAL EXAMPLE

In this Section, we provide a numerical example to illustrate, for a particular case, the main

features of our analysis. The basis of our example is real data obtained from a small hospital,

concerning the average number of patients’ arrivals and their average post-operative time.

In order to set the maximum average time guarantee for the di¤erent procedures, we have

taken into account the actual time spent by the patients in the waiting lists of these pathologies.
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We will consider that the priority of a procedure corresponds to the time guarantee, in such a

way that given two treatments, the one with a shorter waiting time has priority over the other.

We analyze 6 medical procedures (n = 6), all of them of elective nature and with a very short

hospitalization time (even null for some cases). The procedures employed are: cataract surgery,

inguinal hernia operations, varicose veins, arthroscopies, hysterectomies and knee replacements.

In the following table we provide the information required for the construction of the example;

all the variables are measured in monthly terms:

Medical Procedures ¸i ti di

Knee Replacements (r) 12 4 0:266

Cataract Surgery (c) 129 2 0:043

Hysterectomies (hy) 19 1 0:243

Arthroscopies (a) 39 1
2 0:083

Inguinal Hernias (h) 33 1
3 0:074

Varicose Veins (v) 15 1
3 0:083

6.1 Operative costs

We …rst compute, using Equation (3), the optimal capacity that each surgical procedure should

install on its own:

¹r ¹c ¹hy ¹a ¹h ¹v

49
4

259
2 20 41 36 18

Hence the overall capacity set, in the absence of cooperation is:X
i2fr;c;hy;a;h;vg

¹i = 256:75:

When all the procedures share the use of the operating theatre, the capacity (¹(T )) is set

according to Equation (7), where T is given by tv = th = 1
3 :

¹(T ) = 247:33:

Hence, if the procedures cooperate, we can reduce the installed capacity of the operating theatre

in an amount of time per month similar to that necessary to perform around 10 interventions. As

we have assumed the costs to be linear in the capacity installed, this will generate a proportional

cost reduction.
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The next step is to assign to the procedures and the patients their corresponding costs. Each

surgical procedure will be charged with its variable cost (determined by its rate of patients’

arrivals ¸i), plus a fraction of the …xed cost. In our case this …xed cost is k
tv

= 3k. The sharing

is done following Equations (9) and (10), and it is given by:

Medical Procedures Shi(c
f ) Shi(c) ¾¤

j (c)

Knee Replacements (r) 1
24k 12:041k 1:0020k

Cataract Surgery (c) 11
120k 129:091k 0:9993k

Hysterectomies (hy) 13
60k 19:216k 1:0103k

Arthroscopies (a) 11
20k 39:55k 1:0128k

Inguinal Hernias (h) 21
20k 34:05k 1:0305k

Varicose Veins (v) 21
20k 16:05k 1:0685k

The table shows how the part of the …xed costs assigned to each procedure Shi(c
f ) is in-

creasing in the level of priority of the pathology. However, the sharing of the total costs Shi(c)

does not respect this ranking since it is a¤ected also by the variable costs, i.e., the di¤erent rates

of patients arrivals. In fact, we can see how the …xed costs are only a small fraction of the total

costs of the service. Finally, in the last column we show which would be the part of the total

costs corresponding to each patient, depending on the pathology he belongs to.

6.2 Post-operative Costs

We move now to the analysis of the postoperative period. As we mentioned in Section 5, we

consider the beds as the servers of the system in this part of the process, and we can compute

the required number of beds under di¤erent scenarios: (S_1) if the procedures share neither the

theatre nor the beds; (S_2) if they share the theatre and they do not share the beds; (S_3) if

they do not share the theatre but they do share the beds; and (S_4) if they share both theatre

and beds.

First of all, it is immediate to check that condition in Proposition 3 is ful…lled, even though

neither conditions of Corollary 1 nor Corollary 2 are.9 Consequently, there are savings in the

average number of beds when moving from scenario (S_1) to scenario (S_2).

We …rst compute, by means of Equation (12) the average number of beds required in scenario

(S_1). Also, we compute using (13) the average aggregate number of beds required in scenario

(S_2), and with the help of the relative frequencies of arrivals, we assign the corresponding

fraction of the total beds to each pathology.
9 Conditions of Corollary 1 do not hold, since cataract surgery does not ful…ll the requirement there. Conditions

of Corollary 2 are ful…lled only for one of the two procedures with higher priority: the average hospitalization

time of the inguinal hernias is smaller than the average post-operative period of the other pathologies.
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However, as we stated in Section 5 this does not guarantee that every patient has a bed

when he departs from the operating theatre. Using the Erlang’s C formula, we can …x an upper

bound for the probability of not having a bed ready when it is needed. Once this probability is

…xed, we can solve for the minimum number of beds required to ful…ll it. We will denote this

value by bi.

To avoid an excessive expenditure of resources, and have a situation in which a large number

of beds are “almost always” unused, we set the probability that a patient waits to :1: Notice

that by …xing this upper bound we are in fact setting the expected waiting time of a patient to

a very low level.

The following table shows the average number of beds (¹bi) and the number of beds required

to guarantee that with probability .9 no patient has to wait (bi), in scenarios (S_1) and (S_2).

Medical Procedures ¹b
(S_1)
i

¹b
(S_2)
i b

(S_1)
i b

(S_2)
i

Knee Replacements (r) 3:26 3:19 6:35 6:26

Cataract Surgery (c) 5:57 5:55 9:46 9:43

Hysterectomies (hy) 4:86 4:62 8:53 8:21

Arthroscopies (a) 3:42 3:25 6:57 6:40

Inguinal Hernias (h) 2:67 2:45 5:52 5:20

Varicose Veins (v) 1:5 1:25 3:75 3:35

Hence, when the procedures share neither the theatre nor the beds (S_1), the total average

number of beds is: X
i2fr;c;hy;a;h;vg

¹b
(S_1)
i = 21:28;

and the total maximum number of beds is:X
i2fr;c;hy;a;h;vg

b
(S_1)
i = 40:18:

One can see how the presence of randomness in the post-operative treatment makes that in

order to ensure a negligible probability of waiting, the number of beds has to be almost doubled

from the reference level (computed in expected terms).

We now see how the results di¤er when the pathologies share the use of the operating theatre

(S_2). The average number of beds is:X
i2fr;c;hy;a;h;vg

¹b
(S_2)
i = 20:31;
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and the maximum number of beds is: X
i2fr;c;hy;a;h;vg

b
(S_2)
i = 38:85:

In this framework we face the same problem as in scenario 1. When we want to ensure a low

probability of waiting, the required capacity almost doubles, and this means having a lot spare

beds which are needed to cover the risks.

Moreover, we see how by sharing the operating theatre we can decrease both the average

and the total post-operative costs, since it allows to save one bed per-month. Notice that, even

if this seems to be a small improvement, we are dealing with pathologies that have a very short

hospitalization time, and that therefore require few beds. Hence, the decrease in the number of

beds is around 5%.

The next step is to repeat the analysis for the third and fourth scenarios, that is, when the

medical procedures share the use of the beds, distinguishing among a situation where each one

has its own operating theatre (S_3), and another in which there is full cooperation, both in the

operation, and in the hospitalization period (S_4).

In these scenarios, since beds are shared, we consider the rate of patient’s arrivals as the sum

of the average of arrivals of patients coming from the di¤erent procedures, and the hospitalization

time the average of the length of stay at hospital of the pathologies, weighted by the proportion

of patients demanding a bed in each procedure. The results are summarized in the following

table: P
i2fr;c;hy;a;h;vg

¹b
(S_3)
i

P
i2fr;c;hy;a;h;vg

b
(S_3)
i

P
i2fr;c;hy;a;h;vg

¹b
(S_4)
i

P
i2fr;c;hy;a;h;vg

b
(S_4)
i

21:33 28:32 20:30 27:25

The results are really illustrative, and several insights can be highlighted. First, again,

sharing the use of the operating theatre is always pro…table in terms of the average post-operative

costs. When moving from scenario (S_3) to (S_4), we also save one bed per month.

However the most interesting comparison is between scenarios (S_2) and (S_4) (or analo-

gously between (S_1) and (S_3)). By doing so, we see how crucial it is to share the beds. First

of all, it allows to decrease the extra capacity required to ensure a low probability of waiting

by a 50%. Using as reference for instance scenarios (S_2) and (S_4), we see that the same

probability of waiting can be ensured by setting only 7 extra beds in scenario (S_4), instead of

18 in scenario (S_2). The same occurs confronting situations (S_1) and (S_3).

Moreover, it yields a very important saving in the number of beds that have to be installed

in order to ensure the given probability of waiting. Taking as reference the scenarios in which

the pathologies share the use of the operating theatre, we see how if the medical procedures
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cooperate in the management of the post-operative period, the need for beds is reduced by

nearly a 30% (approximately 11 beds).

The reason for this reduction can be explained by the same argument we used in Subsection

3.3 for the operating theatre costs. We are treating the beds as servers, and by allowing the

di¤erent medical procedures share the use of the beds, we optimally spread risks among them.

Therefore, we set a unique extra capacity of beds to account for the potential bad realizations

of the random variables, instead of making each pathology have its own extra capacity. And

this is shown to generate savings.

However, if we proceed to distribute the costs resulting of the cooperation (S_4), among

the di¤erent medical procedures, the cost sharing game we would face is not an “airport game”.

Although we can identify which pathologies require a bigger capacity than others, since we are

guaranteeing an almost zero probability of waiting for all the patients, the number of beds …xed

by the most demanding procedure is not enough to ensure that nobody has to wait.

But we can compute the Shapley value of this cost-sharing game, just charging each procedure

by averaging its marginal contributions to all coalitions containing it. The cost share of procedure

i is computed as an average of the marginal cost (marginal number of beds) in‡icted by procedure

i to each and every coalition (Tnfig) of other pathologies, and it is given by:

Shi(b) =
X

T ½N;i2T

·
(N ¡ #T )!(#T ¡ 1)!

N !

¸
(C(T ) ¡ C(Tnfig) :

We next present the results:

Shr(b) Shc(b) Shhy(b) Sha(b) Shh(b) Shv(b)

3:8041 7:3502 6:1996 4:488 3:4834 1:9247

As we can see, the cost share assigned to each procedure is increasing in the number of beds

that they required when they do not share the servers. Moreover, if we compare these costs

shares with the ones is Scenario S_2, we see how the savings range between the 22% reduction

for cataract surgery, and the 43% savings that varicose veins attain. In this example we observe

that the most demanding pathology in terms of required beds (c) is the one that bene…ts less

from cooperation, and conversely varicose veins (which necessity of beds is the minimum) enjoys

the greatest fraction of the savings from cooperation.

7 CONCLUSIONS

Surgical waiting lists are a persistent and unsatisfactory phenomenon in the Public Health

Services worldwide, since their inception. They have been the subject of a great deal of research.
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In this paper we model the problem of the waiting lists to get surgical treatment making use

of queueing theory. We considered that both, the arrival of patients to the waiting list and the

process of treatment have random components. Therefore, the application of queueing theory

results arises naturally.

The simplifying assumptions of considering an exponential distribution of the time between

two subsequent arrivals and exponential service time distributions, were made for analytical

convenience. The other extreme would be to assume arrivals and service times that are always

constant. The realistic distribution is often somewhere in between (Worthington (1987)).

We concentrate ourselves on the costs that interventions generate, taking into account that

the higher the resources spent by the hospital the shorter the resulting waiting lists. Our aim

in this work has been two-fold.

On the one hand, we study the e¤ects on the direct costs of an intervention that the use of

a common operating theatre by the di¤erent medical procedures has. We show that sharing the

use of the operating theatre leads to a cost reduction.

Afterwards, we study how these savings should be allocated to the medical procedures

through a optimal tari¤. Clearly, we are dealing with a cost allocation problem. Since the

Shapley value is a well-known solution concept with good theoretical and computational prop-

erties, we propose it as the basis for the computation of the optimal fee per medical procedure.

On the other hand, we extend our analysis to the post-operative time. In order to ful…ll the

maximum average waiting time guarantee set by the government, it is necessary not only that

the operating theatre works properly, but also that there is an enough supply of beds for the

recovering of patients at hospital. Therefore, it is relevant to analyze the impact of cooperation

among medical procedures on the post-operative costs.

We obtain that the sign of the e¤ect that sharing the use of the operating theatre has on the

average post-operative costs, depends on the characteristics of the treatments and can not be

stated in general. We compute two su¢cient conditions for making savings also in this second

stage of the process.

Finally, we provide a numerical example to illustrate the main features of our model, on the

basis of real data obtained from a small hospital concerning the average number of patients’

arrivals and the average length of their post-operative time. We apply our theoretical analysis

to this particular case and interpret the results that arise. In particular, we show that when

procedures also cooperate in the managing of beds major savings are obtained.
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