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LONG-LIVED ASSETS, INCOMPLETE
MARKET, AND OPTIMALITY

Subir Chattopadhyay

A B S T R A C T

We consider general OLG economies under uncertainty, with dividend paying assets
of in¯nite maturity and money, and in which one good is available for consumption. We
study the optimality properties of equilibria when asset markets are allowed to be sequen-
tially incomplete. We show that if equilibrium in asset markets has to be restored once
an intervention has been made, then all non-monetary competitive equilibria are locally
constrained optimal. We proceed to a notion of optimality which allows asset markets
to not clear and provide a complete characterization of those equilibria that are optimal
in terms of the prices and dividends of assets of in¯nite maturity and feasible portfo-
lio reassignments. Results for various special cases follow; in particular, we show that
if dividends are non-negative and assets are freely disposable then every non-monetary
equilibrium allocation is optimal. Other results shed light on the role played by money
vis-a-vis other assets of in¯nite maturity in determining the optimality properties of equi-
libria when markets are sequentially complete/incomplete and free disposal of assets is or
is not allowed.

JEL Nos.: D52, D61
KEYWORDS: Stochastic Overlapping Generations Models; Sequentially Incomplete Mar-
kets; General Dividend Processes; Characterization of Optimal Competitive Allocations

2



1. INTRODUCTION
We consider a general class of pure exchange overlapping generations (OLG) economies
under uncertainty in which one good is available for consumption in each period and
intertemporal transfers are carried out by trading in assets. Our objective is to analyze
the role of long-lived assets (dividend paying and money), which can have negative payo®s
and need not be freely disposable, in ensuring optimality of competitive allocations in
economies in which asset markets are, potentially, not even sequentially complete, i.e.,
when agents are unable to insure against all sources of uncertainty a®ecting them after
their birth.
The motivation for our exercise comes from many sources. The fact that compet-

itive OLG economies need not allocate resources e±ciently is well known and is aptly
summarized in the \chocolate" parable where more can be consumed today by making
every young agent give one chocolate to a contemporaneously old agent. This ine±ciency
occurs even in the most basic deterministic model and has been characterized in OLG
economies under certainty and also some particular instances of uncertainty.1 That mar-
ket incompleteness has important consequences for the welfare properties of equilibria is
also well known. In two-period models with one consumption good and an incomplete set
of assets, equilibrium allocations are known to be constrained optimal in the sense that
there is no alternative allocation which is Pareto improving and can be induced using the
same asset structure. The situation changes dramatically when one considers two or more
consumption goods since, with missing markets, the market solution fails to use even the
existing markets in an e±cient manner in a strong sense.2 It seems natural to ask how,
if at all, the chocolate problem interacts with incompleteness in an OLG economy under
uncertainty. As to the potential role of long-lived dividend paying assets, Wilson (1981)
showed that in an economy with contingent commodities, the presence of a non-negligible
individual, who can be interpreted as an individual who owns a dividend paying asset of
in¯nite maturity, forces the value of the aggregate endowment to be ¯nite which in turn
forces the equilibrium to be Pareto optimal; Scheinkman (1980) made a similar point.
Santos and Woodford (1997) extended the result to a multi-good model with sequentially
complete asset markets when dividends are non-negative and assets are freely disposable.3

Our interest in looking at OLG models with long-lived assets and sequentially incomplete
markets stems from these earlier contributions. At a more applied level, the model that
we consider is the canonical framework for the analysis of intertemporal risk sharing and

1See Geanakoplos and Polemarchakis (1991) for the case in which markets are complete, and Chat-
topadhyay and Gottardi (1999) for the case in which markets are sequentially complete. Cass (1972)
provided a characterization of e±cient competitive production paths in sequence economies and is the
seminal work in the area.

2Geanakoplos and Polemarchakis (1986) showed that in two-period general equilibrium models with
incomplete markets, equilibrium allocations are generically constrained suboptimal provided that two or
more goods are traded. The notion of optimality used is that of Pareto comparisons between allocations
that can be induced as equilibria with trade in spot markets but with portfolios that are assigned by the
planner.

3Allen and Gale (1997) studied a model with one good and one agent in every period, so that any
equilibrium allocation obtained with a sequentially complete market can be induced with just one asset,
and showed that the existence of a dividend paying asset implies that the resulting stationary equilibrium
allocation is optimal.
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the results obtained provide insights in a wide range of applications; an evident one is the
problem of identifying desirable features of any reform of social security systems.
Our model is similar to that of Santos and Woodford (1997), though less general in that

agents live for two periods and that there is only one consumption good, and more general
in that assets are unrestricted in terms of the sign of the dividends and they need not be
freely disposable.4 We consider the one-good model since one expects that in a multi-good
model the results will be very di®erent as market incompleteness will have a dominating
e®ect. If one thinks of the assets as reduced forms of the right to use a technology, where
buying an asset today requires a commitment to investing a certain amount in every event
tomorrow, then the gross return is random and could be low enough to induce a negative
net dividend tomorrow and this justi¯es the consideration of a general dividend process;
Brock's example reminds us that free disposability of assets can be an essential restriction.
The set of assets available is allowed to be sparse so that agents might not be able to
overcome the fact that they face a sequence of budget constraints, i.e., markets are allowed
to be sequentially incomplete. Fiat money and sequentially complete markets (and hence
a model without uncertainty) are special cases of our model. In order to reduce notation
we assume that the same set of assets is available at di®erent nodes in a date-event tree.
The model covers three broad categories of long-lived assets: the case where the long-

lived asset can be freely disposed and pays a non-negative dividend which is sometimes
positive, land being the standard example; the case where the long-lived asset never pays
a dividend, i.e., ¯at money; and cases where free disposal fails and/or the dividend is
not required to be non-negative. Our results vary according to the case we consider.
Also, we assume that the endowment of each of the assets is independent of time and
the realization of uncertainty, i.e., a constant. For dividend paying assets it is reasonable
to assume that the endowment never changes (one can redo the analysis allowing for
endowment growth). However, when dealing with money it is not always reasonable to
assume that the endowment is constant but, to economize on notation and inessential
details related to the speci¯cation of how newly created money enters into the budget set
of each agent, we analyze a model with a constant money endowment; hence, when dealing
with situations in which it not reasonable to assume a constant money endowment, we
restrict attention to non-monetary equilibria.
We proceed by specifying a notion of optimality. The criterion called conditional

Pareto optimality (CPO), proposed by Muench (1977), is one in which agents' welfare
is evaluated by conditioning their utility on the event at the date of their birth; agents
are thus distinguished not only according to their type and their date of birth but also
according to the event at that date. CPO is particularly suitable when markets are
sequentially complete. However, it is known that when markets fail to be sequentially
complete, the equilibrium allocation is typically not CPO since di®erent agents will have
di®erent marginal valuations of income in di®erent states. So we need to weaken the notion
further. We do so by requiring that a dominating allocation be obtainable via existing
markets in the sense that consumption when young is induced by using transfers (in a

4Santos and Woodford (1997) noted the importance of imposing free disposal of assets and non-
negativity of dividends in order to derive their results on the non-existence of bubbles; the restriction is
essential since an example due to Brock (1990) showed how a standard economy can have a stationary
equilibrium in which the price of the asset is negative.
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one good framework this is equivalent to allocating consumption when young directly)
while consumption when old can only be allocated indirectly by specifying a portfolio
reassignment which then induces income and hence consumption according to the returns
of the various assets. As for the speci¯cation of the returns of the assets, we consider two
possibilities: in the ¯rst, in the spirit of Geanakoplos and Polemarchakis (1986), asset
prices are allowed to adjust to post-intervention equilibrium levels and asset markets are
required to clear, while in the second the asset reassignment is allowed to allocate less of
the asset in aggregate than the asset endowment (but non-negative amounts) and asset
prices are kept ¯xed.5 Of course, if markets happen to be sequentially complete, the
criteria proposed reduce to CPO.
Our ¯rst result, Theorem 1, is that when equilibrium needs to be restored after inter-

vention, all non-monetary equilibria are locally constrained optimal. This result is quite
striking and does not require the use of arguments which refer to the in¯nite horizon; it
follows from the fact that any feasible portfolio reassignment induces an average change in
utility which is zero upto ¯rst order. It makes essential use of the fact that the endowment
of the assets is assumed to never change and that asset markets are required to clear with
equality.6 So when the notion of optimality requires asset prices to adjust, the most basic
feature of the OLG model, the chocolates problem, disappears in non-monetary economies
and does not discriminate between economies with positive dividends and free disposal
of assets against the rest. This makes it natural to consider alternative notions in which
intertemporal ine±ciency can occur. Essentially, one must allow the net transfer between
generations to be non-zero and then check to see whether a CPO improving allocation
can be constructed. That is precisely what our second criterion permits by not requiring
asset markets to clear exactly, and keeping asset prices ¯xed. Our main results, Theorems
2 and 3, provide necessary and su±cient conditions for a competitive allocation to be con-
strained optimal according to the second criterion. The results say that a competitive
allocation is not optimal if and only if there is a set of histories, and a change in the asset
allocation, such that, on every history in the set, the discounted value of the change in
the asset reallocation is positive and uniformly bounded. The discount factors used are
event dependent (random discounting) and de¯ned in terms of the returns at each event
to the portfolio which is de¯ned by the asset reallocation.
The result on su±ciency, Theorem 2, can be modi¯ed and generalized to incorporate

a notion of constrained optimality which combines the two notions that we propose by al-

5When the asset in question is money, the asset reassignment is also allowed to allocate more of the
asset than the endowment. This corresponds to being able to create money since it can be done costlessly
(by de¯nition money never pays a dividend) and allows us to incorporate monetary policy.

6The formal argument allows money to be one of the assets but, as we noted earlier, it is not reasonable
to assume that the endowment of money is constant and here such an assumption plays a crucial role in
generating the result; hence, we restrict attention to non-monetary equilibria.
Cass, Green, and Spear (1992) showed that there are no locally improving stationary asset redistri-

butions which improve over the stationary monetary equilibria of a one-good stochastic OLG economy
with incomplete asset markets, no dividend paying long-lived asset, and freely disposable money, when
the price of money is allowed to adjust.
Demange (2000) showed that constrained optimality obtains when asset prices are allowed to adjust

without the restriction to local price changes but assuming free disposal of assets and dividends which
are uniformly bounded away from zero; portfolio reassignments are, however, restricted to be local.
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lowing the asset market not to clear exactly while at the same time allowing asset prices to
undergo local changes; the precise statement and the argument are simple reformulations
of the statement and proof of Theorem 2 and are, therefore, not included.
We provide results for various special cases with only one long-lived asset including

the case in which the equilibrium is stationary; these results follow easily from the char-
acterization and shed light on the range of situations covered by the result. An important
implication of the main result is that, in a non-monetary economy, an equilibrium allo-
cation with free disposal of assets and non-negative dividends, is necessarily constrained
optimal.7 Another implication is that if money is the only long-lived asset then all sta-
tionary monetary equilibria are constrained optimal.8

In terms of generalizations, one conjectures that in an OLG model with more than
one good and sequentially incomplete markets, the equilibrium allocation will generically
fail to be constrained optimal with the ¯rst criterion of optimality; this should follow by
embedding the Geanakoplos and Polemarchakis (1986) economy in a multi-good OLG
model but is not trivial as one needs to follow the price e®ects along di®erent paths.
So there is every reason to believe that our Theorem 1, the local constrained optimality
result, is an artifact of the one-good structure. As for our characterization result with the
second criterion, it seems clear that it can be extended to the case of many goods.
The rest of the paper is structured as follows. Section 2 presents the model and

notation. In Section 3 we present a de¯nition of constrained optimality where asset prices
are allowed to readjust and state the local constrained optimality result. In Section 4a
we present our second de¯nition of optimality where the asset market clearing condition
takes a weaker form. In Section 4b we state and discuss our main result. Various special
cases of interest are discussed in Section 4c which can be read after glancing through
Section 4b. The proofs of the three theorems are relegated to Section 5.

7When we apply the generalized version of Theorem 2 to non-monetary economies with non-negative
dividends and free disposal of assets, we obtain a generalization of the result in Demange (2000) without
the need to assume a positive uniform lower bound on dividends.

8Gottardi (1996) considers stationary redistributions, starting from a stationary monetary equilibrium
of a one-good stochastic OLG economy with incomplete asset markets and money. He ignores the welfare
of the initial old. His results are very partial.
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2. THE MODEL
We consider a general pure exchange overlapping generations (OLG) economy under un-
certainty where only one consumption good is traded and agents live for two periods. The
economy evolves in discrete time with uncertainty in the environment described by an ab-
stract date-event tree as in Chapter 7 of Debreu (1959). We turn to a formal description
of the model and the notation used.9

Time is discrete and dates are denoted t = 1; 2; 3; ¢ ¢ ¢.
Let S = f1; 2; ¢ ¢ ¢ ; Sg be a state space, the set from which a state is chosen at each

date; so #S = S. The structure of the date-event tree induced by all possible realizations
of states from an initial date t = 0 is as follows. The root of the tree is ¾0 2 S; §t is the
set of nodes at date t where we set §1 := f¾0g £ S, and iteratively set §t := §t¡1 £ S
for t = 2; 3; ¢ ¢ ¢. De¯ne § := [t¸1§t and ¡ := f¾0g [ §. Elements of ¡ are called nodes
(to be thought of as the \date-events" or simply \events"), and a generic node is denoted
¾. Given a node ¾ 2 §, t(¾) denotes the value of t at which ¾ 2 §t. Clearly, a node
¾ 2 §t is nothing but a string of states (¾0; s1; s2; ¢ ¢ ¢ ; st) where s¿ 2 S denotes the state
realized at date ¿ , ¿ = 1; ¢ ¢ ¢ ; t (¾0 is the realization at the initial date). It follows that the
predecessor of a node ¾ 2 §t is uniquely de¯ned and it will be denoted by ¾¡1, an element
of §t¡1; the set of immediate successor nodes of a node ¾ is denoted ¾+. A path is de¯ned
by an in¯nite sequence of nodes f¾tgt¸1 such that, for all t ¸ 1, ¾t is the predecessor of
¾t+1; ¾

1 will denote a path.
One commodity is available for consumption at each node ¾ 2 §.
At each node ¾ 2 §, a generation of agents, denoted H, is born, where H := #H. A

member of generation ¾ of type h 2 H is denoted (¾; h). In addition, there is a set, H,
of H agents who enter the economy at each node ¾ 2 §1 at date 1; they constitute the
generation of the \initial old", and are denoted (¾; o; h); where ¾ 2 §1. The set of agents
is denoted I where I := (§1 £ fog £ H) [ (§ £H). ¾(i) identi¯es the node at which i
was born; so ¾(i) 2 § with ¾(i) 2 §1 for the initial old.
For i 2 I, §i denotes the set of nodes at which she is alive. We assume that the

initial old live only at the node at which they enter the economy, §i = f¾g if i = (¾; o; h),
so #§i = 1, while every other agent is alive at the node of birth and at every node
which is an immediate successor of the node at which she was born, §i = f¾(i); ¾+g if
i 2 § £H, so #§i = 1 + S. The set of agents alive at a node ¾ is denoted I(¾) where
I(¾) := fi 2 I : ¾ 2 §ig.
Each agent i 2 I is described by a consumption set, Xi ½ R#§i , an endowment vector,

!i = ((!i(¾))¾2§i) 2 Xi, and a utility function, ui : Xi ! R.
There is a set J = f1; 2; ¢ ¢ ¢ ; Jg of one-period lived short maturity assets, with payo®s

(per unit) in the commodity described by the function s : §! RJ . There is also a set of
dividend paying assets of in¯nite maturity, denoted K = f1; 2; ¢ ¢ ¢ ; Kg, with payo®s (per
unit) in the commodity speci¯ed by the function d : § ! RK . Finally, we consider an
asset of in¯nite maturity called ¯at money, denoted m. Fiat money is characterized by
the fact that it never pays a dividend. The set of assets available is A := J [ K [ fmg.
Only the initial old are endowed with these assets and their endowments are denoted

!a(i), a 2 A, i 2 §1£fog£H. A negative endowment of an asset indicates a pre-existing
9We extend the notation developed in Chattopadhyay and Gottardi (1999).
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debt.
We assume that, for every asset, the total endowment is independent of the node at

date t = 1. De¯ne !a :=
P
i2§1£fog£H !

a(i) for a 2 A, the total endowment of each asset.
We introduce a notational convention. For z 2 RJ+K+1 we write z = (zs; zd; zm)

where zs := (z1; z2; ¢ ¢ ¢ ; zJ), zd := (z1; z2; ¢ ¢ ¢ ; zK), and zm := zm. So ! = (!s; !d; !m),
! 2 RJ+K+1, gives the total endowment of each asset.
An asset is an inside asset if its total endowment is zero, i.e., it is in zero net supply.
Denoting !(¾) the total endowment of commodities at node ¾; we have:
!(¾) :=

P
i2I(¾)!i(¾) + !s ¢ s(¾) + !d ¢ d(¾) for ¾ 2 §.

We assume

ASSUMPTION 1:
(i) 1 · H <1, 1 · S <1, 0 · #A <1.
(iia) For all i 2 §1 £ fog £H, !a(i) 2 R for all a 2 A, with !s = 0 and with !d ¸ 0.10
(iib) For all i 2 §1 £ fog £H, §i = f¾(i)g, so #§i = 1,

for all i 2 §£H, §i = f¾(i); ¾(i)+g, so #§i = 1 + S.
(iic) For all i 2 I, Xi = R#§i+ , !i(¾(i)) 2 R+=f0g and ( (!i(¾0))¾02§i=¾(i)) 2 R

(#§i¡1)
+ =f0g;

ui : Xi ! R is C2, strictly monotone, and di®erentiably strictly quasi-concave.
(iii) For all ¾ 2 §, !(¾) 2 R++:
We have imposed monotonicity and a di®erentiable form of strict quasi-concavity of

utility functions, and the condition that every commodity is available in a strictly positive
quantity. We have also imposed the condition that the short maturity assets are inside
assets, a natural restriction, and that the dividend paying assets are available in non-
negative quantities; we have not imposed any restriction on the sign of the total amount
of money in the economy.

A consumption plan for agent i is denoted xi = ((xi(¾))¾2§i) 2 Xi.
The next de¯nition is standard and speci¯es the set of feasible allocations.

DEFINITION 1: A feasible allocation x is given by an array ((xi)i2I) such that
xi 2 Xi for all i 2 I and

P
i2I(¾)xi(¾) · !(¾) for all ¾ 2 §.

We now introduce the notion of equilibrium. Given the nature of the problem, it is
easy to see that the price of the commodity can be normalized to 1 at every node. Asset
prices are denoted q = (qs; qd; qm) 2 RJ+K+1. The vector valued function specifying all
asset prices is denoted q : §! RJ+K+1.
Given q, the vector of asset returns r(¾) := (s(¾); qd(¾)+d(¾); qm(¾)) can be speci¯ed.

This induces r : § ! RJ+K+1, the vector valued function specifying all asset returns.
Evidently, r is a function of q, a fact which we supress in the notation so as not to clutter
it.
Agents choose their asset holdings and consumption levels at a node using their en-

dowments at that node and returns on assets carried over from the previous node. For
i 2 I, let µ(i) 2 RJ+K+1, denote an agent's portfolio. Let µ = ( (µ(i))i2I) denote the
array which speci¯es asset holdings for all agents.

10The notation 0 denotes the vector (0; 0; ¢ ¢ ¢ ; 0) in a space of conformal dimension.
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We can now de¯ne a competitive equilibrium. It requires that the allocation of com-
modities is feasible, that the allocation of assets clears asset markets exactly, and that
agents optimize subject to a multiplicity of budget constraints.

DEFINITION 2 (CE-S): (x¤; µ¤; q¤; r¤) is a competitive equilibrium with a sequence of
markets (CE-S) if:
(i) x¤ is a feasible allocation;
(ii) for all ¾ 2 §, Ph2H µ¤(¾; h) = !;
(iii) for all ¾ 2 §, r¤(¾) := (s(¾); q¤d(¾) + d(¾); q¤m(¾));
(iv) for all i 2 §1 £ fog £H, µ¤(i) = !(i) and x¤i = !i + µ

¤(i) ¢ r(¾(i));
(v) for all i 2 §£H,
(a) x¤i (¾(i))+µ

¤(i) ¢ q¤(¾(i)) · !i(¾(i)), x¤i (¾) · !i(¾)+µ¤(i) ¢r¤(¾) for all ¾ 2 ¾(i)+;
(b) if ui(x) > ui(x

¤
i ) for x 2 Xi, then

x(¾(i)) + µ¤(i) ¢ q¤(¾(i)) > !i(¾(i)) or x(¾) > !i(¾) + µ
¤(i) ¢ r¤(¾) for some

¾ 2 ¾(i)+.
REMARK 1: We have imposed the condition that all asset markets must clear exactly,
i.e., we have not allowed for free disposal of assets. We will also treat equilibria with
free disposal of assets in which the obvious changes are made to (ii) in De¯nition 2
(market clearing with a weak inequality, non-negativity of asset prices, and complementary
slackness) and non-negativity of the dividends is imposed as an additional condition. Also,
the de¯nition of equilibrium applies even when markets are sequentially complete, that is,
if at every node the returns from the J +K + 1 assets span RS.

REMARK 2: The model developed above appears to be special to the extent that (i)
the number of agents born at each node, (ii) the number of nodes that succeed any
given node, and (iii) the number of assets of each type and their total endowment, are
all taken to be independent of the node. This is without loss of generality as all our
results go through with a more general speci¯cation (except Theorem 1 which requires a
constant asset endowment) but at the cost of more notation. Furthermore, the notation
and de¯nitions extend in a straighforward manner to the case in which L consumption
goods are traded at each node and asset payo®s are denominated in the ¯rst good, and
the case with a more general demographic structure.
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REMARK 3: The optimization problem solved by an agent i can be written as
maxx;µ ui(x; (!i(¾) + µ ¢ r¤(¾))¾2¾(i)+)
subject to : x+ µ ¢ q¤(¾) · !i(¾(i)).

So each agent, e®ectively, solves an optimization problem with a single budget constraint
and will meet the constraint with equality. This property leads to the constrained opti-
mality of all equilibria in two-period economies in which one consumption good is traded
in each state.

We close the section by introducing a de¯nition of optimality which is used in the
case where markets are sequentially complete. Applying the notion of Pareto e±ciency to
the economy described above, where agents are distinguished by the event at their birth,
yields the criterion of conditional Pareto optimality, ¯rst proposed by Muench (1977):

DEFINITION 3 (CPO): Let x be a feasible allocation. x is conditionally Pareto optimal
(CPO) if there does not exist another feasible allocation bx such that
(i) for all i 2 I, ui(bxi) ¸ ui(xi),
(ii) for some i0 2 I, ui0(bxi0) > ui0(xi0).
A CPO allocation requires that the risk borne in the second period of the agents' lives

be allocated optimally.11

This completes the description of the model. Stationary equilibria of stationary
economies constitute a special case which will be brie°y developed in Section 4c.

3. A LOCAL CONSTRAINED OPTIMALITY RESULT
In this section we gauge the e±ciency properties of competitive equilibria, when in-

tertemporal transfers are carried out via trades in asset markets, by carrying out CPO
comparisons between a given equilibrium allocation and alternative allocations with the
proviso that the alternatives must be induceable as equilibria. We show that there are
no local interventions which can CPO improve under a reasonable de¯nition of post-
intervention equilibria.
Let the planner be constrained to using the existing assets in reallocating resources.

Let the planner directly assign an asset portfolio and a transfer when young after which
agents are allowed to trade in the market for assets where an equilibrium is established;
this allows the determination of consumption when young and old. Since only one con-
sumption good is traded, consumption when old is completely determined by the post-
intervention equilibrium portfolio and asset prices (and the endowment); similarly, con-
sumption when young is determined by the transfer and the post-intervention equilibrium
portfolio. The portfolio chosen will depend on the ¯ner aspects of the intervention, i.e.,
the restrictions that are placed on the set of markets in which the agent can trade; for
example, the agent could have unrestricted access to all asset markets or she could be
prevented from trading in the markets for those assets in which the planner speci¯es an

11For a complete characterization of those competitive equilibrium allocations that are CPO when
markets are sequentially complete and trade takes place in contingent commodities with many goods at
each date, see Chattopadhyay and Gottardi (1999, Theorems 1 and 2).
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assignment for them.12 However, we do not need to specify the details of the intervention
since we can prove our result with a reduced form of interventions in which the following
ingredients are speci¯ed in the post-intervention equilibrium: consumption when young,bxi(¾(i)), the portfolio, bµ(i), and asset prices, bq(¾), for all agents and all nodes, with the
proviso that asset markets clear and the allocation of commodities is feasible. Formally

DEFINITION 4: (bx; bµ; bq; br) is compatible with a post-intervention competitive equilibrium
with a sequence of markets (PI-CE-S) if:
(i) bx is a feasible allocation;
(iia) for all ¾ 2 §1, Ph2H bµ(¾; o; h) = !;
(iib) for all ¾ 2 §, Ph2H bµ(¾; h) = !;
(iii) for all ¾ 2 §, br(¾) := (s(¾); bqd(¾) + d(¾); bqm(¾));
(iva) for all i 2 §1 £ fog £H, bxi = !i + bµ(i) ¢ br(¾(i));
(ivb) for all i 2 §£H, bxi(¾) = !i(¾) + bµ(i) ¢ br(¾) for all ¾ 2 ¾(i)+.
DEFINITION 5: Let (x¤; µ¤; q¤; r¤) be a CE-S. x¤ is constrained CPO if there is no bx
which is a CPO improvement over x¤ and there exist bµ, bq and br such that (bx; bµ; bq; br) is
PI-CE-S.

We can now state our result which shows that if attention is restricted to interventions
that induce equilibria that are nearby, then every non-monetary equilibrium allocation is
constrained CPO, i.e., a form of optimality which takes into account the incompleteness
of the market reigns even though asset prices are allowed to adjust to clear markets.
The result is obtained by using the agents' ¯rst order conditions for choosing the optimal
portfolio to write the change in utility induced by a move from one equilibrium to a nearby
one in terms of the marginal utility at the initial equilibrium and the prices of the assets.
The restriction to nearby equilibria allows us to ignore changes in the derivative of the
utility function of an agent when the allocation changes.13

THEOREM 1: Let (x¤; µ¤; q¤; r¤) be a non-monetary competitive equilibrium with a se-
quence of markets (CE-S) and suppose Assumption 1 holds. Assume that x¤i 2 R1+S++ , for
all i 2 §£H. There exists an ² > 0 such that x¤ is constrained CPO in an ²-neigbourhood
of (x¤; µ¤; q¤; r¤) in the sup norm.

For the result to go through it is essential that asset markets clear exactly and that
the aggregate endowment of assets not change across nodes. The latter restriction is
reasonable for non-monetary assets but not for ¯at money whose endowment can be
changed costlessly. The same result holds in the uninteresting case of monetary equilibria
with a ¯xed endowment of money; hence, we state the result only for non-monetary
equilibria.

4a. A DIFFERENT DEFINITION OF CONSTRAINED OPTIMALITY

12For the two period model, Geanakoplos and Polemarchakis (1986) consider the case in which all the
asset markets are closed for all agents.
13To our knowledge, most analyses of constrained optimality are local; an example due to Hart (1975)

is an exception.
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The result in the previous section is quite disturbing since it applies even when markets
are sequentially complete. It appears to indicate that the Samuelson problem of passing
chocolates from young to old vanishes when one considers the more realistic structure in
which intertemporal transfers are carried out via trades in non-monetary assets instead
of trade in an ethereal market for contingent commodities. Alternatively, it indicates
that the appropriate de¯nition of constrained optimality is a di®erent one. We propose
a possible alternative de¯nition which shows that the Samuelson problem continues to
a®ect the non-monetary equilibria of the model.
The result in Theorem 1 depends crucially on the fact that all asset markets clear

exactly. Such a restriction makes sense when the asset in question is in zero net supply;
not imposing the restriction on assets in positive net supply is a possibility. So consider an
intervention in which the planner is allowed to \con¯scate" a part of the asset endowment.
A reassignment of consumption when young and of the assets is carried out and post-
intervention trade in assets is not permitted; as a consequence, asset prices are not allowed
to change. This induces an allocation of commodities which is required to be feasible.
More speci¯cally, feasibility of the asset reassignment is imposed in the following form:

the aggregate holding of every non-monetary asset is required to be between zero and the
endowment of the asset in question; in particular, the aggregate holding of every inside
asset is required to be zero. The aggregate holding of money is allowed to exceed or fall
short of the endowment in absolute value to accomodate monetary policy, though only in
a rudimentary manner. So the planner is not allowed to create or destroy the endowment
of assets (except money) but can decide to not allocate the entire stock of those assets
which are in positive net supply; this requirement seems to be reasonable.
The change in consumption when young is induced by using taxes and subsidies while

the change in consumption when old is induced by the change in the portfolio of existing
assets. The allocation of commodities must be feasible; so, even though the planner can
decide to assign less of some dividend paying asset than its endowment, this possibility
does not a®ect the aggregate feasibility constraint. This is particularly important in the
case of an asset whose total return is negative at a node, so that it reduces the endowment
of the economy, as in such a case the planner would want to \freely dispose" of the asset
thereby preventing the loss of resources; as we shall see, it is this feature which drives the
characterization results that we obtain.

12



DEFINITION 6: bx is q-constrained feasible, for q : § ! RJ+K+1 a speci¯cation of asset
prices, if there exists ((bµ(i))i2I) such that:
(i) bx is a feasible allocation;
(iia) for all ¾ 2 §1,
0 · P

h2H bµa(¾; o; h) · !a, a 2 J [K; jPh2H bµm(¾; o; h)¡ !mj · H ¢¢M , ¢M ¸ 0;
(iib) for all ¾ 2 §,
0 · P

h2H bµa(¾; h) · !a, a 2 J [K; jPh2H bµm(¾; h)¡ !mj · H ¢¢M , ¢M ¸ 0;
(iii) for all ¾ 2 §, br(¾) := (s(¾); bqd(¾) + d(¾); bqm(¾));
(iva) for all i 2 §1 £ fog £H, bxi = !i + bµ(i) ¢ br(¾(i));
(ivb) for all i 2 §£H, bxi(¾) = !i(¾) + bµ(i) ¢ br(¾) for all ¾ 2 ¾(i)+.
DEFINITION 7: An allocation x is q-constrained CPO if there is no bx which is q-
constrained feasible and a CPO improvement over x.

The fact that asset prices are held ¯xed in De¯nition 6 may seem like a major drawback.
However, a minor change in the de¯nition allows us to incorporate the possibility of
allowing local price changes in response to the changed situation in asset demand and
supply.
This completes the discussion of the notion of constrained optimality that we shall

use; its implications are the subject of the next two sub-sections.

4b. A COMPLETE CHARACTERIZATION RESULT
In this sub-section we state our main result; we provide a complete characterization, in

terms of asset prices and dividends, of those competitive equilibrium allocations that are
optimal under a criterion that takes into account the fact that markets are incomplete and
that assets are not freely disposable (De¯nition 7). The result also applies when markets
are sequentially complete and/or assets are freely disposable. It uses in an essential way
the fact that the asset reallocations need not meet the feasibility restriction with equality.
The characterization result that we present becomes all the more interesting in the light
of Theorem 1, i.e., the fact that with a notion of optimality in which asset markets clear
exactly and asset prices adjust (De¯nition 5), non-monetary equilibria are necessarily
locally constrained CPO. For notational convenience, we state the result for the case
where asset prices are held ¯xed, as in De¯nitions 6 and 7, even though the result goes
through when local changes to asset prices are permitted.
Our result is a criterion of the type ¯rst obtained by Cass (1972) and it is well known

that a pair of curvature conditions are an essential ingredient in generating the result;
for su±ciency one needs to impose a uniformity condition that the curvature of every
agent's upper contour set at the competitive allocation exceeds a strictly positive number
(the condition is slightly stronger than di®erentiable strict quasi-concavity of the utility
function of every agent) while for necessity one needs to impose a ¯nite upper bound on
the curvature of every agent's upper contour set at the competitive allocation. We use
½
i
and ¹½i to denote the greatest lower bound and the least upper bound, respectively, on

the curvature of an agent's upper contour set at the competitive allocation.14

14Precise statements of the de¯nitions of the bounds on the curvature of an agent's indi®erence surface,
and su±cient conditions under which they are well de¯ned, are notationally heavy; for the case in which
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We introduce a bit of notation. Given an equilibrium (x¤; µ¤; q¤; r¤) and a function
f : (§1 £ fog) [ §! RJ+K+1, induce the functions Pf : §! R and Cf : §! R

Pf(¾) := f(¾; o) ¢ r¤(¾) for all ¾ 2 §1 Pf(¾) := f(¾¡1) ¢ r¤(¾) for all ¾ 2 [t¸2§t
Cf(¾) := f( ¾) ¢ q¤(¾) for all ¾ 2 §:

The function f should be thought of as specifying a feasible variation of the equilbrium
portfolio where the initial old are explicitly taken into account; Pf identi¯es the payo®
from the portfolio at di®erent nodes, while Cf identi¯es the cost of the portfolio. Of
course, there is no way to set the cost of the variation to the initial old.
We need two additional concepts. Given ~¾ 2 ¡, we de¯ne a sub-tree (of the tree ¡)

with root ~¾, denoted ¡~¾, as a collection of nodes such that ¡~¾ itself is a tree with ~¾ as
its root. A path in the sub-tree ¡~¾, denoted ¾

1(¡~¾), is a collection of nodes which are
ordered by precedence and for t ¸ t(~¾) all the nodes are elements of the sub-tree, i.e.,
¾1(¡~¾) ½ f¾11 ; ¾12 ; ¢ ¢ ¢ ; ¾1t(~¾)¡1g [ ¡~¾, where ¾1t denotes the tth coordinate of the path.

We can now state our characterization result.15

THEOREM 2 (Su±ciency): Let (x¤; µ¤; q¤; r¤) be a competitive equilibrium with a sequence
of markets (CE-S) and suppose Assumption 1 holds. Assume that x¤i 2 R1+S++ , for all
i 2 §£H, and that there are real numbers  > 0 and ½ > 0 such that
(i) !(¾) ·  for all nodes ¾ 2 §, and (ii) ½ · ½

i
for all i 2 §£H.

If the equilibrium allocation is not q¤-constrained CPO then there exists a sub-tree ¡~¾,
with ~t := t(~¾) ¸ 1, a function ¹¢µ : (§1 £ fog) [ § ! RJ+K+1, and real numbers ¹P > 0
and B > 0, such that
(a) ¹¢µs(¾) = 0; ¡(1=H)!d · ¹¢µd(¾) · 0; and j ¹¢µm(¾)¡ (1=H)!mj · ¢M ,
(b) 0 < P ¹¢(¾) · ¹P and 0 < C ¹¢(¾) if ¾ 2 ¡~¾,

¡ ¹P · P ¹¢(¾) · 0 for every ¾ such that ¾¡1 2 ¡~¾ and ¾ =2 ¡~¾,
(c) for every path ¾1(¡~¾) in the sub-tree

¦t¿=~t

" P ¹¢(¾¿ )
C ¹¢( ¾¿ )

#
· 1 for all t ¸ ~t; and limT!1

TX
t=~t

(
¦t¿=~t

"P ¹¢( ¾¿ )
C ¹¢( ¾¿ )

#)
C ¹¢(¾t) · B:

THEOREM 3 (Necessity): Let (x¤; µ¤; q¤; r¤) be a competitive equilibrium with a sequence
of markets (CE-S) and suppose Assumption 1 holds. Assume that x¤i 2 R1+S++ , for all
i 2 § £ H, and that there are real numbers " > 0 and ¹½ > 0, and a sub-tree ¡~¾, with
~t := t(~¾) ¸ 1, such that for all nodes ¾ 2 ¡~¾ there exists an agent h¾ 2 H for whom (i)
¹½ ¸ ¹½¾;h¾ , (ii) x

¤
¾;h¾ ¸ " ¢ 1(1+S)£1.

If there exist a function ¢µ : (§1 £ fog) [ § ! RJ+K+1, and real numbers ¹P > 0 and
B > 0, such that
(a) ¢µs(¾) = 0; ¡(1=H)!d · ¢µd(¾) · 0; and j¢µm(¾)¡ (1=H)!mj · ¢M ,
markets are assumed to be sequentially complete, a detailed description can be found in Chattopadhyay
and Gottardi (1999 De¯nitions 4 and 5 and Lemma 1). Given our assumption of di®erentiable strict
quasi-concavity and smoothness of the utility function, a parallel development can be carried out for the
case of asset markets which is why we do not formalize the concepts.
15For a vector x 2 RN , k x k:= (PN

i=1 x
2
i )
1=2
, the usual Euclidean norm.
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(b) 0 < P¢(¾) · ¹P and 0 < C¢(¾) if ¾ 2 ¡~¾,
¡ ¹P · P¢(¾) · 0 for every ¾ such that ¾¡1 2 ¡~¾ but ¾ =2 ¡~¾,

(c) for every path ¾1(¡~¾) in the sub-tree:

¦t¿=~t

"P¢( ¾¿ )
C¢( ¾¿ )

#
· 1 for all t ¸ ~t; and limT!1

TX
t=~t

(
¦t¿=~t

"P¢( ¾¿ )
C¢( ¾¿ )

#)
C¢( ¾t) · B;

then the equilibrium allocation is not q¤-constrained CPO.

REMARK 4: Assets in zero net supply do not play any role in the criterion that we
obtain (see the ¯rst part of the condition labelled (a) in each result) since they do not
play any role in determining the possibilities for intertemporal reassignments; if there are
no assets of in¯nite maturity in non-zero net supply, then all equilibria are necessarily q¤-
constrained CPO. However, every non-redundant asset is important in that it contributes
towards determining the equilibrium; in particular, enough inside assets can lead to a
sequentially complete market (a case in which our result applies) where the only source of
ine±ciency is the in¯nite horizon. But given an equilibrium, the existence of intertemporal
improvements is determined without reference to the assets in zero net supply.

From here onwards by the usual assumptions we will mean that Assumption 1 holds,
the aggregate endowment is uniformly bounded above across nodes, the allocation is
uniformly interior for all agents in all coordinates, and the curvature of every agent's
upper contour set lies in a compact subset of the strictly positive real numbers. These
assumptions are easy to state and can be expected to hold in applications even though
they are much stronger than the ones under which Theorem 2 or Theorem 3 holds.
The characterization result can be paraphrased as follows: Under the usual assump-

tions, a q¤-constrained improvement over an equilibrium allocation exists if and only if
there is (a1) a set of nodes which form a sub-tree, denoted ¡~¾, and (a2) a portfolio, de-
noted ¹¢µ or ¢µ, which is a feasible variation on the equilibrium asset allocation as per
(ii) in De¯nition 6, with the property that (b) for every node in ¡~¾, a node which is its
immediate successor is also included in ¡~¾ if and only if the portfolio has a positive payo®
at that successor node (in particular, there is at least one such successor node) and the
payo® from the portfolio is uniformly bounded across ¾ such that ¾¡1 2 ¡~¾, and (c1)
the random discount factors, determined by the product along nodes of the return on the
portfolio at a node (where the return at a node is speci¯ed by dividing the payo® from the
portfolio carried from the previous node by the value of the portfolio at the node, denoted
P ¹¢=C ¹¢), are strictly positive and uniformly bounded across nodes in ¡~¾ at which they
are evaluated, and (c2) the value of the portfolio, calculated by considering the sum of
the price at which the portfolio can be bought discounted by the random discount factors
mentioned above, is strictly positive, converges along the path, and is uniformly bounded
across paths in ¡~¾.
The essence of the proof consists in showing that an improvement exists if and only if

there exists a set of nodes such that the per capita value of the net transfer to the agents
of a generation increases at a quadratic rate as we move to successive generations; this
happens since preferences are assumed to be strictly convex and monotone. Since we work
with asset markets, and the improvement is restricted to be one that can be obtained via

15



a reallocation of existing assets, we are able to use the no arbitrage property of asset
prices to write the values of the net transfers in terms of asset prices and the portfolio
¹¢µ, or ¢µ, a feasible variation on the equilibrium asset allocation. A complication arises
due to the fact that asset payo®s are unrestricted in sign, so that for a given portfolio a
node could have successors at which the payo® is positive and other successors at which
the payo® is negative; we need to separate these nodes and do so by showing that for
the portfolio ¹¢µ, or ¢µ, the ones with positive payo® have the structure of a sub-tree.
In addition, because asset payo®s are unrestriced in sign, in Theorem 3 we need to work
harder to guarantee that the allocation that is constructed leaves every agent with a vector
in his consumption set which is why we require that the equilibrium consumption vector
be uniformly interior in every coordinate. Finally, one uses the fact that the payo® of
the portfolio ¹¢µ, or ¢µ, is uniformly bounded to obtain the boundedness of the discount
factors and the convergence of the family of sums stated as condition (c) in the theorems
as a necessary and su±cient condition for the existence of an improvement.
In the skeleton of the argument one ¯nds the seminal proof in Cass (1972).16 One

expects some extension of the Cass result to an environment with uncertainty to hold.
Since we work with asset payo®s that are unrestricted in sign and a constrained notion of
an improvement, the extension is neither obvious nor simply a matter of cranking through
in a mechanical manner. When we compare our results with earlier results on the Cass
criterion we see that a very important di®erence is that our conditions for necessity are
stronger since we require that the payo® of the portfolio be uniformly bounded (which
can be ensured by assuming that the aggregate endowment is uniformly bounded) and
that consumption is uniformly interior in every coordinate; we need these conditions since
asset payo®s are unrestricted in sign. Also, the no arbitrage property of asset prices plays
a very important role. The proofs that we give are self-explanatory because of which we
prefer not to discuss them in the main text.

REMARK 5: Since the portfolio ¹¢µ, or ¢µ, is uniformly bounded, one can also consider
an alternative formulation of the result in which one uses normalized versions of the
functions P ¹¢ and C ¹¢, obtained by dividing them by the norm of the portfolio, and one
restricts their domain of de¯nition to the set of nodes on which the norm is positive, i.e.,
to the sub-tree that is identi¯ed; this manouvre only changes the values of the constants
which give the bounds on the series that appear in Theorems 2 and 3. The reformulation
is particularly useful when one deals with the case in which there is only one long-lived
asset since the normalized portfolio appears with values in the set f¡1; 1g.

4c. SOME SPECIAL CASES
In this sub-section we turn to see what the result has to say in cases of particular

interest. Doing so gives us additional insight into the nature of the characterization.

One Asset

16Chattopadhyay and Gottardi (1999) provide a discussion and a detailed bibliography of the many
re¯nements to Cass' proof.
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Consider ¯rst the case in which there is only one dividend paying asset and no money.

COROLLARY 1: Let (x¤; µ¤; q¤; r¤) be a competitive equilibrium with a sequence of mar-
kets (CE-S) under the usual assumptions. Suppose that K = 1 and that ¯at money is not
available as an asset. The equilibrium allocation is not q¤-constrained CPO if and only if
there exists a sub-tree, ¡~¾ with ~t := t(~¾), and real numbers ¹P > 0, A > 0, and C > 0,
such that
¡ ¹P · r¤d(¾) < 0 and q¤d(¾) < 0 if ¾ 2 ¡~¾,
0 · r¤d(¾) · ¹P for every ¾ such that ¾¡1 2 ¡~¾ and ¾ =2 ¡~¾,
and on every path in the sub-tree

0 < ¦t¿=~t

"
r¤d(¾¿ )
q¤d(¾¿ )

#
· A for all t ¸ ~t; and

0 < limT!1
TX
t=~t

¦t¿=~t

"
r¤d(¾¿ )
q¤d(¾¿ )

#
[¡q¤d(¾t)] · C:

The proof follows from the reformulation of the result noted in Remark 5. Since
the only asset is a long-lived dividend paying one, the feasibility condition on asset re-
allocations implies that ¹¢µ(¾) · 0 so that ( ¹¢µ(¾)= k ¹¢µ(¾) k) = ¡1 for all nodes ¾
in the sub-tree; it su±ces to substitute these values into the criterion obtained in the
reformulation after writing out explicitly the functions P ¹¢ and C ¹¢.
If the only asset of in¯nite maturity is ¯at money then we have

COROLLARY 2: Let (x¤; µ¤; q¤; r¤) be a competitive equilibrium with a sequence of mar-
kets (CE-S) under the usual assumptions. Suppose that K = 0 but that ¯at money is
available as an asset. The equilibrium allocation is not q¤-constrained CPO if and only if
there exists a sub-tree, ¡~¾ with ~t := t(~¾), a function ¹¢µ : (§1 £ fog)[§! R, and a real
number B > 0, such that
sign q¤m(¾) = sign q

¤
m(~¾) if ¾ 2 ¡~¾,

sign q¤m(¾) 6= sign q¤m(~¾) for every ¾ such that ¾¡1 2 ¡~¾ but ¾ =2 ¡~¾,

sign ¹¢µ(¾) = sign ¹¢µ(~¾¡1) for all ¾ 2 ¡~¾;

and on every path

0 < limT!1 ¹¢µ(~¾¡1)
TX
t=~t

q¤m( ¾t) · B:

The proof follows since, using the fact that the only long-lived asset is money,

¦t¿=~t

"P ¹¢(¾¿ )
C ¹¢(¾¿ )

#
= ¦t¿=~t

"
¹¢µ( ¾¿¡1) ¢ q¤m(¾¿ )
¹¢µ(¾¿ ) ¢ q¤m(¾¿ )

#
=
¹¢µ(~¾¡1)
¹¢µ(¾t)

showing that the portfolio variation must have the same sign at every node in the sub-
tree since the random discount factors are positive. Further, the condition on the series
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in Theorems 2 and 3 becomes

limT!1
TX
t=~t

(
¦t¿=~t

"P ¹¢( ¾¿ )
C ¹¢(¾¿ )

#)
C ¹¢( ¾t) = limT!1

TX
t=~t

(
¹¢µ(~¾¡1)
¹¢µ(¾t)

)
¹¢µ( ¾t) ¢ q¤m(¾t)

= limT!1 ¹¢µ(~¾¡1)
TX
t=~t

q¤m( ¾t) · B:

Finally, the conditions on the functions P ¹¢ and C ¹¢ take the form
0 < ¹¢µ(¾¡1) ¢ q¤m(¾) · ¹P and 0 < ¹¢µ(¾) ¢ q¤m(¾) if ¾ 2 ¡~¾,
¡ ¹P · ¹¢µ(¾¡1) ¢ q¤m(¾) · 0 for every ¾ such that ¾¡1 2 ¡~¾ but ¾ =2 ¡~¾.

Since we have shown that sign¢µ(¾) = sign¢µ(~¾¡1) for all ¾ 2 ¡~¾; we are led to conclude
that
sign q¤m(¾) = sign q

¤
m(~¾) if ¾ 2 ¡~¾,

sign q¤m(¾) 6= sign q¤m(~¾) for every ¾ such that ¾¡1 2 ¡~¾ but ¾ =2 ¡~¾.
As a special case, under certainty and free disposal of money we have:

COROLLARY 3: Let (x¤; µ¤; q¤; r¤) be a competitive equilibrium with a sequence of mar-
kets (CE-S) under the usual assumptions. Suppose that K = 0 but ¯at money is available
as an asset. Suppose further that there is no uncertainty, S = 1, and that money is freely
disposable. The equilibrium allocation is not q¤-constrained CPO if and only if there exists
a real number A > 0, such that

0 < limT!1
TX
t=~t

q¤t · A :=
B

¹¢µ(~¾¡1)
:

The proof follows since the price of money is non-negative by free disposal. So,
¹¢µ(~¾¡1) > 0 by the condition in Corollary 2 stating that the series is positive. Now
the result is a restatement of Corollary 2.

In Corollary 3 we recover the classical Cass criterion for one-good deterministic OLG
economies since the discounted price of the commodity can be identi¯ed with the reciprocal
of the price of money. Furthermore, it shows that our characterization result applies to
economies with sequentially complete markets and that in such economies all equilibrium
allocations need not always be q¤-constrained CPO.

Free Disposal of Assets
An extremely important special case is the one in which assets are freely disposable

and dividends are non-negative. Corollary 3 has shown that one cannot rule out the
possibility of ine±ciency even with free disposability of assets if ¯at money is one of the
assets; hence, we assume that ¯at money is not available.

PROPOSITION 1:17 Let (x¤; µ¤; q¤; r¤) be a competitive equilibrium with a sequence of
markets (CE-S) under the usual assumptions. Suppose that ¯at money is not available as

17For the special case of stationary equilibria with a single dividend paying asset, Chattopadhyay and
Jimenez (2000) provide a simple proof of this result.
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an asset and that dividends are always non-negative and the assets are freely disposable,
d : §! RK+ and q

¤ : §! RK+ . Then the equilibrium allocation is q¤-constrained CPO.

Proposition 1 is proved by noting that free disposal of the asset together with the fact
that dividends are non-negative, q¤(¾) ¸ 0 and d(¾) ¸ 0, and the fact that there is no
money in the economy, so ¹¢µ(¾) · 0, implies that the value of the change in any possible
portfolio reassignment is necessarily non-positive at all nodes, P ¹¢(¾) · 0, and so is the
cost of the possible portfolio reassignment, C ¹¢(¾) · 0. But then the series in Theorem 2
cannot be positive contradicting an implication of the existence of an improving allocation.

Allowing money to be one of the long-lived assets in Proposition 1 breaks the result.
The reason is that we have allowed the quantity of money to be increased and decreased
so that even if its price is positive, its net payo® can be positive if ¢µ(¾) > 0 at some
nodes, i.e., in°ationary policies might lead to an ine±ciency which free disposal is unable
to cure.

Sequentially Complete Markets
Evidently, our characterization result also applies when markets are sequentially com-

plete so that agents can insure against all risks that arise after their birth. We now show
that our result covers a wider range of situations relative to existing results on optimality
with sequentially complete markets.
Consider the result obtained by applying Proposition 1 to an economy with sequen-

tially complete markets. Adapting Santos and Woodford (1997) to our framework, one
shows that if dividends are non-negligible then the allocation in every free disposal equi-
librium with sequentially complete markets is CPO; their proof extends an argument due
to Wilson (1981). Our proof does not require the additional condition of non-negligibility
since it is based on Theorem 2 which takes into account the second order e®ects on util-
ity induced by the reallocation. More generally, the characterization result in terms of
contingent claims prices obtained by Chattopadhyay and Gottardi (1999) can be used to
determine whether an equilibrium allocation is CPO when markets are sequentially com-
plete; this can be done by constructing the contingent claims prices from asset prices.18

However, there is an important caveat. There could exist an equilibrium with a sequence
of markets which cannot be represented as an equilibrium in contingent commodity mar-
kets. This happens when the dividend paying asset is not freely disposable. Brock (1990)
gives a robust deterministic example of such a phenomenon; extensions to stochastic en-
viroments are easy to obtain. Since Chattopadhyay and Gottardi restrict attention to
allocations that can be obtained via trade in ex-ante contingent commodities and their
agents have endowments only during their lifetimes, their results cannot be applied; how-
ever, our result allows us to determine the optimality properties of the allocation in such
cases (in the speci¯c case of Brock's example the allocation is ine±cient).

Stationary Equilibrium
We turn to the case in which the equilibrium is stationary which is of particular

interest. We will provide results which are analogues of the results in Corollaries 1 and 2.

18The contingent claims prices are unique upto normalization, when markets are sequentially complete
(see, e.g., Santos and Woodford (1997)).
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We assume that the economy is stationary, i.e., that the characteristics (endowments
and utility functions) of each agent only depend on the realizations of the state during her
lifetime, not on time nor on past realizations. Elements of S can now be interpretated as
the realizations of a time homogeneous Markov process. Given a node ¾ let s(¾) denote
the realization of the Markov state. Stationarity of the environment requires that the
characteristics of the agents born at a node ¾ and the payo®s of the assets at a node
¾ depend only on s(¾) 2 S. This lets us convert the general model of Section 2 into a
stationary one.

DEFINITION 8: An economy is stationary if for all (¾; b¾) 2 §£ §, s(¾) = s(b¾) implies
that X¾;h = Xb¾;h := Xs(¾);h, !¾;h = !b¾;h := !s(¾);h, u¾;h = ub¾;h := us(¾);h, s(¾) = s(b¾) :=
ss(¾) and d(¾) = d(b¾) := ds(¾).
Under stationarity, asset returns will be denoted ((ds)s2S) 2 RS since we will have

either one or no long-lived dividend paying asset. Stationary prices of the assets will be
denoted qs := (qs;s; qd;s; qm;s), s 2 S.
Stationarity of the equilibrium requires that, given stationary prices, x¾;h = xs(¾);h for

all (¾; h) 2 § £ H (i.e., the consumption allocation of each agent only depends on the
state at the date of his birth and not on the past). Stationary asset demands will be
denoted by µ(s; h) where (s; h) 2 S £H.19 We can now de¯ne a stationary competitive
equilibrium.

DEFINITION 9 (SCE-S): (x¤; µ¤; (q¤1; ¢ ¢ ¢ ; q¤S); (r¤1; ¢ ¢ ¢ ; r¤S)) is a stationary competitive equi-
librium with a sequence of markets (SCE-S) if it is a CE-S such that
for all (¾; b¾) 2 §£ §, if s(¾) = s(b¾) then x¾;h = xb¾;h and µ(¾; h) = µ(b¾; h).

REMARK 6: We make no claims regarding existence; results on existence are available
in certain special cases, e.g., when the only long-lived asset is money.

PROPOSITION 2:20 Let (x¤; µ¤; (q¤1; ¢ ¢ ¢ ; q¤S); (r¤1; ¢ ¢ ¢ ; r¤S)) be a stationary competitive equi-
librium with a sequence of markets (SCE-S) and suppose Assumption 1 holds. Suppose
that K = 1 and that ¯at money is not available as an asset. An interior equilibrium
allocation is not q¤-constrained CPO if and only if the set ¹S := fs 2 S : r¤d;s < 0g is
non-empty, ¹S 6= ;, and such that 0 < r¤d;s=q¤d;s < 1 for all s 2 ¹S in which case there exists
a stationary improvement.

To prove Proposition 2, we invoke Corollary 1. If the allocation is not q¤-constrained
CPO then there exists a sub-tree on which the discount factors are uniformly bounded, a
family of sums converges, r¤d;s(¾) < 0 and q

¤
d;s(¾) < 0 if ¾ 2 ¡~¾, and 0 · r¤d;s(¾) for every ¾

such that ¾¡1 2 ¡~¾ but ¾ =2 ¡~¾; it follows that there are Markov states for which r¤d;s < 0,
and for every Markov state ¹s for which r¤d;¹s < 0, there is a node ¹¾ 2 ¡~¾ with r¤d;s(¹¾) < 0.
19We also need to specify the characteristics and behaviour of the initial old. The way in which this

is done is important for questions which deal with existence of equilibrium. Since our interest is in
optimality, we shall be sloppy and forego a full speci¯cation of the model.
20In Propositions 2 and 3 we no longer need to add \under the usual assumptions" since stationar-

ity of the equilibrium together with Assumption 1 and interior consumption guarantee that the usual
assumptions hold.
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In other words the Markov states that appear in the sub-tree ¡~¾ are exactly the ones in
¹S. Also, q¤d;s < 0 if s 2 ¹S. If it were to be the case that 1 · r¤d;~s=q

¤
d;~s, for some ~s 2 ¹S,

then, along the path in the sub-tree ¡~¾ in which the realization is always ~s, convergence of
the series would fail since the sum would exceed the expression T ¢ (¡q¤d;~s) which diverges
since q¤d;~s < 0 as ~s 2 ¹S. This proves Proposition 2 in one direction.
Going in the other direction, note ¯rst that 0 < r¤d;~s=q

¤
d;~s < 1 for all s 2 ¹S implies that

q¤d;~s < 0 for all s 2 ¹S since r¤d;~s < 0 for all s 2 ¹S. Now construct the sub-tree generated
by elements of the set ¹S. Given the conditions on asset returns that are satis¯ed in the
states in the set ¹S, the family of sums in Corollary 1 converges, r¤d(¾) < 0 and q¤d(¾) < 0
if ¾ 2 ¡~¾, and 0 · r¤d(¾) for every ¾ such that ¾¡1 2 ¡~¾ but ¾ =2 ¡~¾, on the induced
sub-tree, indicating the existence of an improvement by an application of Corollary 1.
We forego the proof of the existence of a stationary improvement since it is available

in Chattopadhyay and Jimenez (2000).

Consider replacing the dividend paying asset in Proposition 2 with money. The condi-
tion for obtaining a stationary reallocation which also improves can no longer be satis¯ed
( ¹S may be non-empty but since money does not pay a dividend, the condition on the
return being less than one is not satis¯ed). It is easy to show that now the ¯rst order
e®ect of a stationary reallocation of money is zero. So we ¯nd that all stationary mone-
tary equilbrium allocations are optimal, i.e., Corollary 3 on monetary equilibria does not
extend to the case of stationary equilibrium.
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PROPOSITION 3: Let (x¤; µ¤; (q¤1; ¢ ¢ ¢ ; q¤S); (r¤1; ¢ ¢ ¢ ; r¤S)) be a stationary competitive equi-
librium with a sequence of markets (SCE-S) and suppose Assumption 1 holds. Suppose
that K = 0 but ¯at money is available as an asset. If the allocation is interior it is
q¤-constrained CPO.

The proposition is proved by invoking Corollary 2 applied to a stationary equilibrium.
Suppose that the allocation is not optimal. Since sign q¤m(¾) = sign q¤m(~¾) if ¾ 2 ¡~¾,
and the number of Markov states is ¯nite, stationarity of prices implies that the series
cannot converge contradicting an implication of the hypothesis that the allocation is not
optimal.21

Of course, Proposition 1 continues to apply and lets us prove the optimality of interior
stationary equilibrium allocations when assets are freely disposable.

We make a ¯nal comment. It is known that when markets are sequentially complete,
i.e., J +K +1 ¸ S and the assets span RS, a stationary equilibrium at which the agents'
common matrix of marginal rates of intertemporal substitution has a Perron root which is
less than or equal to one is CPO.22 One wonders about the existence of a similar relation-
ship when markets fail to be sequentially complete. We refer the reader to Chattopadhyay
and Jimenez (2000) who show that it is indeed possible to obtain such a unit root type
result even with incompleteness if we assume that dividends are non-negative.

5. PROOFS
We introduce some notational conventions and concepts that will be used throughout.
For each proof, we will consider an equilibrium tuple (x¤; µ¤; q¤; r¤) which will remain

¯xed. We will also use an alternative tuple, denoted (bx; bµ; bq; br), which will be a local
variation of (x¤; µ¤; q¤; r¤) and, in addition, either (i) compatible in the sense of De¯nition
4 or (ii) such that bµ makes bx q¤-constrained feasible, i.e., according to De¯nition 6.
For an agent i, let

¢xi := bxi ¡ x¤i and ¢µ(i) := bµ(i)¡ µ¤(i):
Also, let

¢q(¾) := bq(¾)¡ q¤(¾) and ¢r(¾) := br(¾)¡ r¤(¾):
From the budget constraints and monotonicity of preferences we have, for agent i

x¤i (¾) = !i(¾) + µ
¤(i) ¢ r¤(¾) for all ¾ 2 ¾(i)+:

Also, for the alternative triple, using De¯nition 4 (iv) or De¯nition 6 (iv), we have

bxi(¾) = !i(¾) + bµ(i) ¢ br(¾) for all ¾ 2 ¾(i)+:
Consequently, for agent i and for all ¾ 2 ¾(i)+,

¢xi(¾) = ¢µ(i) ¢ br(¾) + bµ(i) ¢¢r(¾): (1)

21The claim in Gottardi (1996) regarding the suboptimality of stationary monetary equilibria with
money prices changing signs is not clear to us.
22Very di®erent proofs of the same result can be found in Chattopadhyay and Gottardi (1999), Demange

and Laroque (1999), Chattopadhyay (2000).
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Let us de¯ne the aggregate quantities

¹¢x(¾) := (1=H)
X
h2H

¢x¾;h(¾);

¹¢µa(¾) := (1=H)
X
h2H

¢µa(¾; h) for a 2 A;

¹¢µ(¾) := (( ¹¢µa(¾))a2A):

Aggregate feasibility of x¤ and of bx, De¯nition 1, and the fact that, given monotonicity
of preferences, the aggregate feasibility constraint holds with equality in an equilibrium,
implies that

¹¢x(¾) + (1=H)
X
h2H

¢x¾¡1;h(¾) · 0

which, upon substituting (1), leads to

¹¢x(¾) + ¹¢µ(¾¡1) ¢ br(¾) + n
(1=H)

X
h2H

bµ(¾¡1; h)o ¢¢r(¾) · 0 (2)

where ¢r(¾) = (0;¢qd(¾);¢qm(¾)) since dividends don't vary.
We recall the notation for the payo® from a portfolio and its cost, Pf and Cf . If the

portfolio being considered is the change in the average portfolio relative to its value in
the initial equilibrium, ¹¢µ : (§1 £ fog) [ § ! RJ+K+1, the functions P ¹¢ : § ! R and
C ¹¢ : §! R are given by

P ¹¢(¾) := ¹¢µ(¾; o)¢r¤(¾) for all ¾ 2 §1 P ¹¢(¾) := ¹¢µ(¾¡1)¢r¤(¾) for all ¾ 2 [t¸2§t
C ¹¢(¾) := ¹¢µ( ¾) ¢ q¤(¾) for all ¾ 2 §:

So the feasibility condition (2) takes the form

¹¢x(¾) + P ¹¢(¾) +
n
(1=H)

X
h2H

bµ(¾¡1; h)o ¢¢r(¾) · 0: (3)

We turn to notation for marginal utility comparisons.
For f : RN++ ! R, @f(¹x)

@xi
denotes the partial derivative of the function f with respect

to its i-th coordinate evaluated at the point ¹x.
All derivatives will be evaluated at the chosen equilibrium tuple (x¤; µ¤; q¤; r¤); hence,

notation for the allocation being considered will be supressed. For an agent i, @ui
@x¾

will
denote marginal utility from consumption at the node ¾ 2 §i. ¸i(¾) denotes the Lagrange
multiplier on the budget constraint faced by agent i at the node ¾ 2 §i.
The ¯rst order necessary and su±cient conditions for optimization on the part of agent

i at an interior equilibrium allocation are given by:

@ui
@x¾

= ¸i(¾) for all ¾ 2 §i; (4)

¸i(¾(i)) ¢ qa¤(¾(i)) =
X

¾2¾(i)+
¸i(¾) ¢ ra¤(¾) for all a 2 A: (5)
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In particular, equilibrium asset prices satisfy the no arbitrage property of asset prices so
that at any given node ¾ 2 ¡, there exists a vector a¾ 2 RS++ such that

q¤(¾) =
X
¾02¾+

a¾(¾
0) ¢ r¤(¾0): (6)

With these preliminaries in place, we proceed to the proofs of the various results.

PROOF OF THEOREM 1: To economize on notation, we do the proof allowing money to
be traded. This allows us to see clearly that a constant endowment of money has drastic
consequences. Setting the price of money, and its variation, to zero at every node, we
obtain the proof for a non-monetary equilibrium.
Suppose that the allocation is not locally constrained CPO. So, a constrained improve-

ment must exist; denote it (bx; bµ; bq; br), a local variation of (x¤; µ¤; q¤; r¤).
Consider an agent (¾; h). The change in her utility, up to ¯rst order, because of the

change in the allocation, is given by

dui =
@ui
@x¾(i)

¢¢xi(¾(i)) +
X

¾2¾(i)+

@ui
@x¾

¢¢xi(¾)

which, upon using (4) and (1), can be written as

dui = ¸i(¾(i)) ¢¢xi(¾(i)) +
X

¾2¾(i)+
¸i(¾) ¢

n
¢µ(i) ¢ br(¾) + bµ(i) ¢¢r(¾)o: (7)

Since we have assumed that the alternative is a CPO improvement, the term in (7) must
be non-negative for every agent and strictly positive for some agent who could be the
initial old.
By using (5), the ¯rst order condition for optimal portfolio choice, we obtainX

¾2¾(i)+
¸i(¾) ¢¢µ(i) ¢ br(¾) = ¸i(¾(i)) ¢¢µ(i) ¢ bq(¾(i)): (8)

By a similar argumentX
¾2¾(i)+

¸i(¾) ¢ bµ(i) ¢¢r(¾) = ¸i(¾(i)) ¢ bµ(i) ¢¢q(¾(i)): (9)

Using (8) and (9) in (7) and averaging over the set of agents we obtain

(1=H)
X
h2H
(du¾;h=¸¾;h(¾)) = ¹¢x(¾) + ¹¢µ(¾) ¢ bq(¾) + (1=H)X

h2H
(bµ(¾; h)) ¢¢q(¾): (10)

Using the facts that, at every node ¾,

¹¢µ(¾) = 0
X
h2H

bµ(¾; h) = !
since asset markets must clear exactly, in (10), we obtain

(1=H)
X
h2H
(du¾;h=¸¾;h(¾)) = ¹¢x(¾) + (1=H)! ¢¢q(¾)
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which, by the feasibility condition, (2), and the fact that ¢r(¾) = (0;¢qd(¾);¢qm(¾))
implies that

(1=H)
X
h2H
(du¾;h=¸¾;h(¾)) · 0:

So the ¯rst order e®ect is always zero. Hence, the young will never be willing to e®ect
a transfer to the old since the ¯rst order e®ect on utility is zero while the second order
e®ect is necessarily negative because of strict quasi-concavity of the utility functions.
This completes the proof of the non-existence of a constrained improving allocation

which is a local variation and is also an equilibrium.

PROOF OF THEOREM 2: Since the allocation is not q¤-constrained CPO, a constrained
improvement must exist; denote it (bx; bµ). Since both x¤ and bx are q¤-feasible, so is any
convex combination of the two, so that without loss of generality we can assume that bx
is a local variation of x¤.
As in the proof of Theorem 1, (7), rewritten below, gives an evaluation of the change

in the utility, up to ¯rst order, of an agent i because of the reallocation:

@ui
@x¾(i)

¢
n
¢xi(¾(i)) + ¢µ(i) ¢ q¤(¾(i)) + bµ(i) ¢¢q(¾(i))o:

However, ¢qa(¾) = 0 for all a 2 A by the nature of the improvement being considered
since asset prices do not change. This leads to

@ui
@x¾(i)

¢
n
¢xi(¾(i)) + ¢µ(i) ¢ q¤(¾(i))

o
:

Strict convexity of preferences implies that we need to take into account the second
order e®ect in order to ensure that we have a weak improvement. So it is not su±cient
that the expression above be non-negative for every agent; it must exceed a quadratic
term given by23

½
i
¢
h
@ui
@x¾(i)

¢¢xi(¾(i))
i2

@ui
@x¾(i)

;

where ½
i
is the greatest lower bound on the curvature of the upper contour set of agent i at

the competitive allocation. So in order to have an improvement, the following inequality
must hold for every agent and must be strict for some agent:

@ui
@x¾(i)

¢
h
¢xi(¾(i)) + ¢µ(i) ¢ q¤(¾(i))

i
¸ ½

i
¢
h
@ui
@x¾(i)

¢¢xi(¾(i))
i2

@ui
@x¾(i)

: (11)

By averaging the inequality in (11) across agents born at the same node, and using
Jensen's Inequality applied to a quadratic function, we obtain

¹¢x(¾) + C ¹¢(¾) ¸ ½ ¢ [ ¹¢x(¾)]2 (12)

23See De¯nition 4 and Lemma 1 in Chattopadhyay and Gottardi (1999) for an explicit derivation of
the required quadratic term in a related context. A similar argument can be used here.
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(using the function C ¹¢ that we introduced earlier) since ½i ¸ ½ > 0 by hypothesis (ii)
in Theorem 2 on the existence of a positive lower bound on the curvature of the upper
contour sets. If an improvement exists then (12) must hold at every node ¾ 2 § with a
strict inequality at some node.
By the feasibility condition on the reallocation of assets ¹¢µs(¾) = 0, since the short ma-

turity assets are in zero net supply, ¡(1=H)!d · ¹¢µd(¾) · 0, and j ¹¢µm(¾)¡ (1=H)!mj ·
¢M: This lets us induce a function, denoted ¹¢µ : (§1 £ fog) [ §! RJ+K+1, which has
all the properties stated in the theorem.
Aggregate feasibility of x¤ and of bx, taking into account the fact that asset prices do

not change, implies that (3) takes the form

¹¢x(¾) + P ¹¢(¾) · 0: (13)

To be able to construct the sub-tree that interests us, we will need an implication of
the no arbitrage property of asset prices. Given a node ¾ 2 §, let A(¾) denote the set of
immediate successors at which the payo® from the portfolio is positive, i.e.,

A(¾) := f¾0 2 ¾+ : P ¹¢(¾0) > 0g:
Using the no arbitrage property of asset prices, (6), we have that for every node ¾ 2 §
there is a¾ 2 RS++ such that

C ¹¢(¾) = a¾ ¢ ((P ¹¢(¾0))¾02¾+): (14)

A direct implication of (14) is that if C ¹¢(¾) > 0 then A(¾) 6= ;:
We now identify the root of the sub-tree that interests us. First we show that P ¹¢(¾) =

0 for all ¾ 2 § cannot hold. If P ¹¢(¾) = 0 for all ¾ 2 § then, by (13), ¹¢x(¾) · 0 for all
¾ 2 §, while, by (14), C ¹¢(¾) = 0 for all ¾ 2 §, so that (12) can never hold with a strict
inequality contradicting the existence of an improvement.
Let ¹¾ be such that P ¹¢(¹¾) 6= 0 and P ¹¢( ¾) = 0 for all ¾ such that t(¾) < t(¹¾). In

the partial order of dates, ¹¾ is the \¯rst node" (it need not be the unique node with this
property) with non-zero aggregate transfer to the old. We proceed to verify the existence
of a node ~¾ 2 ¹¾+¡1 with the additional property that P ¹¢(~¾) > 0. By the de¯nition of ¹¾,
P ¹¢(¹¾¡1) = 0 so that, by (13), ¹¢x(¹¾¡1) · 0; but then, by (12), C ¹¢(¹¾¡1) ¸ 0 necessarily. In
case P ¹¢(¾) · 0 for all ¾ 2 ¹¾+¡1, with a strict inequality at some node, i.e., the aggregate
transfer to the old born at ¹¾¡1 is never positive and is negative at some node, then,
by (14), C ¹¢(¹¾¡1) < 0 contradicting C ¹¢(¹¾¡1) ¸ 0. So, in order to have an improvement
P ¹¢(¾) > 0 for some ¾ 2 ¹¾+¡1; denote ~¾ one of the nodes at which P ¹¢(¾) > 0 for ¾ 2 ¹¾+¡1.24

~¾, with date ~t := t(~¾), is the root of the sub-tree that interests us. Since ~¾ 2 ¹¾+¡1,
~¾¡1 = ¹¾¡1; so C ¹¢(~¾¡1) ¸ 0. Since P ¹¢(~¾) > 0, ¹¢µ(~¾¡1) 6= 0. ¹¢µ(¾) = 0 for all ¾ such
that t(¾) < t(~¾¡1) = t(~¾)¡ 1. Of course, ~t ¸ 1.25
24Clearly, there might exist nodes which are successors to the predecessor of ¹¾, i.e., for ¾ 2 ¹¾+¡1, such

that P¹¢(¾) < 0.
25The argument needs to be changed slightly when ~t = 1. In this case C ¹¢(~¾¡1) is not de¯ned so one

cannot say that C¹¢(~¾¡1) ¸ 0. However, monotonicity of the preferences of the initial old guarantees that
P¹¢(¾) ¸ 0 for all ¾ 2 §1 so that P¹¢(¾) 6= 0 for all ¾ 2 §1 directly implies that P¹¢(~¾) > 0 for some
~¾ 2 §1.
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We can now de¯ne the sub-tree that interests us.

¡~¾ := f~¾g [A(~¾) [¾2A(~¾) A(¾) [¾02[¾2A(~¾)A(¾) A(¾0) ¢ ¢ ¢ :

The de¯nition is recursive and starts by including ~¾ and the set A(~¾).
We have shown that P ¹¢(~¾) > 0 so, by (13), ¹¢x(~¾) < 0; so (12) at the node ~¾ implies

that C ¹¢(~¾) > 0. Therefore, A(~¾) 6= ;. So P ¹¢(¾) > 0 for ¾ 2 A(~¾) and (13) implies that

0 < P ¹¢(¾) · ¡ ¹¢x(¾); for all ¾ 2 A(~¾); (15)

which, when substituted into (12), leads to

¡P ¹¢(¾) + C ¹¢( ¾) ¸ ½ ¢
h
P ¹¢( ¾)

i2
for all ¾ 2 A(~¾): (16)

By repeating the argument, we see that the sub-tree ¡~¾ has the following properties:

¡ ¹¢x(¾) ¸ P ¹¢(¾) > 0 for all ¾ 2 ¡~¾; (17)

by (17) and (12)

C ¹¢( ¾) ¸ P ¹¢( ¾) + ½ ¢
h
P ¹¢( ¾)

i2
for all ¾ 2 ¡~¾; (18)

by (17) and (18)
C ¹¢(¾) > 0 for all ¾ 2 ¡~¾; (19)

by (19) and (14)
A(¾) 6= ; for all ¾ 2 ¡~¾;

which, with (13), implies that (17) holds.
By aggregate feasibility of consumption and non-negativity of consumption when

young, the net intergenerational transfer in equilibrium, given by the return on the ag-
gregate asset endowment, satis¯es

¡!(¾) · ! ¢ r¤(¾) · !(¾):

Clearly, the inequality above implies that the payo® from the aggregate feasible portfolio
¹¢µ is bounded,

jP ¹¢(¾)j · !(¾) ·  for all ¾ 2 ¡ (20)

using hypothesis (i) in Theorem 2, i.e., that the aggregate endowment of the consumption
good is uniformly bounded across nodes. Let ¹P := . So, by (17) and (20), the function
P ¹¢ satis¯es 0 < P ¹¢( ¾) · ¹P on the set of nodes such that ¾ 2 ¡~¾. Furthermore, it
is clear that if a node ¾ satis¯es ¾¡1 2 ¡~¾ and ¾ =2 ¡~¾, then ¾ =2 A(¾¡1) so that
¡ ¹P · P ¹¢( ¾) · 0, as stated in (b) of Theorem 2.
By (19), 0 < C ¹¢(¾) on the set ¡~¾ as stated in (b) of Theorem 2.
Since, by (17), P ¹¢( ¾) > 0, for any node in the sub-tree ¡~¾ (18) can be rewritten as

1

C ¹¢( ¾)
· 1

P ¹¢( ¾)
¡ ½

1 + ½P ¹¢( ¾)
for all ¾ 2 ¡~¾; (21)
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while ½ > 0 and (20) imply that

½

1 + ½
· ½

1 + ½P ¹¢( ¾)
for all ¾ 2 ¡~¾:

Using the above in (21) we obtain the condition

1

C ¹¢( ¾)
+

½

1 + ½
· 1

P ¹¢( ¾)
for all ¾ 2 ¡~¾;

, P ¹¢( ¾)
C ¹¢( ¾)

+
½

1 + ½
P ¹¢( ¾) · 1 for all ¾ 2 ¡~¾: (22)

By iterating on the inequality (22) along paths in the sub-tree ¡~¾ we obtain

¦T¡1
t=~t

P ¹¢( ¾t)
C ¹¢(¾t)

+
½

1 + ½

T¡1X
t=~t

(
¦t¿=~t

"P ¹¢( ¾¿ )
C ¹¢(¾¿ )

#)
C ¹¢( ¾t) · 1

) ¦T¡1
t=~t

P ¹¢( ¾t)
C ¹¢(¾t)

"P ¹¢( ¾T )
C ¹¢( ¾T )

+
½

1 + ½
P ¹¢( ¾T )

#
+

½

1 + ½

T¡1X
t=~t

(
¦t¿=~t

"P ¹¢( ¾¿ )
C ¹¢(¾¿ )

#)
C ¹¢( ¾t) · 1

) ¦Tt=~t
P ¹¢(¾t)
C ¹¢( ¾t)

+
½

1 + ½

TX
t=~t

(
¦t¿=~t

"P ¹¢(¾¿ )

C ¹¢( ¾¿ )
#)
C ¹¢( ¾t) · 1:

Since all the terms in the inequality above, including each term in the series, are positive,
the series, being bounded and increasing, converges. It follows that

¦t¿=~t

"P ¹¢( ¾¿ )
C ¹¢( ¾¿ )

#
· 1 lim

T!1

TX
t=~t

(
¦t¿=~t

"P ¹¢(¾¿ )
C ¹¢(¾¿ )

#)
C ¹¢( ¾t) · B :=

1

½
+ 

along the path. The proof is completed by noting that the argument applies to every
path in the sub-tree.

PROOF OF THEOREM 3: We need to construct a feasible allocation, obtainable via a
reallocation of assets, which improves over the equilibrium allocation. We do so by ¯rst
proposing a candidate asset reallocation, then verifying that the induced consumption
allocation is aggregate feasible and gives consumption vectors in the consumption set of
each agent, and ¯nally verifying that the proposed transfers satisfy a curvature condition
which guarantees that we have an improvement.
¡~¾, a sub-tree, denotes the set of nodes that we will work with. From here onwards

¾ 2 ¡~¾ unless otherwise noted. ¢µ, C¢, P¢, etc., refer to the functions whose existence
is assumed in the statement of Theorem 3.
From now on consider a ¯xed path in the sub-tree, ¾1(¡~¾).
Let

R¢(¾t) := ¦
t
¿=~t

"P¢( ¾¿ )
C¢(¾¿ )

#
:
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By hypothesis (c) in Theorem 3, 0 < R¢(¾t) · 1 and

0 < limT!1
TX
t=~t

R¢( ¾t)C¢(¾t) · B: (23)

De¯ne

a( ¾t) :=
·

1 + ·[maxf1; ¹½g]
1

maxf1; B2g ¢ R¢(¾t)
h tX
s=~t

R¢( ¾s)C¢( ¾s)
i

for ¾t 2 ¡~¾;

a(¾) := 0 otherwise;

where · := (1=2) "¹P and ¹½ > 0, " > 0, and
¹P > 0 are speci¯ed in hypotheses (i), (ii) and

(c) of Theorem 3. Clearly,
·

1 + ·[maxf1; ¹½g] < 1 (24)

B

maxf1; B2g · 1: (25)

So, using R¢(¾t) · 1, (23), (24), and (25), we have

0 · a(¾) · ·

1 + ·[maxf1; ¹½g]
1

maxf1; B2g1 ¢B =
·

1 + ·[maxf1; ¹½g]
B

maxf1; B2g < 1: (26)

The reallocation can now be de¯ned. For assets

bµ(¾; h) := µ¤(¾; h) + a(¾)¢µ(¾) for h = h¾;

bµ(¾; h) := µ¤(¾; h) for h 6= h¾;
where h¾ is speci¯ed in Theorem 3. Clearly, aggregate feasibility of the asset allocation is
maintained since the portfolio reallocation ¢µ was assumed to be feasible, and, by (26),
0 · a(¾) < 1.
Consumption when young is reassigned as follows

bx¾;h(¾) := x¤¾;h(¾) + (¡1)a(¾¡1) ¢ P¢(¾) for ¾ 2 §;

while consumption when old is induced according to

bx¾;h(¾0) := x¤¾;h(¾0) + a(¾) ¢ P¢(¾0) for ¾0 2 ¾+; for ¾ 2 §;

and similarly for the initial old.
Evidently, at each node the change in the consumption allocation of an old agent is

o®set by an identical change of opposite sign in the consumption allocation of a young
agent; thus aggregate feasibility is always maintained by construction. We now show that
every individual obtains a consumption vector in his consumption set. For a young agent
born at ¾, where ¾¡1 2 ¡~¾,

¢bx¾;h(¾) := bx¾;h(¾)¡ x¤¾;h(¾) = (¡1)a(¾¡1) ¢ P ¹¢(¾)
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) k ¢bx¾;h(¾) k· ja(¾)j ¢ ¹P
since, by hypothesis (b) of Theorem 3, jP ¹¢(¾)j · ¹P for every ¾ such that ¾¡1 2 ¡~¾,

) k ¢bx¾;h(¾) k· ·

1 + ·[maxf1; ¹½g]
B

maxf1; B2g
¹P

= (1=2)" ¢ 1

1 + (1=2)(²= ¹P )[maxf1; ¹½g]
B

maxf1; B2g < "

using (25) and the de¯nition of ·. By hypothesis (ii) of Theorem 3, " > 0 is a uniform
lower bound on every coordinate of the equilibrium consumption vector, i.e., when young
and in all states faced when old. So in states in which the young transfer the good to the
old, the post-transfer consumption of the young is strictly positive (and the old consume
a positive amount since they receive the transfer); the states in which the young receive
the good are the states in which the old are forced to pay up but the bound above is
valid for all states and that implies that the old never surrender more than " which leaves
them with strictly positive post-transfer consumption. So every agent gets a vector in the
interior of her consumption set.
We have shown that the proposed reallocation is feasible. We proceed to show that

we have an improvement.
Consider a node which is a successor to a node in the sub-tree but which is not an

element of the sub-tree, ¾¡1 2 ¡~¾ but ¾ =2 ¡~¾. In such a case the old agent delivers the
commodity to a young agent, so P¢(¾) < 0 and bx¾;h(¾) > x¤¾;h(¾), and the young agent's
asset holding is not perturbed so that, by monotonicity of preferences, such a young agent
is improved.
For an agent whose asset holding is perturbed a su±cient condition for a local change

from the equilibrium allocation to be weakly improving is that the inequality below holds26

@u¾;h
@x¾

¢
h
¢x¾;h(¾) + ¢µ(¾; h) ¢ q¤(¾)

i
¸ ¹½¾;h ¢

h
@u¾;h
@x¾

¢¢x¾;h(¾)
i2

@u¾;h
@x¾

where ¢bµ(¾; h) := bµ(¾; h)¡ µ¤(¾; h). By replacing the values of ¢x¾;h(¾) and ¢µ(¾; h) by
the proposed reassignment we obtain the inequality

¡a( ¾t¡1)P¢( ¾t) + a(¾t)C¢( ¾t) ¸ ¹½¾;h ¢
h
a( ¾t¡1)P¢( ¾t)

i2
: (27)

We proceed to check that the proposed reallocation does indeed satisfy (27).

a( ¾t)¡P¢( ¾t)C¢(¾t) a( ¾t¡1) =
·

1 + ·[maxf1; ¹½g]
1

maxf1; B2g
"
R¢( ¾t)R¢(¾t)C¢( ¾t)

+R¢( ¾t)
t¡1X
s=~t

R¢( ¾s)C¢( ¾s)¡ P¢( ¾t)C¢( ¾t)R¢( ¾t¡1)
t¡1X
s=~t

R¢( ¾s)C¢( ¾s)
#

26See De¯nition 5 and Lemma 1 in Chattopadhyay and Gottardi (1999) for an explicit derivation of
the required quadratic term in a related context. A similar argument can be used here.
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=
·

1 + ·[maxf1; ¹½g]
1

maxf1; B2g
h
R¢( ¾t)R¢( ¾t)C¢( ¾t)

i
where we substitute for a(¾) and use the fact that

R¢( ¾t) = ¦
t
¿=~t

"P¢( ¾¿ )
C¢( ¾¿ )

#
=
P¢( ¾t)
C¢( ¾t) ¢ ¦

t¡1
¿=~t

"P¢( ¾¿ )
C¢( ¾¿ )

#
=
P¢( ¾t)
C¢( ¾t) ¢ R¢( ¾t¡1): (28)

So

a(¾t)¡ P¢( ¾t)C¢(¾t) a(¾t¡1) =
·

1 + ·[maxf1; ¹½g]
1

maxf1; B2gC¢( ¾t)
h
R¢( ¾t)

i2
: (29)

Using (23) we have

1 ¸
"Pt¡1

s=~t
R¢( ¾s)C¢( ¾s)
maxf1; Bg

#
: (30)

Using (24) and (30) we obtain

1 ¸ ·[maxf1; ¹½g]
1 + ·[maxf1; ¹½g]

"Pt¡1
s=~t
R¢( ¾s)C¢( ¾s)
maxf1; Bg

#2
: (31)

So (29) and (31) imply that

a(¾t)¡ P¢( ¾t)C¢(¾t) a(¾t¡1) ¸ [maxf1; ¹½g]C¢(¾t)

¢
"

·

1 + ·[maxf1; ¹½g]
1

maxf1; BgR¢( ¾t)

Pt¡1
s=~t
R¢( ¾s)C¢( ¾s)
maxf1; Bg

#2

= [maxf1; ¹½g]C¢( ¾t)
"P¢( ¾t)
C¢( ¾t) a( ¾t¡1)

#2

¸ ¹½¾;hC¢( ¾t)
"P¢( ¾t)
C¢( ¾t) a(¾t¡1)

#2
where we use (28) and the facts that (i) [maxf1; Bg]2 = maxf1; B2g as B > 0, (ii)
maxf1; ¹½g ¸ ¹½ ¸ ¹½¾;h for all ¾ 2 ¡~¾, and h = h¾. This shows that the proposed
reallocation does indeed satisfy (27) so that an agent whose asset holding is perturbed is
also at least weakly improved.
Finally, the ¯rst agent to receive an asset transfer is one who is born at the node

~¾. She does not transfer consumption to those who are old when she is young since, by
construction, a(~¾¡1) = 0; however, a(~¾) > 0 by construction and C¢(~¾) > 0 by hypothesis
(b) of Theorem 3, so for her (27) is satis¯ed with a strict inequality ensuring that overall
we have a strict improvement.
We have veri¯ed that the proposed reallocation is an improvement thus completing

the proof of the theorem.
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