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CONSTRAINED EMM AND INDIRECT INFERENCE

ESTIMATION

Giorgio Calzolari, Gabriele Fiorentini and Enrique Sentana

A B S T R A C T

We develop generalised indirect inference procedures that handle equality and

inequality constraints on the auxiliary model parameters. We obtain expressions

for the optimal weighting matrices, and discuss as examples an ma(1) estimated

as ar(1), an ar(1) estimated as ma(1), and a log-normal stochastic volatility

process estimated as a garch(1,1) with Gaussian or t distributed errors. In

the …rst example, the constraints have no e¤ect, while in the second, they allow

us to achieve full e¢ciency. As for the third, neither procedure systematically

outperforms the other, but equality restricted estimators are better when the

additional parameter is poorly estimated.

Keywords: Simulation estimators, GMM, Minimum distance, ARCH, stochas-

tic volatility:

JEL: C13, C15
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1 INTRODUCTION

Consider a stochastic process, xt, characterised by the sequence of parametric

conditional densities p(xtjxt¡1; xt¡2; : : : ; ½), where ½ denotes the d parameters of

interest. Consider also a possibly misspeci…ed, auxiliary model, described by the

sequence of conditional densities f(xtjxt¡1; xt¡2; : : : ; µ), where µ is a q dimensional

vector of parameters, with d · q. In those situations in which no closed-form

expression for p(xtjxt¡1; xt¡2; : : : ; ½) exists, but at the same time it is easy to

compute expectations of possibly nonlinear functions of xt, either analytically, or

by simulation or quadrature, the so-called e¢cient method of moments (EMM)

of Gallant and Tauchen (1996) (GT) is a computationally convenient indirect

inference (II) procedure, which uses the score of the auxiliary model to derive a

generalised method of moments (GMM) estimator of ½ (see Hansen, 1982).

Existing EMM procedures, though, assume that the parameters of the auxil-

iary model are unrestricted, and consequently, that their pseudo maximum like-

lihood (ML) estimators have asymptotically normal distribution with a full rank

covariance matrix under standard regularity conditions (see e.g. Gourieroux, Mon-

fort and Trognon (1984) or White (1982) for a discussion of unconstrained pseudo

ML estimation). Nevertheless, in many situations of interest, some inequality re-

strictions on µ are usually taken into account in the estimation of the auxiliary

model because (i) they lead to more e¢cient estimates under correct speci…ca-

tion, (ii) the pseudo log-likelihood function may not be well de…ned when the

restrictions are violated, or (iii) some of the auxiliary parameters may become

underidenti…ed in certain regions of the parameter space. Importantly, such pa-

rameter restrictions are often binding in empirical applications.

In this paper, we show how EMM procedures can be generalised to handle

such situations. In particular, we propose an alternative set of moment restric-

tions based on the Kuhn-Tucker …rst order conditions, which nest the usual ones
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when the inequality constraints are not binding, but which remain valid even

if they are. We also derive the corresponding optimal GMM weighting matrix,

and explain how it can be consistently estimated in practice. In this respect, we

consider not only the usual two-step GMM method proposed by GT, but also a

continuously updated one (à la Hansen, Heaton and Yaaron, 1996). In addition,

we combine the constrained parameter estimators and Kuhn-Tucker multipliers to

extend the original class of minimum distance (MD) II estimators introduced by

Smith (1993) and Gourieroux, Monfort and Renault (1993) (GMR) to the inequal-

ity restricted case. It turns out that like in the unconstrained case (see Gourieroux

and Monfort, 1996) (GM96), one can …nd inequality restricted II estimators that

are asymptotically equivalent to the inequality constrained EMM estimators by

an appropriate choice of weighting matrix.

It is important to bear in mind that our results in no way require that the

restrictions are correct, in the sense that they are satis…ed by the unrestricted

pseudo-true values of the auxiliary parameters. Of course, if we knew that this

was indeed the case, we might be able to obtain more e¢cient estimators of

the parameters of interest (see Dridi, 2000). It is also worth mentioning that

although we concentrate on pseudo log-likelihood estimation of the auxiliary model

for expositional purposes, our procedures can be extended to cover any other

extremum estimators of just identi…ed auxiliary models, such as M-estimators or

method of moments (see section 4.1.3 of GM96).

We also discuss EMM and II procedures based on equality constrained pseudo

ML estimators of µ, as well as on those that combine equality and inequality

constraints. Equality restricted procedures may be particularly useful in practice

from a computational point of view, because in many situations of signi…cant

empirical interest, it is considerably simpler to estimate a special restricted case

of the auxiliary model than to maximise the unrestricted log-likelihood function.
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For the same reason, we also consider II procedures based on partially optimised

unconstrained estimators that do not satisfy the standard …rst order conditions

for extrema of the pseudo log-likelihood function, as well as those that impose the

constraints depending on the signi…cance of some preliminary speci…cation test.

For illustrative purposes, we apply our modi…ed procedures to three time series

models. The …rst two are (i) an ma(1) process, estimated either as an ar(1) with

a non-negativity constraint on the autoregressive coe¢cient, or as white noise, and

(ii) an ar(1) process, estimated either as an ma(1) with a non-positivity constraint

on the moving average coe¢cient, or as white noise. The third model that we

study is the popular discrete time version of the log-normal stochastic volatility

process, which we estimate via a garch(1,1) model with either t distributed

errors, or Gaussian ones. This model is important in its own right, and has

become the acid test of any simulation-based estimation method. In addition,

it also helps to illustrate the implementation of our proposed procedures in some

non-standard situations. In particular, the pseudo log-likelihood function based on

the t distribution cannot be de…ned in part of the neighbourhood of the parameter

values that correspond to the Gaussian case, and moreover, some of the auxiliary

model parameters become underidenti…ed under conditional homoskedasticity.

The paper is organized as follows. In section 2, we include a thorough discus-

sion of EMM and II procedures with either equality or inequality constraints on

the auxiliary model parameters. Since it is often impossible to obtain some of the

required expressions in closed form, we also discuss how they can be evaluated by

simulation. Detailed applications of such procedures to the three examples can

be found in section 3. Finally, our conclusions are presented in section 4. Proofs

and auxiliary results are gathered in the appendix.
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2 THEORETICAL SET UP

2.1 Inequality constrained EMM and II estimators

Let lt(µ) = ln f(xtjxt¡1; xt¡2; : : : ; µ). The pseudo log-likelihood function for a

sample of size T on xt based on the auxiliary model (ignoring initial conditions)

will be given by LT (µ) =
P

t lt(µ). Let’s now de…ne the (scaled) Lagrangian

function

QT (¯) =
1

T
LT (µ) + h0(µ)¹ (1)

where ¯ = (µ0; ¹0)0, and ¹ are the s multipliers associated with s mutually consis-

tent inequality constraints implicitly characterized by h(µ) ¸ 0. Assuming that

both the pseudo-log likelihood function LT (µ), and the vector of functions h(µ) are

twice continuously di¤erentiable with respect to µ, the latter with a full column

rank Jacobian matrix @h0(µ)=@µ, the …rst-order conditions that take into account

the inequality constraints will be given by the usual Kuhn-Tucker conditions:

@QT (~̄T )

@µ
=

1

T

@LT (~µT )

@µ
+

@h0(~µT )

@µ
~¹T = 0 (2)

together with the sign and exclusion restrictions:

h(~µT ) ¸ 0 ~¹T ¸ 0 h(~µT )¯ ~¹T = 0 (3)

where » indicates inequality restricted pseudo-ML estimators, the subscript T

refers to the sample size of the observed series, and the symbol ¯ denotes the

Hadamard (or element by element) product of two matrices of the same dimen-

sions.

Standard EMM procedures cannot be used in this context because, as we shall

see below, the expected value of the score of the auxiliary model is no longer

necessarily zero when some of the restrictions of the auxiliary model are binding.

Nevertheless, a modi…ed procedure can be derived from (2). Speci…cally, we can
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base our estimation of ½ on the following moments:

mT (½; ¯) =E

·
@QT (¯)

@µ

¯̄̄̄
½

¸
= E

"
1

T

X
t

@lt(µ)

@µ
+

@h0(µ)

@µ
¹

¯̄̄̄
¯ ½

#
(4)

where the symbol E(:j½) refers to an expected value computed with respect to

the distribution of the model of interest evaluated at ½. The main di¤erence with

the unrestricted case is that mT (½; ¯) not only depends on the q auxiliary model

parameters µ, but also on the s Kuhn-Tucker multipliers ¹ associated with the

inequality restrictions. In this respect, note that if we de…ne

LT (½; µ) = E

·
1

T
LT (µ)

¯̄̄̄
½

¸
(5)

we can interpret mT (½; ¯) = 0 as the …rst-order conditions of the population pro-

gram

max
µ
LT (½; µ) s:t: h(µ) ¸ 0 (6)

as long as the di¤erentiation and expectation operators can be interchanged, which

we assume henceforth. We also assume that LT (½; µ) is twice continuously di¤er-

entiable with respect to both µ and ½. Importantly, in those time series situations

in which the functional form of lt(µ) is time-invariant, and xt strictly stationary,

the dependence of the moments on T disappears, and expressions (5) and (4)

simplify to

L(½; µ) = E [ lt(µ)j½]

m(½; ¯) = E

·
@lt(µ)

@µ

¯̄̄̄
½

¸
+

@h0(µ)

@µ
¹

For each value of ½, we can de…ne a deterministic sequence of binding functions

for the inequality constrained auxiliary parameters µ and associated Kuhn-Tucker

multipliers ¹, ¯i
T (½) =

£
µi0

T (½); ¹i0
T (½)

¤0
say, such that they solve the population
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program (6). As a result, these functions must satisfy the …rst order conditions:

mT

£
½; ¯i

T (½)
¤

= 0

h
£
µi

T (½)
¤¸ 0 ¹i

T (½) ¸ 0 h
£
µi

T (½)
¤¯ ¹i

T (½) = 0
(7)

and obviously become time-invariant under strict stationarity. To guarantee the

identi…cation of ½, we assume that for all T larger than a given value, ¯i
T (½) is

the only such solution, and that the equation ¯i
T (½) = ¯ admits a unique solution

in ½ (cf. GM96).

Let ½0 denote the true value of the parameters of interest, and let µi
T (½0) and

¹i
T (½0) denote the inequality constrained pseudo-true values for µ and ¹. If we

knew these values, we could recover ½0 by either inverting the binding functions,

or solving the possibly non-linear system of equations mT

£
½0; ¯i

T (½0)
¤

= 0. In

practice, though, we do not know the pseudo true values, but if they are consis-

tently estimated by the auxiliary model, we can obtain consistent estimators of

½0 by choosing the parameter values that minimize either some appropriately

de…ned distance between ¯i
T (½) and ~̄

T , or a given norm of the sample mo-

ments mT (½; ~̄T ). In particular, we can minimise with respect to ½ the following

quadratic forms:

Di
T (½; ) =

h
¯i

T (½)¡ ~̄T

i0
¢ ¢

h
¯i

T (½)¡ ~̄T

i
or

GT (½;ª ) = m0
T (½; ~̄T ) ¢ª ¢mT (½; ~̄T )

where andª are positive semi-de…nite (p.s.d.) weighting matrices of orders q+s

and q respectively, and the letters D and G are a reminder that these objective

functions correspond to MD and GMM estimation criteria respectively. In what

follows, we shall refer to the resulting estimators

~½D
T () = arg min

½
Di

T (½;)

~½G
T (ª) = arg min

½
GT (½;ª)
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as the inequality restricted II and EMM estimators of ½. Obviously, without a ju-

dicious choice of metric that accounts for sample variation in the estimators of the

inequality restricted auxiliary parameters and multipliers in ~̄T , the asymptotic

covariance matrix of ~½D
T () and ~½G

T (ª) is likely to be unnecessarily large.

Let’s start by analysing the second criterion function. It is well known that if

the sample moments mT (½; ~̄T ) have a limiting normal distribution, the optimal

GMM weighting matrix (in the sense that the di¤erence between the covariance

matrices of the resulting estimator and an estimator based in any other norm is

p.s.d.) is given by the inverse of the asymptotic variance of
p

TmT (½; ~̄T ) (see e.g.

Hansen, 1982). In order to derive the required asymptotic distribution, we follow

GT in assuming the necessary regularity conditions for ~̄T to converge uniformly

almost surely to ¯i
T (½0), and for a strong law of large numbers and a central limit

theorem to apply to the Hessian and modi…ed score of the log-likelihood of the

auxiliary model respectively. More formally,

Assumption 1

P

24 lim
T !1

sup

°°°°°°
~µT ¡ µi

T (½0)

~¹T ¡¹i
T (½0)

°°°°°° = 0

35 = 1

P

(
lim

T !1

°°°°° 1

T

X
t

@l2
t (µ¤

T )

@µ@µ0 ¡ J i
0T

°°°°° = 0

)
= 1

p
T

1

T

X
t

(
@lt

£
µi

T (½0)
¤

@µ
+

@h0 £
µi

T (½0)
¤

@µ
¹i

T (½0)

)
! N(0; I i

0T )

where J i
0T and I i

0T are non-stochastic, q £ q matrices, with I i
0T p.d., and µ¤

T is

any sequence that converges in probability to µi
T (½0).

In this respect, it is important to note that there are many situations in which

the pseudo log-likelihood function is not well-de…ned outside the restricted param-

eter space, and yet the (possibly directional) score and Hessian behave regularly
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at its boundary (see e.g. the score of the Student’s t garch model in section 3.3

below under conditional Gaussianity).

However, we cannot directly rely on the results in GT to derive the asymptotic

distribution of these sample moments, since the inequality restricted estimator ~µT

may not be asymptotically normal in large samples (see Andrews (1999) and the

references therein). In addition, the asymptotic distribution of ~̄T is singular, in

the sense that there are s linear combinations of the elements of
p

T
h
~̄

T¡¯i
T (½0)

i
that converge in probability to 0. Speci…cally:

Proposition 1 Under Assumption 1,

¹i
T (½0)¯ @h

£
µi

T (½0)
¤

@µ0
p

T
h
~µT¡µi

T (½0)
i

+ h
£
µi

T (½0)
¤¯pT

£
~¹T¡¹i

T (½0)
¤

= op(1)

In contrast, there are q linear combinations that are asymptotically well be-

haved:

Proposition 2 Under Assumption 1,"
J i

0T +
£
¹i

T (½0) Iq

¤ @vec
©

@h0 £
µi

T (½0)
¤

=@µ
ª

@µ0

#p
T

h
~µT¡µi

T (½0)
i

+
@h0 £

µi
T (½0)

¤
@µ

p
T

£
~¹T¡¹i

T (½0)
¤

+
p

T
1

T

X
t

(
@lt

£
µi

T (½0)
¤

@µ
+

@h0 £
µi

T (½0)
¤

@µ
¹i

T (½0)

)
= op(1)

Hence, even though ~µT and ~¹T have a singular and possibly non-Gaussian

asymptotic distribution, Proposition 2 shows that under our regularity condi-

tions, there are always q linear combinations that are asymptotically normally

distributed, irrespectively of the exact nature of the inequality restrictions, and

irrespectively of whether the sign restrictions on h
£
µi

T (½0)
¤

and ¹i
T (½0) in (7) are

satis…ed with equality, or strictly so. It turns out that those q linear combinations

are implicitly contained in the expected value of the modi…ed score:
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Proposition 3 Under Assumption 1,

p
TmT (½0; ~̄T )+

p
T

1

T

X
t

(
@lt

£
µi

T (½0)
¤

@µ
+

@h0 £
µi

T (½0)
¤

@µ
¹i

T (½0)

)
= op(1)

Therefore,
p

TmT (½0; ~̄T ) has indeed a limiting Gaussian distribution, and the

optimal GMM weighting matrix is precisely the inverse of I i
0T .

The following proposition speci…es the asymptotic distribution of the (infea-

sible) optimal GMM estimator of ½ based on the inequality restricted auxiliary

model:

Proposition 4

p
T

£
~½G

T (I i
0T )¡ ½0

¤ ! N

240;

(
@m0

T

£
½0; ¯i

T (½0)
¤

@½
¢ (I i

0T )¡1 ¢ @mT

£
½0; ¯i

T (½0)
¤

@½0

)¡1
35

Given that this expression is completely analogous to the one derived by GT for

the optimal EMM estimator in the absence of constraints, the required matrices

can also be consistently estimated using their suggested procedures. In particular,

since in those cases in which

E
£
@lt

£
µi

T (½0)
¤

=@µ +
¡
@h0 £

µi
T (½0)

¤
=@µ

¢
¹i

T (½0)
¯̄
½0

¤
= 0 8t;

such as strictly stationary and ergodic time series processes with absolutely summable

autocovariance matrices, Ii
0T converges to Ii

0 =
P1

¿=¡1 S¿

£
½0; ¯i

T (½0)
¤
, where

S¿ (½; ¯) = E

½·
@lt(µ)

@µ
+

@h0(µ)

@µ
¹

¸ ·
@lt¡¿ (µ)

@µ
+

@h0(µ)

@µ
¹

¸0 ¯̄̄̄
½

¾
for ¿ ¸ 0 and S¿ (½; ¯) = S 0

¡¿ (½; ¯) for ¿ < 0 (see e.g. Hansen, 1982), we could

obtain a consistent estimate of the matrix I i
0T as

eIi
T =

T ¶X
¿=¡T ¶

w(¿ ) ~S¿T (8)
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with

~S¿T =
1

T

TX
t=¿+1

("
@lt(~µT )

@µ
+

@h0(~µT )

@µ
~¹T

# "
@lt¡¿ (~µT )

@µ
+

@h0(~µT )

@µ
~¹T

#0)

where w(¿) are weights suggested by a standard heteroskedasticity and autocorre-

lation consistent (HAC) covariance estimation procedure, and ¶ the corresponding

rate (see e.g. de Jong and Davidson (2000) and the references therein). Then, a

feasible optimal GMM estimator will be given by ~½D
T (eI i

T ). Alternatively, we could

consider continuously updated GMM estimators à la Hansen, Heaton and Yaaron

(1996), by replacing ~S¿T in the above expressions with S¿ (½; ~̄T ).

Let’s now turn to the II estimators of ½ based on the MD function Di
T (½;T ).

Unfortunately, we cannot directly rely on standard MD theory, because as we saw

before, the limiting distribution of
p

T
h
~̄ 0

T ¡ ¯i0
T (½0)

i
is singular and possibly

non-normal. To overcome this di¢culty, it is convenient to write down the linear

transformations in Propositions 1 and 2 together in terms of the following square

matrix of order q + s:

Ki
0T =

24 J i
0T + [¹i

T (½0) Iq] @vec
©

@h0 £µi
T (½0)

¤
=@µ

ª
=@µ0 @h0 £µi

T (½0)
¤

=@µ

diag [¹i
T (½0)] @h

£
µi

T (½0)
¤

=@µ0 diag
©

h
£
µi

T (½0)
¤ª

35
=

24 Ki
11;0T Ki

12;0T

Ki
21;0T Ki

22;0T

35
where diag (:) is the operator that transforms a vector into a diagonal matrix

of the same order by placing its elements along the main diagonal. Then, if we

transform the MD conditions by premultiplying them by Ki
0T , we will have that

the asymptotic distribution of Ki
0T

p
T

h
~̄ 0

T ¡ ¯i0
T (½0)

i
will be normal, with the

singularity con…ned to the last s elements. In this framework, we can prove the

following result, which can be regarded as the inequality restricted version of

Proposition 4.3 in GM96:
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Proposition 5

p
T

£
~½G

T (ªT )¡ ~½D
T (Ki0

Tª
¢
TKi

T )
¤

= op(1)

where

ª¢
T =

0@ ªT 0

0 0

1A
There are some cases of practical relevance in which ~½D

T

h
Ki0

T

¡I¢
0T

¢+Ki
T

i
, where

+ denotes the Moore-Penrose generalised inverse, is relatively easy to compute.

For instance, suppose that all the restrictions are of the simple “bounds” form, i.e.

µj min · µj · µj max (j = 1; : : : ; q), with jµj minj ; jµj maxj possibly in…nity, and de…ne

¹j min; ¹j max as the matching pair of Kuhn-Tucker multipliers (which are set to zero

by de…nition if the corresponding bound is§1). In addition, assume for simplicity

that we knew that only one restriction, say the lower limit on the …rst parameter,

is strictly binding in the limit, in the sense that limT !1 ¹i
1 min;T (½0) > 0, while

all the other parameters are asymptotically strictly unconstrained (i.e. µj min <

limT !1 µi
jT (½0) < µj max for j = 2; : : : ; q). Then, it is easy to see from Proposition

2 that the q £ 1 vector (~¹1 min;T ; ~µ2T ; : : : ;~µqT ) will have an asymptotically normal

distribution with a full rank covariance matrix, which can be used to compute

the optimal MD estimator of ½. However, the EMM procedure generally has

the advantage that the optimal weighting matrix can be readily computed as the

variance of the limiting normal distribution of the modi…ed score (4), irrespectively

of the exact nature of the inequality restrictions, and irrespectively of whether the

sign restrictions on h
£
µi

T (½0)
¤

and ¹i
T (½0) in (7) are satis…ed with equality, or

strictly so.

Nevertheless, there is one instance in which both our proposed procedures are

numerically identical. In particular, suppose that d = q, so that the auxiliary

model just identi…es the parameters of interest, and that all the restrictions are
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of the simple bounds form. Then, the value of ½ that for j = 1; : : : ; q produces

estimates of the triplets
£
µi

j(½); ¹q min(½); ¹q max(½)
¤

that are equal to (i) (~µjT ; 0; 0)

if µj min < ~µjT < µj max, (ii) (µj min; ~¹q min,0) if ~µjT = µj min, or (iii) (µj max; 0; ~¹q max)

if ~µjT = µj max, will also set to zero the sample moments mT (½; ~̄T ), and therefore,

will be numerically identical to ~½G
T (ª) for all ª.

2.2 Relationship with the existing unrestricted procedures

Let µ̂T denote the unconstrained pseudo-ML estimator of the auxiliary model

parameters µ, and de…ne µu
T (½0) as the corresponding pseudo-true values, where

µu
T (½) are the usual binding functions that solve the unrestricted population pro-

gram maxµ LT (½; µ), with ¹̂T = 0 = ¹u
T (½). If the auxiliary model is asymp-

totically strictly unconstrained, in the sense that limT !1
£
µi

T (½0)¡ µu
T (½0)

¤
= 0,

limT !1 ¹i
T (½0) = 0 and limT !1 h

£
µi

T (½0)
¤

> 0, our proposed inequality con-

strained EMM and II procedures converge to the standard unconstrained EMM

and II approaches of GT and GMR, because
p

T ~¹T and
p

T (~µT¡µ̂T ) converge

in probability to 0 from Propositions 1 and 2 respectively. In fact, the inequality

constrained and unconstrained procedures will yield numerically identical results

if none of the inequality restrictions is binding in a given sample, since in that

case ~µT coincides with the unconstrained pseudo-ML estimator, µ̂T (and ~¹T with

¹̂T = 0). Moreover, if the auxiliary model exactly identi…es the parameters of

interest, all the di¤erent procedures will be the same for T su¢ciently large (see

Proposition 4.1 in GM96).

It may seem at …rst sight that one can handle inequality restrictions on the

parameters of the auxiliary model with the existing unconstrained EMM or II pro-

cedures, by simply reparametrising the constraints appropriately. For instance, a

non-negativity constraint on µj can be formally avoided by replacing µj with
¡
µ¤

j

¢2
,

where ¡1 < µ¤
j < 1. Unfortunately, the regularity conditions in Assumption 1
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are no longer satis…ed in terms of the new parameter when the pseudo-true value

of the original parameter µi
jT (½0) converges to its lower bound asymptotically, as

the Jacobian of the transformation is 0 at µi
jT (½0) = 0.

2.3 Equality constrained EMM and mixed procedures

It is easy to see that if we replace the Kuhn-Tucker multipliers by the usual

Lagrange multipliers, the theoretical derivations in section 2.1 also apply to EMM

procedures based on equality constrained pseudo-ML estimators of the auxiliary

model parameters, provided that the set of moments used for GMM estimation

include the …rst order conditions corresponding to all the elements of µ. In partic-

ular, if we call ¹µT the pseudo-ML estimates of µ that satisfy with equality all the

restrictions implicit in h(µ), and denote by ¹¹T the associated (ordinary) Lagrange

multipliers, the …rst-order conditions will be given by:

@QT (¹̄T )

@µ
=

1

T

@LT (¹µT )

@µ
+

@h0(¹µT )

@µ
¹¹T = 0 (9)

together with h(¹µT ) = 0. In this context, we can again de…ne the population

moments mT (½; ¯) as in (4). Similarly, we can de…ne a deterministic sequence

of binding functions for the equality constrained auxiliary parameters µ and as-

sociated Lagrange multipliers ¹, ¯e
T (½) = [µe0

T (½); ¹e0
T (½)]

0 say, such that for each

value of ½, they solve the population program, maxµ LT (µ) subject to h(µ) = 0.

As a result, these functions must satisfy the …rst order conditions

mT [½; ¯e
T (½)] = 0

h [µe
T (½)] = 0

(10)

and again become time-invariant under strict stationarity. Of course, the binding

functions ¯e
T (½) will generally be di¤erent from ¯i

T (½), which result from imposing

the same constraints as inequalities. Similarly, the equality restricted pseudo-true
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values and limiting matrices J e
0T and Ie

0T will often di¤er from ¯i
T (½0) and J i

0T

and I i
0T . Nevertheless, note that the nature of the regularity conditions is the

same.

In addition, it is also possible to consider equality restricted II procedures that

generalise the GMR approach, by choosing ½ so as to minimise a well-de…ned dis-

tance between the expanded vector of equality constrained parameter estimators

and multipliers in the original sample, ¹̄T , and ¯e
T (½). The main di¤erence with

respect to the inequality constrained case discussed in section 2.1 is that the joint

asymptotic distribution of ¹̄T will be normal (albeit singular) under regularity

conditions analogous to the ones in Assumption 1, with i replaced by e, and » by

¡. In any case, Propositions 1 to 5 continue to hold if we replace inequality re-

stricted estimators and Kuhn-Tucker multipliers by equality restricted estimators

and Lagrange multipliers.

Once more, the EMM procedure has the advantage that the optimal weighting

matrix can be readily computed as the variance of the limiting normal distribution

of the modi…ed score, regardless of the exact nature of the equality restrictions.

There are some simple cases, though, in which the asymptotically equivalent II

estimators can be easily obtained. For instance, suppose that all s restrictions

are of the simple form, µj = µy
j for j = 1; :::; s · q. Then, it is easy to see

from Proposition 2 that the q £ 1 vector (¹¹1;T ; : : : ; ¹¹s;T ; ¹µs+1T ; : : : ;¹µqT ) will have

an asymptotically normal distribution with a full rank covariance matrix, which

can be used to compute the “optimal” equality constrained II estimator of ½,

¹½D
T

h
Ke0

T

¡Ie¢
0T

¢+Ke
T

i
. If, in addition, p = q, so that the auxiliary model just

identi…es the parameters of interest, then the value of ½ that produces values of£
µe

j(½); ¹e
j(½)

¤
that are equal to (i) (µy

j ; ¹¹jT ) for j = 1; :::; s and (ii) (¹µjT ; 0) for

j = s+1; :::; q will also set to zero the sample moments mT

h
½; ~̄T

i
, and therefore,

will be numerically identical to ¹½G
T (ª) for all ª.
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Equality restricted EMM and II procedures may be particularly useful from a

computational point of view, because in many situations of interest, it is consider-

ably simpler to estimate a special restricted case of the auxiliary model than the

unrestricted model itself. The extensive literature on LM (or score) tests provides

many such examples (see e.g. Godfrey, 1988). For instance, the estimation of a

var(p) model is much easier than the estimation of any varma(p,q) model that

nests it.

Again, it may seem again at …rst sight that one can handle equality restric-

tions on the parameters with the existing unconstrained procedures by re-writing

the constraints in explicit form (see e.g. chapter 10 of Gourieroux and Monfort

(1995) (GM95) for a thorough discussion). For instance, a simple linear equality

constraint of the form µj + µk = 0 can be formally avoided by eliminating µk (or

µj) from the active set of parameters, and replacing it with ¡µj (or ¡µk). How-

ever, it is very important to emphasise that in doing so, we would be reducing the

number of moments used in the GMM estimation of the parameters of interest, ½,

and therefore, incurring in an e¢ciency loss relative to our proposed procedure.

As an extreme example, suppose that p = q = s, and that h(µ) = µ ¡ µy, so

that the only admissible value for the equality restricted estimator ¹µT is precisely

µy. In this case, there is no need for any extra parameters in order to re-write

the implicit restrictions in explicit form. But then, no unconstrained EMM or II

estimator based on those inexistent parameters can be de…ned. In contrast, our

equality constrained II procedure will work by simply matching the q equality

restricted binding functions ¹e
T (½) with the sample estimates of the q Lagrange

multipliers.

Our proposed constrained EMM procedures can be trivially extended to handle

a mix of equality and inequality constraints, since in all cases the relevant moments

adopt the form of (4). Similarly, II procedures that match parameters and a mix
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of Kuhn-Tucker and Lagrange multipliers can also be entertained.

Finally, it would certainly be desirable to compare the e¢ciency of the di¤erent

possible versions of the EMM and asymptotically equivalent II estimators. Unfor-

tunately, it is very di¢cult to say anything in general terms, even for a given set

of implicit constraints h(µ). The problem is that di¤erent types of “constrained”

estimators (i.e. unconstrained, equality, inequality or mixed) lead to di¤erent sets

of moments, which despite their common form, cannot usually be written as a

one-to-one function of each other, either in …nite samples or asymptotically (but

see section 3.1 below). Nevertheless, we can establish the relationship between

some of them. In particular, since the inequality estimators of the auxiliary model

parameters ~µT , and the associated Kuhn-Tucker multipliers ~¹T , will be a mixture

of the unrestricted estimators µ̂T , and every possible restricted estimator that

satis…es with equality a subset of the s constraints, then the inequality restricted

EMM estimator based on them will also be a mixture (with the same weights) of

the unconstrained EMM estimator ½̂G
T (ª), and every possible equality restricted

EMM estimator. Therefore, the asymptotic distribution of
p

T
£
~½G

T (ª)¡ ½0
T

¤
will

often coincide with the asymptotic distribution of one of those estimators. The

exception is when one (or several) of the constraints is just binding in the limit, in

the sense that the pseudo-true value of the corresponding Kuhn-Tucker multiplier

converges to zero, but the constraint is satis…ed with equality by the unconstrained

pseudo-true value. In that case, the inequality constrained EMM estimator will

continue to be in large samples a mixture with positive weights of the correspond-

ing equality constrained and unconstrained EMM estimators, but since they are

asymptotically equivalent, so will be the inequality constrained one (see sections

3.1 and 3.2 for examples).

In addition, it is worth mentioning that any unconstrained EMM estimator is

asymptotically equivalent to an equality constrained EMM estimator that sets all
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the parameters of the auxiliary model to their unconstrained pseudo-true values,

µu
T (½0). The intuition is that from (9), the associated Lagrange multipliers will co-

incide with the (minus) score of the unconstrained pseudo-log likelihood function.

Therefore, if the true model is “smoothly embedded” within the auxiliary model

(see De…nition 1 in GT), and ½ is unconstrained, Theorem 2 in GT show that

such an equality constrained EMM estimator will be as e¢cient as the (possibly

infeasible) maximum likelihood estimator of ½.

Unfortunately, it is often the case that the auxiliary model does not nest

the true model, as the examples in section 3 illustrate. Therefore, we may have

situations in which it makes no di¤erence whether or not we impose constraints

on µ as far as the estimation of ½ is concerned (see section 3.1), and others in

which a constrained estimator is more e¢cient than an unconstrained one (see

section 3.2).

2.4 Partially optimised unconstrained EMM and pre-test

procedures

It is often the case that an empirical researcher tries to estimate a reasonably

complex auxiliary model, in the hope of capturing the most distinctive features

of the data, and in this way, coming close to the idealised situation covered by

Theorem 2 in GT. Unfortunately, such attempts often encounter numerical opti-

misation problems. It turns out that our results can be easily adapted to cover

such a situation as well, at the cost of increasing the complexity of the notation.

For simplicity of exposition, we concentrate on EMM procedures, and assume

that the auxiliary model is unconstrained, that the numerical procedure used to

maximise the pseudo log-likelihood function LT (µ) is a standard gradient method

(such as Newton-Raphson, scoring, BHHH, steepest ascent, or any Quasi-Newton
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procedure),1that the step size is computed by quadratic approximation, and that

the researcher abandons her attempts to maximise the pseudo-log likelihood func-

tion after kmax steps, with kmax ¸ 0. More speci…cally, if µ̂
(k)

T denotes the value

of the parameters after iteration k (1 · k · kmax), we assume that the recursive

formula employed is

µ̂
(k)

T = µ̂
(k¡1)

T + º
³

µ̂
(k¡1)

T

´
P

³
µ̂

(k¡1)

T

´ 1

T

TX
t=1

@lt

³
µ̂

(k¡1)

T

´
@µ

where P
³

µ̂
(k¡1)

T

´
is the q £ q symmetric matrix associated with the particular

…rst-derivative algorithm used, and

º
³

µ̂
(k¡1)

T

´
= ¡

"
TX

t=1

@lt

³
µ̂

(k¡1)

T

´
=@µ0 ¢P

³
µ̂

(k¡1)

T

´
¢

TX
t=1

@lt

³
µ̂

(k¡1)

T

´
=@µ

#,
26664

PT
t=1 @lt

³
µ̂

(k¡1)

T

´
=@µ0 ¢P

³
µ̂

(k¡1)

T

´
¢

T ¡1
PT

t=1 @lt

³
µ̂

(k¡1)

T

´
=@µ@µ0¢

P
³

µ̂
(k¡1)

T

´
¢PT

t=1 @lt

³
µ̂

(k¡1)

T

´
=@µ

37775
is the chosen value of the step length.

Let’s initially consider the case of kmax = 0, so that no optimisation whatsoever

takes place. Nevertheless, we assume that the initial value µ̂
(0)

T is stochastic,

for otherwise, we would simply have a special case of the equality constrained

EMM estimator, with the restrictions µ = µ(0). If the regularity conditions in

Assumption 1 (with @h0(µ)=@µ = Iq) remain valid when (i) ~µT is replaced by

µ̂
(0)

T , (ii) µi
T (½0) by the limiting pseudo-true value of µ̂

(0)

T , µ
(0)
T (½0) say, (iii) ~¹T

by ¹̂
(0)
T , which are the Lagrange multipliers required to satisfy the sample …rst-

order conditions (9) at µ = µ̂
(0)

T , and (iv) ¹i
T (½0) by the corresponding pseudo-true

value, ¹
(0)
T (½0) say, then it follows from the arguments made in section 2.1 that

the fully non-optimised EMM estimator of ½ based on µ̂
(0)

T and ¹̂
(0)
T , ½̂

(0)
T say, will

1See e.g. chapter 13 of GM95 for a review of numerical optimization methods.
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be consistent and asymptotically normal. Typically, µ̂
(0)

T would be the result of an

earlier optimisation procedure, during which some of the parameters were …xed

at constant values as part of a step-by-step computational strategy. If that is the

case, the previous sentence is just a re-statement of the results in sections 2.1 and

2.3.

Let’s now consider the more interesting case of kmax = 1, but for the sake of

brevity, let’s concentrate on the Newton-Raphson method, so that P
³

µ̂
(k¡1)

T

´
=h

T ¡1
PT

t=1 @lt

³
µ̂

(k¡1)

T

´
=@µ@µ0

i¡1

, and consequently, º
³

µ̂
(k¡1)

T

´
= 1. It is then

clear that µ̂
(1)

T and ¹̂
(1)
T will also be stochastic, with pseudo-true values given by

µ
(1)
T (½0) = µ

(0)
T (½0)¡¹

(0)
T (½0)J (0)

0T

¹
(1)
T (½0) = ¡E

n
@lt

h
µ

(1)
T (½0)

i
=@µ

¯̄̄
½0

o
If, mutatis mutandi, the regularity conditions in Assumption 1 remain valid,

then the one-step optimised EMM estimator of ½ based on µ̂
(1)

T and ¹̂
(1)
T , ½̂

(1)
T say,

will also be consistent and asymptotically normal. But since the above argument

does not really depend on kmax being 1, or the way in which µ̂
(0)

T was obtained, it

remains valid for any kmax.

If kmax itself is not …xed a priori, but rather the result of “sampling” variation

highly correlated with the impatience of the empirical researcher, then the result-

ing EMM estimator will still be consistent, but its limiting distribution (in the

usual classical sense) will be a mixture of multivariate normals, whose asymptotic

variances generally depend on the number of iterations. Of course, in practice the

resulting EMM estimator would be numerically identical to the one obtained by

another researcher who happened to choose a priori exactly the same number of

iterations as her stopping rule. But in any case, the important conclusion from

the analysis in this section is that an unsuccessful attempt to optimise the pseudo-

log likelihood function can still be successfully used to obtain a consistent EMM
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estimator of the parameters of interest ½, as long as the moment conditions used

include Lagrange multipliers to re‡ect the lack of convergence of the algorithm.

For reasons analogous to the ones discussed at the beginning of this section,

an empirical researcher may alternatively decide to conduct some speci…cation

test in order to assess if there is any evidence in the sample for an additional

feature of the data that she has not yet incorporated in her auxiliary model, which

merits the optimisation of an even more complex pseudo log-likelihood function.

Since most existing speci…cation tests are of the LM form, they can often be

written in terms of zero parameter restrictions. Therefore, a numerically sensible

strategy could be to base the EMM estimator on the unrestricted estimator of the

more complex model if the speci…cation test rejects the null hypothesis, or on the

equality restricted version if does not. If the speci…cation test is consistent (in the

sense that it rejects the null hypothesis with probability one when the limiting

unrestricted pseudo-true value of the relevant parameter is di¤erent from zero),

then the limiting distribution of the pre-test EMM estimator of ½ is the same as

the limiting distribution of the fully optimised unconstrained EMM estimator. In

contrast, if the limiting unrestricted pseudo-true value is exactly zero, then the

limiting distribution of the pre-test EMM estimator of ½ will be a mixture of the

equality restricted estimator, and the unconstrained EMM estimator. But since

equality restricted and unconstrained estimators would have the same distribution

under the (pseudo) null, then they will all share the same asymptotically normal

distribution.

2.5 Simulation-based estimators

For the sake of clarity, we have assumed so far that analytical expressions for

(4) and (5) can be readily obtained, as in sections 3.1 and 3.2 below. However,

in many other cases, such expressions may be very di¢cult, or simply impossible
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to …nd, and yet they can often be easily obtained by numerical simulation (see

e.g. GM96). In particular, we can compute the required expectations as ensemble

averages of the levels and derivatives of the Lagrangian function (1) across H

realizations of size T of the true process simulated with parameter values equal

to ½. Speci…cally,

LT (½; µ) ' LHT (½; µ) =
1

H

X
h

1

T

X
t

lt(µ)

@µ

mT (½; ¯) ' mHT (½; ¯) =
1

H

X
h

1

T

X
t

@lt(µ)

@µ
+

@h0(µ)

@µ
¹

where we can make the last terms arbitrarily close in a numerical sense to the …rst

ones as H ! 1. In those models in which xt is strictly stationary and ergodic,

there is, in fact, an alternative simulation scheme, which computes the required

expectations by their sample analogues in a single but very large realization of

the process. In particular, we will have:

L(½; µ) ' LT H(½; µ) =
1

T ¢H
T ¢HX
n=1

ln(µ)

m(½; ¯) ' mT H(½; ¯) =
1

T ¢H
T ¢HX
n=1

@ln(µ)

@µ
+

@h0(µ)

@µ
¹

In this case, we can again make left and right hand sides arbitrarily close in a

numerical sense as H !1. Similarly, we can approximate the di¤erent binding

functions ¯T (½) by means of appropriately constrained pseudo ML estimators

computed on the basis of a single simulated realization of size T £H of the true

process generated with the parameters of interest set at ½, or by the average across

H simulations of size T of estimators obtained from each simulated sample. From

a numerical point of view, the main advantage of EMM estimators is that they

avoid the computation of the possibly constrained estimators for each simulation

of the process. Finally, note that the autocovariance matrices S¿ (½; ¯T ) used in

the computation of the optimal weighting matrix for the continuously updated
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EMM and II estimators can also be arbitrarily approximated by replacing the

required expected values by their sample counterparts in a long simulation of

length T ¢H. Nevertheless, it is important to bear in mind that since H is …nite

in practice, the asymptotic covariance matrix of the EMM and II estimators in

Proposition 4 must be multiplied by the scalar quantity (1 + H¡1) (see GMR).

3 EXAMPLES

3.1 MA(1) estimated as AR(1)

3.1.1 True and auxiliary models

Consider the following Gaussian ma(1) process:

xt = ut ¡ ±ut¡1; utjxt¡1; : : : » N(0; Ã); j±j · 1; 0 < Ã < 1 (11)

where the parameters of interest are ½ = (±; Ã)0. It is well known that E(xt) = 0,

and that its autocovariance structure is given by

°0(½) = (1 + ±2)Ã

°1(½) = ¡±Ã (12)

°j(½) = 0; j > 1:

In order to estimate ½ by II and EMM, we are going to consider initially the

following inequality restricted …rst order autoregression:

xt = Áxt¡1 + vt; vtjxt¡1; : : : » N(0; !); Á ¸ 0; ! ¸ 0

where µ = (Á; !)0. Since the autovariances of an ar(1) process are given by

V ar(xt) =
!

1¡ Á2

cov(xt; xt¡1) = ÁV ar(xt)

cov(xt;xt¡j) = Ácov(xt¡1; xt¡j); j > 1
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the non-negativity constraint on Á implies that the signs of the …rst autocorrela-

tions of the true and auxiliary models coincide when ± < 0, and di¤er when ± > 0.

Note, however, that the auxiliary model only nests the true model when ± = 0.

3.1.2 Pseudo-ML estimators

The log-likelihood function of the auxiliary ar(1) model for a sample of size

T (ignoring initial conditions) will be given by:

LT (µ) =
X

t

lt(µ) = ¡T

2
ln 2¼ ¡ T

2
ln ! ¡ 1

2!

X
t

(xt ¡ Áxt¡1)2

and the (scaled) Lagrangian function by

QT (¯) = ¡1

2
ln 2¼ ¡ 1

2
ln ! ¡ 1

2!

1

T

X
t

(xt ¡ Áxt¡1)2 + Á¹1 + !¹2

where ¹ = (¹1; ¹2)0 are the multipliers associated with the inequality restrictions

Á ¸ 0 and ! ¸ 0 respectively. Therefore, the sample …rst-order conditions that

take into account the inequality constraints will be given by the Kuhn-Tucker

conditions:

1

~!T

1

T

X
t

(xt ¡ ~ÁT xt¡1)x1t¡1 + ~¹1T = 0

(13)

1

2~!T

1

T

X
t

"
(xt ¡ ~ÁT xt¡1)

2

~!T
¡ 1

#
+ ~¹2T = 0

together with the sign and complementary slackness constraints:

~ÁT ¸ 0 ~¹1T ¸ 0 ~ÁT ¢ ~¹1T = 0

~!T ¸ 0 ~¹2T ¸ 0 ~!T ¢ ~¹2T = 0

But since

~!T =
1

T

X
t

(xt ¡ ~ÁT xt¡1)
2 ¸ 0;
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we can safely take ~¹2T as 0 in what follows. Also note that since

~¹1T = ¡ 1

~!T

1

T

X
t

(xt ¡ ~ÁT xt¡1)xt¡1

we can interpret the other multiplier as (minus) the coe¢cient in the OLS regres-

sion of xt¡1 on the inequality restricted residuals (xt ¡ ~ÁT xt¡1) (see Gourieroux,

Holly and Monfort, 1982). Therefore, this Kuhn-Tucker multiplier will be 0 if the

inequality restriction is not binding in the sample, or the usual Lagrange multiplier

associated with the equality constraint Á = 0 otherwise.

Let Á̂T ; !̂T and ¹̂1T (= 0) denote the unrestricted OLS estimators of Á; ! and

¹1. Similarly, let ¹ÁT (= 0); ¹!T and ¹¹1T denote the corresponding equality restricted

estimators, and de…ne the sample second moment matrix as follows:

§̂T =

0@ ¾̂00T ¾̂01T

¾̂01T ¾̂11T

1A =
1

T

X
t

0@ xt

xt¡1

1A ³
xt xt¡1

´
Then we can show that,

Á̂T = ¾̂01T =¾̂11T
¹ÁT = 0 ~ÁT = I(¾̂01T ¸ 0)¾̂01T =¾̂11T

!̂T = ¾̂00T ¡ ¾̂2
01T =¾̂11T ¹!T = ¾̂00T ~!T = ¾̂00 ¡ I(¾̂01T ¸ 0)¾̂2

01T =¾̂11T

¹̂1T = 0 ¹¹1T = ¡¾̂01=¾̂00 ~¹1T = ¡I(¾̂01T · 0)¾̂01T =¾̂00T

(14)

where I(:) is the usual indicator function. Therefore, the inequality restricted

OLS estimators of Á and ! take two di¤erent forms depending on whether the

sign of ¾̂01T (and Á̂T ) is positive or negative.

3.1.3 Population moments and binding functions

In view of the discussion in section 2, we can base the di¤erent EMM estimators

of ½ on the following population moments

m1T (½; ¯) = E

"
1

!

1

T

X
t

(xt ¡ Áxt¡1)x1t¡1 + ¹1

¯̄̄̄
¯ ½

#
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m2T (½; ¯) = E

"
1

2!

1

T

X
t

·
(xt ¡ Áxt¡1)

2

!
¡ 1

¸
+ ¹2

¯̄̄̄
¯ ½

#

which, due to the covariance stationarity of the true model, reduce to the following

time-invariant expressions

m1(½; ¯) =
1

!
[°1(½)¡Á°0(½)] + ¹1

(15)

m2(½; ¯) =
1

2!

·¡2Á°1(½)+(1 + Á2)°0(½)

!
¡ 1

¸
+ ¹2

where the dependence of °j on ½ comes from (12).

If we de…ne µi(½) and ¹i(½) as the values of the parameters and multipliers

of the auxiliary model that for each value of ½ solve the population program

max
µ
LT (½; µ) s:t: Á ¸ 0; ! ¸ 0

where

LT (½; µ) = E [ lt(µ)j½] = ¡1

2
ln 2¼ ¡ 1

2
ln ! ¡ (1 + Á2)°0(½)¡2Á°1(½)

2!
;

it is clear that the inequality restricted binding functions ¯i(½) satisfy the moment

conditions

m
£
½; ¯i(½)

¤
= 0

together with the sign and exclusion restrictions

Ái(½) ¸ 0; ¹i
1(½) ¸ 0; Ái(½) ¢ ¹i

1(½) = 0

!i(½) ¸ 0; ¹i
2(½) ¸ 0; !i(½) ¢ ¹i

2(½) = 0

>From here, it is easy to see that

!i(½) = E
n£

xt ¡ Ái(½)xt¡1

¤2
¯̄̄
½

o
=

n
1 +

£
Ái(½)

¤2
o

°0(½)¡ 2Ái(½)°1(½) ¸ 0
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so that ¹i
2(½) = 0, as expected. As for the other elements, in principle there may

be two di¤erent situations depending on whether or not ± · 0. Speci…cally:

Áu(½) =
°1(½)

°0(½)
Áe(½) = 0 Ái(½) = I(± ¸ 0)

°1(½)

°0(½)

!u(½) = °0(½)¡°2
1(½)

°0(½)
!e(½) = °0(½) !i(½) = °0(½)¡I(± ¸ 0)

°2
1(½)

°0(½)

¹u
1(½) = 0 ¹e

1(½) = ¡°1(½)

°0(½)
¹i

1(½) = ¡I(± · 0)
°1(½)

°0(½)

where ¯u(½) denotes the usual unrestricted binding functions, and ¯e(½) the

equality restricted ones associated with the constraint Á = 0. Obviously, they

all coincide for ± = 0, in which case

Áu(0; Ã) = Áe(0; Ã) = Ái(0; Ã) = 0(= ±)

!u(0; Ã) = !e(0; Ã) = !i(0; Ã) = Ã

¹u
1(0; Ã) = ¹e

1(0; Ã) = ¹i
1(0; Ã) = 0

Figure 1 plots the binding functions Áu(½) and ¹e
1(½) for ¡1 · ± · 1. Note

that in this framework, Ái(½) = max [Áu(½);0] and ¹i
1(½) = max [¹e

1(½);0].

3.1.4 Asymptotic distributions of pseudo-ML estimators and sample

moments

Given the di¤erent expressions for the inequality restricted pseudo-ML estima-

tors of µ and ¹ discussed previously, the sample counterparts to (15) will be given

by either:

m1(½; ^̄T ) =
[°1(½)¡ (¾̂01T =¾̂11T )°0(½)]

¾̂00T ¡ ¾̂2
01T =¾̂11T

m2(½; ^̄T ) =

£¡2(¾̂01T =¾̂11T )°1(½)+(1 + ¾̂2
01T =¾̂2

11T )°0(½)¡ ¡
¾̂00T ¡ ¾̂2

01T =¾̂11T

¢¤
2

¡
¾̂00T ¡ ¾̂2

01T =¾̂11T

¢2

when ¾̂01T ¸ 0, or

m1(½; ¹̄T ) =
[°1(½)¡¾̂01T ]

¾̂00T
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m2(½; ¹̄T ) =
[°0(½)¡¾̂00T ]

2¾̂2
00T

when ¾̂01T · 0. In this respect, note that m(½; ^̄T ) are precisely the sample

moments that we would use in a standard unrestricted EMM procedure, while

m(½; ¹̄T ) are the ones that correspond to the equality constrained EMM procedure

based on the constraint Á = 0.

Let’s now derive the asymptotic distribution of the pseudo-ML estimators of

the auxiliary parameters, multipliers and moments in the three di¤erent relevant

situations that may occur: (i) ±0 < 0, (ii) ±0 > 0, and (iii) ±0 = 0. To do

so, we shall use the following lemma, which can be proved as a straightforward

application of Theorem 5.7.1 in Anderson (1971):

Lemma 1 When xt is given by the Gaussian ma(1) model (11), the …rst sam-

ple autocorrelation Á̂T is T 1=2-consistent for the …rst population autocorrelation

Áu(½0), with the following limiting distribution

p
T

h
Á̂T ¡ Áu(½0)

i
d! N

(
0;

1 + (±0)2 + 4(±0)4 + (±0)6 + (±0)8£
1 + (±0)2

¤4

)

Note that the asymptotic variance of Á̂T , which not surprisingly is the same for

a non-invertible ma(1) process with parameter 1=±, achieves its maximum (=1)

for ±0 = 0 and its minimum (=1/2) for ±0 = §1. In addition, it is easy to see

that
p

T
³

Á̂T + ¹¹1T

´
= op(1) because ¾̂00 ¡ ¾̂11 = (x2

T ¡ x2
0)=T = Op(T

¡1). As a

result, we will have that

lim
T !1

P (
p

T Á̂T > 0) = lim
T !1

P (
p

T ¹¹T < 0) =

8>>><>>>:
1 if ±0 < 0

1=2 if ±0 = 0

0 if ±0 > 0

Hence, when ±0 < 0,
p

T
³

~ÁT ¡ Á̂T

´
and

p
T ~¹1T are both op(1), and the inequal-

ity restricted EMM and II estimators of ½ are asymptotically equivalent to the
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usual unrestricted EMM and II estimators. In contrast, when ±0 > 0,
p

T ~ÁT and
p

T (~¹1T ¡ ¹¹1T ) are op(1), and the inequality restricted EMM and II estimators

of ½ will then coincide in large samples with the equality restricted ones. The

most interesting situation arises when ±0 = 0. In this case, ~̄T has a non-normal

asymptotic distribution, as it will be equal to either (Á̂T ; !̂T ; 0)0 or (0; ¹!T ; ¹¹1T )0

with probability approximately one half each. As a consequence, the sample mo-

ment conditions will also be m(½; ^̄T ) …fty per cent of the time, and m(½; ¹̄T ) the

other …fty. Nevertheless, given that when ±0 = 0 we can write

p
Tm1(½

0; ^̄T ) = ¡ °0(½
0)

¾̂00 ¡ ¾̂2
01=¾̂11

p
TÁ̂T

and
p

Tm1(½0; ¹̄T ) = ¡
p

T ¹¹1T

it is clear that
p

T
h
m1(½0; ^̄T )¡m1(½0; ¹̄T )

i
= op(1), so that the limiting dis-

tribution of
p

Tm1(½
0; ~̄T ) will also be normal, with an analogous result for the

other moment. The reason is that despite the fact that both
p

T ~ÁT and
p

T ~¹1T

have half normal distributions, asymptotically
p

T (~ÁT¡~¹1T ) has the same N(0; 1)

distribution as either
p

T (Á̂T ¡ ¹̂1T ) =
p

T Á̂T or
p

T (¹ÁT ¡ ¹¹1T ) = ¡pT ¹¹1T . In

fact, this last statement is true irrespectively of ±0 7 0, and simply constitutes an

example of Proposition 2. As for Proposition 1, we trivially have that

~¹1T

p
T

h
~ÁT¡Ái

T (½0)
i

+ ~ÁT

p
T

£
~¹1T¡¹i

1(½
0)

¤
= 0

and the same applies to the unrestricted and equality restricted pseudo-ML esti-

mators and multipliers.

3.1.5 Indirect inference estimators

If the parameters of interest of the true model were ° = (°0;°1)0 rather than

½, the solution of the linear system of equations m[~°T ; ~̄T ] = 0 with respect to ~°T
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would give us the inequality restricted EMM estimator of these autocovariances.

More explicitly, since the system above could be re-written as0@ ¡~ÁT 1

1 + ~Á
2

T ¡2~ÁT

1A 0@ ~°0T

~°1T

1A =

0@ ¡~!T ~¹1T

~!T

1A (16)

we would have that the inequality constrained EMM estimators of ° would be

given by 0@ ~°0T

~°1T

1A = I(Á̂T ¸ 0)

0@ °̂0T

°̂1T

1A + I(Á̂T < 0)

0@ ¹°0T

¹°1T

1A
where 0@ °̂0T

°̂1T

1A =

0@ ¾̂00T

¾̂01T

1A ¢
µ

¾̂2
00T ¡ ¾̂2

01T

¾̂2
11T ¡ ¾̂2

01T

¶
(17)

are the EMM estimators of ° that use as score generator an unrestricted ar(1)

model, and 0@ ¹°0T

¹°1T

1A =

0@ ¾̂00T

¾̂01T

1A
the ones based on a white noise process, provided that in the latter case we include

in the set of moments the Lagrange …rst order condition of the autoregressive pa-

rameter with the corresponding multiplier.2But given that ¾̂00T ¡ ¾̂11T = Op(T
¡1)

for any value of ±0, it is easy to see that the EMM estimator of ° based on an in-

equality restricted ar(1) process, ~°T , is always asymptotically equivalent to both

°̂T and ¹°T .

This result is not totally surprising if we note that the two sets of sample

moments satisfy the following relationships:µ
¾̂00T ¡ ¾̂2

01T

¾̂11T

¶
m1(½; ^̄T ) = ¾̂00T m1(½; ¹̄T )¡ ¾̂2

00T

¾̂01T

¾̂11T
m2(½; ¹̄)

+
¾̂01T

¾̂11T
(¾̂11T ¡ ¾̂00T )

2Note that the implied estimate of the …rst autocorrelation is the same in both cases.
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µ
¾̂00T ¡ ¾̂2

01T

¾̂11T

¶2

m2(½; ^̄T ) = ¡¾̂00T
¾̂01T

¾̂11T
m1(½; ¹̄) + ¾̂2

00T (1 +
¾̂2

01T

¾̂2
11T

)m2(½; ¹̄)

+
¾̂2

01T

¾̂2
11T

(¾̂11T ¡ ¾̂00T )

Hence,
p

Tm(½; ^̄T ) and
p

Tm(½; ¹̄T ) are almost an exact linear combination of

each other for large T irrespectively of ½0.

On the other hand, the unconstrained II estimators of °0 and °1 would be

obtained by minimising the following MD criterion function:

Du
T (°; I2) =

µ
Á̂T ¡

°1

°0

¶2

+

·
!̂T ¡

µ
°0¡

°2
1

°0

¶¸2

while the equality constrained II estimators would minimise

De
T (°; I2 ) =

µ
¹¹1T +

°1

°0

¶2

+ (¹!T ¡ °0)2

instead. But in view of the expressions for Á̂T , !̂T , ¹¹1T and ¹!T in (14), it is

obvious that such II estimators will numerically coincide with °̂T and ¹°T respec-

tively. Moreover, since the inequality constrained II estimator would minimise the

objective function

Di
T (°; I3) =

·
~ÁT ¡

°1

°0

I(°1 ¸ 0)

¸2

+

·
~¹1T +

°1

°0

I(°1 · 0)

¸2

+

½
~!T ¡

·
°0¡

°2
1

°0

I(°1 ¸ 0)

¸¾2

it is clear that it will be given by ~°T , as expected. The reason is that since the

auxiliary model exactly identi…es the …rst two autocovariances, and there are no

binding constraints of °, then II and EMM yield the same estimators.

The common asymptotic distribution of ¹°T ; °̂T and ~°T can be directly ob-

tained as a special case of Theorem 8.4.2 in Anderson (1971):

Lemma 2 When xt is given by the Gaussian ma(1) model (11), ¹°0T and ¹°1T

are T 1=2-consistent for °0(½
0) and °1(½0) respectively, with the following limiting
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distribution
p

T
£
¹°T ¡ °(½0)

¤ d! N
£
0;V(½0)

¤
where

V(½) =Ã2

0@ 2 + 8±2 + 2±4 ¡4± ¡ 4±3

¡4± ¡ 4±3 1 + 5±2 + ±4

1A
But even though ° are not really the parameters of interest, we can regard

their EMM estimators as “su¢cient statistics” from which we can estimate ½.

At …rst sight, it may seem that we could recover ½ by solving numerically the

nonlinear system of equations (12). Unfortunately, there is no solution if
¯̄̄
Á̂T

¯̄̄
> :5.

One attractive possibility involves the minimisation of the optimal (continuously

updated) MD criterion:

³
~°0T ¡ °0(½) ~°1T ¡ °1(½)

´
V¡1(½)

0@ ~°0T ¡ °0(½)

~°1T ¡ °1(½)

1A
subject to the inequality constraints ¡1 · ± · 1 and Ã ¸ 0. Tedious but

otherwise straightforward algebra shows that the resulting estimators of ± and Ã

will be given by the following expressions:

~±T = 0

~ÃT = ¾̂00

9=; if Á̂T = 0

~±T =

µ
¡1 +

q
1¡ 4Á̂

2

T

¶
=(2Á̂T )

~ÃT = ¾̂00=(1 + ~±
2

T )

9>=>; if 0 < Á̂
2

T · :25

~±T = ¡sign(Á̂T )

~ÃT = ¾̂00

³
7 + 12Á̂

2

T ¡ 16
¯̄̄
Á̂T

¯̄̄´
=

³
6¡ 4

¯̄̄
Á̂T

¯̄̄´
9=; if Á̂

2

T > :25

(18)

In fact, given that the above MD criterion would numerically coincide with the

optimal (continuously updated) GMM criterion based on the restrictions

E[x2
t ¡ °0(½)] = 0

E[xtxt¡1 ¡ °1(½)] = 0
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if ¾̂00T = ¾̂11T , and that the estimating equations used in (un)restricted EMM

and II procedures would be a linear combination of these ones, it is clear that the

di¤erent estimators of ½ are asymptotically equivalent.3

An analogous line of reasoning applies to pretest EMM and II estimators that

use either the equality restricted estimators when a standard LM test for …rst

order serial correlation does not reject the null of white noise, or the unrestricted

estimators when it does. Since as we have just seen, ¹½T and ½̂T have the same

asymptotic distribution regardless of the value of ±0, such a common distribution

will be inherited by the pretest estimators.

Finally, note that since the auxiliary model “smoothly embeds” the true model

when ±0 = 0, Theorem 2 in GT implies that in this particular case, the unrestricted

estimator ½̂T is asymptotically equivalent to maximum likelihood, and the same

obviously applies to all the other estimators. However, the asymptotic e¢ciency

of ½̂T relative to the ML estimator decreases as
¯̄
±0

¯̄
increases. In particular, the

asymptotic distribution of
p

T (~±T ¡ ±0) when ±0 = 1 is half normal by virtue of

Lemma 1 and expression (18), while the ML estimator of ± is superconsistent (i.e.

consistent at the rate T ; see Sargan and Bhargava, 1983).

In principle, it may seem that the imposition of the correct restriction jÁj ·
:5 in the estimation of the auxiliary ar(1) model should produce more e¢cient

estimators of the parameters of interest. However, it turns out that exactly the

same II estimator of ½ is obtained when we replace the non-negativity restriction

on Á by a general restriction of the form Ámin · Á · Ámax, for any Ámin,Ámax.

Moreover, the equivalence between the di¤erent EMM and II estimators of ½ in

the ma(1) via ar(1) example does not really depend on the nature of the true

3Nevertheless, when
¯̄̄
Á̂T

¯̄̄
> :5, the di¤erent estimators of Ã will di¤er in …nite samples,

not only because ¾̂00T ¡ ¾̂11T is only approximately zero, but also because unless one uses the

analytical expression for V(½) above, there will be estimation error in the HAC calculation of

the optimal weighting matrices.
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model, whose parameters only enter through °0(½) and °1(½), but rather on the

particular form of the auxiliary model used. As we mentioned above, the reason

is that from the point of II and EMM estimation, °̂T ; ¹°T and ~°T play the role

of “su¢cient statistics” from which we infer ½. In this respect, it is possible

to prove that the same result is true whenever the auxiliary model is given by

a conditionally homoskedastic Gaussian ar(p) process, with p …nite, and the

restrictions are linear in the autoregressive parameters.

3.2 AR(1) estimated as MA(1)

3.2.1 True and auxiliary models

Consider now the following stationary ar(1) process:

xt = Áxt¡1 + vt; vtjxt¡1; : : : » N(0; !); jÁj < 1; 0 < ! < 1 (19)

where the parameters of interest are ½ = (Á; !)0. It is well known that E(xt) = 0,

and that its autocovariance structure is given by

°j(½) = Áj !

1¡ Á2 ; j ¸ 0 (20)

In order to estimate ½ by indirect inference, we are going to use initially the

following inequality restricted ma(1) model:

xt = ut ¡ ±ut¡1; utjxt¡1; : : : » N(0; Ã); ± · 0; Ã ¸ 0

where µ = (±; Ã)0. Since its autocovariance structure is given by:

V ar(xt) = (1 + ±2)Ã

cov(xt; xt¡1) = ¡±Ã

cov(xt; xt¡j) = 0; j > 1
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the non-positivity constraint on ± implies that the signs of the …rst autocorrela-

tions of the auxiliary and true models coincide when Á > 0, and di¤er when Á < 0.

Note, however, that the auxiliary model only nests the true model when Á = 0.

3.2.2 Pseudo-ML estimators

The log-likelihood function of the ma(1) model for a sample of size T will be

given by:

LT (µ) = ¡T

2
ln 2¼ ¡ T

2
ln Ã ¡ 1

2Ã

X
t

[xt ¡ ºt(±)]2

with

ºt(±) = ¡
1X

j=1

±jxt¡j;

and the (scaled) Lagrangian function by

QT (¯) = ¡1

2
ln 2¼ ¡ 1

2
ln Ã ¡ 1

2Ã

1

T

X
t

[xt ¡ ºt(±)]2 + ±¹1 + Ã¹2

where ¹ = (¹1; ¹2)0 are the multipliers associated with the inequality restrictions

± · 0 and Ã ¸ 0 respectively. Therefore, the …rst-order conditions that take into

account the inequality constraints will be given by the Kuhn-Tucker conditions:

1
~ÃT

1

T

X
t

ut(~±T )
@ºt(~±T )

@±
+ ~¹1T = 0

1

2~ÃT

1

T

X
t

"
u2

t (
~±T )

~ÃT

¡ 1

#
+ ~¹2T = 0

where

ut(±) =

1X
j=0

±jxt¡j (21)

@ºt(±)

@±
= ¡

1X
j=1

j±j¡1xt¡j (22)
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together with sign and exclusion constraints

~±T · 0; ~¹1T ¸ 0; ~±T ¢ ~¹1T = 0

~ÃT ¸ 0; ~¹2T ¸ 0; ~ÃT ¢ ~¹2T = 0

But as

~ÃT =
1

T

X
t

u2
t (

~±T ) ¸ 0

we can safely take ~¹2T = 0 in what follows. Also since

~¹1T = ¡ 1
~ÃT

1

T

X
t

ut(~±T )
@ºt(~±T )

@±

we can interpret this Kuhn-Tucker multiplier as (minus) the coe¢cient in the

OLS regression of @ºt(~±T )=@± on the inequality restricted residuals ut(~±T ) (see

Gourieroux, Holly and Monfort, 1980). Therefore, ~¹1T will be 0 if the inequality

restriction is satis…ed, or the usual Lagrange multiplier associated with the equality

constraint ± = 0 otherwise. Not surprisingly, the Lagrange multiplier is simply

¹¹1T = ¡T ¡1
P

t xtxt¡1

T ¡1
P

t x2
t

= ¡ ¾̂10T

¾̂00T

which, as in the previous example, is approximately the same as the (opposite of

the) …rst sample autocorrelation in large samples. Similarly,

¹ÃT =
1

T

X
t

x2
t = ¾̂00T

i.e. the sample variance with denominator T .

3.2.3 Population moments and binding functions

Given the covariance stationarity of the true model, we can base our estimation

of ½ on the following time-invariant expressions

m1(½; ¯) = E

·
1

Ã
ut(±)

@ºt(±)

@±
+ ¹1

¯̄̄̄
½

¸
(23)

m2(½; ¯) = E

½
1

2Ã

·
u2

t (±)

Ã
¡ 1

¸
+ ¹2

¯̄̄̄
½

¾
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which using the results in the appendix, can be written as

m1(½; ¯) = ¡ °0(½)

Ã(1¡ ±2)2

(
± +

1X
l=1

£
2±2 +

¡
1¡ ±2

¢
l
¤

±l¡1 °l(½)

°0(½)

)
+ ¹1

=
!

Ã(1¡ Á2)
¡
1¡ ±2

¢2
(1¡ ±Á)2

¡
Á2±3 + Á±2 ¡ ± ¡ Á

¢
+ ¹1

m2(½; ¯) =
1

2Ã2

"
°0(½)

1¡ ±2

Ã
1 + 2

1X
l=1

±l °l(½)

°0(½)

!
¡ Ã

#
+ ¹2

=
1

2Ã2

"
!¡

1¡ ±2
¢ ¡

1¡ Á2
¢ ¢ 1¡ ±Á

1 + ±Á
¡ Ã

#
+ ¹2

where the intermediate expressions only depend on the auxiliary model, while the

…nal expressions are obtained by replacing (20) in the intermediate ones.

If we de…ne µi(½) and ¹i(½) as the values of the parameters and multipliers

of the auxiliary model that for each value of ½ solve the population program

max
µ
LT (½; µ) s:t: ± · 0; Ã ¸ 0

where

LT (½; µ) = E [ lt(µ)j½] = ¡1

2
ln 2¼ ¡ 1

2
ln Ã ¡ 1

2Ã
E

©
u2

t (±)
¯̄
½

ª
it is clear that the inequality restricted binding functions ¯i(½) satisfy the moment

conditions

m
£
½; ¯i(½)

¤
= 0

together with the sign and exclusion restrictions

±i(½) · 0; ¹i
1(½) ¸ 0; ±i(½) ¢ ¹i

1(½) = 0

Ãi(½) ¸ 0; ¹i
2(½) ¸ 0; Ãi(½) ¢ ¹i

2(½) = 0

>From here, it is easy to see that

Ãi(½) = E
©

u2
t

£
±i(½)

¤¯̄
½

ª
=

°0(½)

1¡ £
±i(½)

¤2

Ã
1 + 2

1X
l=1

£
±i(½)

¤l °l(½)

°0(½)

!
¸ 0
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and consequently, that ¹i
2(½) = 0, as expected.

>From the above moment expressions, we also have that the usual uncon-

strained binding function for ±, ±u(½) will be the real root of the following third

order equation

Á2 [±u(½)]3 + Á [±u(½)]2 ¡ ±u(½)¡ Á = 0

whose modulus is less than or equal to 1. 4

As a result, if ±u(½) · 0, then ¯i(½) = ¯u(½), where

Ãu(½) =
!0©

1¡ [±u(½)]2
ª ¡

1¡ Á2
¢ ¢ 1¡ ±u(½)Á

1 + ±u(½)Á0

¹u(½) = 0

are the remaining unconstrained binding functions, while if ±u(½) > 0, then

¯i(½) = ¯e(½), where

±e(½) = 0

Ãe(½) = °0(½) =
!

1¡ Á2 (24)

¹e
1(½) = ¡°1(½)

°0(½)
= ¡Á ¸ 0

are the binding functions associated with the equality constraint ± = 0. Since the

…rst theoretical autocorrelation has the same sign as Á, the …rst solution applies

when Á ¸ 0, while the second solution when Á · 0. Obviously, they all coincide

when Á = 0, in which case

±u(0; !) = ±e(0; !) = ±i(0; !) = 0(= Á)

Ãu(0; !) = Ãe(0; !) = Ãi(0; !) = !

¹u
1(0; !) = ¹e

1(0; !) = ¹i
1(0; !) = 0

4It is important to mention that ±u(½) is di¤erent from the …rst inverse autocorrelation of

the ar(1) model, which is given by Á=(1 + Á2), since the range of ±u(½) is -1 to 1, rather than

-1/2 to 1/2 (see e.g. Bhansali, 1980).
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Figure 2 plots the binding functions ±u(½) and ¹e
1(½) for ¡1 < Á < 1. Note

that in this framework, ±i(½) = min [±u(½);0] while ¹i
1(½) = max [¹e

1(½);0].

3.2.4 Asymptotic distributions of pseudo-ML estimators and sample

moments

First of all, let’s state the ar(1) version of Lemma 2 above, which can again

be obtained from theorem 8.4.2 in Anderson (1971):

Lemma 3 When xt is given by the Gaussian ar(1) model (19), ¾̂00T and ¾̂01T

are T 1=2-consistent for °0(½
0) and °1(½0) in (20) respectively, with the following

limiting distribution

p
T

£
¹°T ¡ °(½0)

¤ d! N
£
0;V(½0)

¤
where

V(½) =
!2¡

1¡ Á2
¢3

0@ 2 + 2Á2 4Á

1 + 4Á2 ¡ Á4

1A
Given that the population moments evaluated at the equality restricted pseudo-

ML estimators are given by:

m1(½; ¹̄) = ¡ !

¾̂00T (1¡ Á2)
Á¡ ¾̂10T

¾̂00T

m2(½; ¯) =
1

2¾̂00T

"
!¡

1¡ Á2
¢ ¡ ¾̂00T

#

it is straightforward to derive their asymptotic distribution by means of the delta

method. Similarly, we can use the same technique to derive the asymptotic dis-

tribution of ¹¹1T = ¡¾̂10T =¾̂00T and ¹ÃT = ¾̂00T . Alternatively, the asymptotic

distribution of the estimator of the Lagrange multiplier can be directly obtained

from the Mann and Wald theorem.
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In contrast, the asymptotic distribution of the unrestricted estimators ±̂T and

Ã̂T is rather more laborious to obtain, as we need to derive closed form expressions

for the matrices Iu
0T and J u

0T . For simplicity, we shall only do it for the case of

Á0 = 0, which as we saw before, corresponds to ±u(½0) = 0 and Ãu(½0) = !0. In

this case, the score of the ma(1) log-likelihood function evaluated at the pseudo-

true parameter values will be given by the following expressions:

1

!0

1

T

X
t

xtxt¡1 =
1

!0
¾̂01T

1

2!0

1

T

X
t

µ
x2

t

!0
¡ 1

¶
=

1

2(!0)2

£
¾̂00T ¡ !0

¤
Hence, we can use Lemma 3 directly with ±0 = 0 to show that

Iu
0 =

24 1 0

0 1=2(!0)2

35
Similarly, it is also easy to prove that for ½0 = (0; !0)0

J u
0 =

24 1 0

0 1=2(!0)2

35
so that

p
T

0@ ±̂T

Ã̂T ¡ !0

1A d! N

8<:
0@ 0

0

1A ;

24 1 0

0 2(!0)2

359=;
as expected, since the true process is white noise, and the ma and ar log-likelihood

functions are locally equivalent.

As for the inequality restricted pseudo-ML estimators of ±, Ã, and ¹1, there

may be three di¤erent situations, according to whether Á0 < 0, Á0 > 0 or Á0 = 0.

In the …rst case, it is easy to see from Propositions 1 and 2 that
p

T (~±T ¡ ±̂T ),
p

T (~ÃT ¡ Ã̂T ) and
p

T ~¹1T are all op(1), while in the second case the same applies

to
p

T~±T ,
p

T (~ÃT ¡ ¹ÃT ) and
p

T (~¹1T ¡ ¹¹1T ). Once more, the interesting case

arises when Á0 = 0, because
p

T~±T and
p

T ~¹1T have half normal asymptotic
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distributions. Nevertheless, from Proposition 2 we will again have that
p

T (~±T ¡
~¹1T ) will share an asymptotic N(0; 1) distribution with

p
T (±̂T ¡ ¹̂1T ) =

p
T ±̂T

and
p

T (¹±T ¡ ¹¹1T ) = ¡pT ¹¹1T .

3.2.5 Indirect inference estimators

Given the two di¤erent expressions for the inequality restricted pseudo-ML

estimates of µ and ¹ discussed previously, the sample counterparts to the pop-

ulation moments (23) will be given by either m(½; ^̄T ), which correspond to the

sample moments used by an unrestricted EMM procedure, or m(½; ¹̄T ), which will

be the moments used by the equality constrained one. But since when we solve

m(½; ¹̄T ) = 0 we get

¹±T = ¡¹¹1T =
¾̂10T

¾̂00T

¹!T = ¹ÃT (1¡ ¹±
2
T ) = ¾̂00T ¡ ¾̂2

10T

¾̂00T

it is clear that the equality constrained EMM estimator converges in probability

to the …rst order sample autocorrelation, which is the maximum likelihood es-

timator of the parameter of interest. Hence, it is always at least as e¢cient as

the unrestricted EMM estimator. Note that this is true regardless of the sign of

±u(½0), and therefore independently of whether or not Á0 = 0. Of course, if we

knew that ±u(½0) = 0, or any other value for that matter, we could recover Á0

from the binding function directly without estimation error (cf. Dridi, 2000). The

same result applies to the corresponding equality constrained II estimators, which

minimise the MD objective function

Di
T (½; I2) =

·
¹¹1T +

°1(½)

°0(½)

¸2

+
£
¹ÃT ¡ °0(½)

¤2

As for the inequality restricted estimators, it depends on whether or not the

pseudo-true value ±i(½0) is 0 or strictly negative (or the associated Kuhn-Tucker
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multiplier ¹i
1(½0) is 0 or strictly positive). If Á0 > 0, then ~½T will be asymptotically

equivalent to the unrestricted estimator ½̂T because the sign restriction on ~±T is

not binding in large samples. As a result, the inequality restricted estimators

will be less e¢cient than the equality constrained ones. If on the other hand,

Á0 < 0, the restriction is almost surely binding in the limit, and therefore ~½T will

be asymptotically equivalent to the equality restricted estimator ¹½T . Finally, the

most interesting situation arises when Á0 = 0. In this case, since the unrestricted

pseudo log-likelihood nests the true log-likelihood, the unrestricted estimators will

also be as e¢cient as maximum likelihood by virtue of Theorem 2 in GT. But since

the inequality restricted estimators will be a 50:50 mixture of ½̂T and ¹½T in large

samples, it will share their common asymptotic distribution.

A similar line of reasoning can be applied to a pre-test estimator that uses

either ¹½T when a standard LM test for …rst order serial correlation does not reject

the null hypothesis of white noise, or ½̂T when it does. Since such an LM test is

consistent in the context of the ar(1) model (19), then the pretest EMM estimator

will always be asymptotically equivalent to ½̂T , and therefore ine¢cient relative

to ¹½T except when Á0 = 0.

3.3 Stochastic volatility estimated as GARCH(1,1) with

Gaussian and Student’s t distributed errors

3.3.1 True and auxiliary models

Consider the following log-normal stochastic volatility process

xt =
p

htut

ln ht = ® + ± ln ht¡1 + ¾vvt

(25)

where j±j < 1; 0 < ¾v < 1, and (ut; vt)
0jxt¡1; : : : » N(0; I2). This model was

originally proposed as an alternative to the arch class, and can be regarded as
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the discrete time analogue of the continuous time Orstein-Uhlenbeck stochastic

processes for instantaneous log volatility frequently used in the theoretical …nance

literature. Unfortunately, it is impossible to …nd analytical expressions for the

conditional distribution of xt based on its own past values alone, despite the fact

that its distribution conditional on ht; xt¡1; : : : is Gaussian, with zero mean and

variance ht. Given its importance, though, it is not surprising that a voluminous

collection of research papers has been devoted to the estimation of the parameters

of interest ½ = (®; ±; ¾v)0 (see Shephard (1996) for a survey).

In an in‡uential such paper, Kim, Shephard and Chib (1998) consider likelihood-

based estimators of (25), and analyse its goodness of …t relative to some popular

arch-type competitors. In particular, they …nd that the log-normal stochastic

model above and a garch(1,1) model with (standardised) Student’s t distributed

errors …t the data equally well, as long as the additional tail-thickness parameter

is not set to its limiting value under Gaussianity. Therefore, since the latter has

a conditional density that can be written in closed form, it looks like the ideal

candidate for auxiliary model. On this basis, the model we estimate is given by

xt =
p

¸t"t

¸t = Ã + 'x2
t¡1 + ¼¸t¡1

where "tjxt¡1 : : : follows a standardised Student’s t distribution with ´¡1 degrees

of freedom,5so that µ = (Ã; '; ¼; ´)0. Note that by having an extra parameter, the

auxiliary model (seemingly) overidenti…es ½. As is well known, the standardised

t distribution nests the standard normal for ´ = 0, but otherwise has fatter tails.

Also note that like in the previous two examples, the auxiliary and true models

are non-nested except in the trivial case in which xt is Gaussian white noise.

5Since the implied degrees of freedom parameter can take any real value above 2, in fact

the errors have a distribution that is
p

(1¡ 2´)=´ times the ratio of a standard normal to the

square root of an independent gamma variate with parameters 1=2´ and 2.
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The parameters of the auxiliary model are usually estimated subject to several

inequality restrictions for the following reasons:

1. As discussed by e.g. Nelson and Cao (1991), when "2
t has in…nite support,

the conditional variance ¸t will be nonnegative with probability one if Ã ¸ 0,

' ¸ 0 and ¼ ¸ 0.

2. The pseudo-ML estimators of µ may not be well behaved when ' + ¼ > 1

(see Lumsdaine, 1996).

3. The pseudo log-likelihood function based on the standardised Student’s t

distribution cannot be de…ned when the inverse of the degrees of freedom

parameter is either negative, or exceeds 1/2.

4. When ' = 0, ¼ becomes asymptotically underidenti…ed, which may also

happen in …nite samples depending on the treatment of the initial observa-

tions (see e.g. Andrews, 1999).

As a consequence, we estimate the auxiliary model subject to the following set

of inequality constraints:

Ã ¸ 0; ' ¸ 'min; ¼ ¸ 0; ' + ¼ · 1; 0 · ´ · ´max (26)

where °min, and 1=2¡ ´max are arbitrarily chosen small values.6

In addition, the Student’s t-based log-likelihood function often becomes rather

‡at for very small values of ´, because it is very di¢cult to numerically distin-

guish a standardised t with 2,000 degrees of freedom from another one with 5,000

degrees of freedom, or indeed from their Gaussian limit. In fact, we e¤ectively

set ´ = 0 whenever ´ < ´min to avoid large numerical errors in the computation

6After some experimentation, we chose °min = :025, and ´max = :499, which corresponds to

2.04 degrees of freedom.
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of the derivatives.7For that reason, we also consider a mixed equality/inequality

estimator that sets ´ to 0 to obtain a Gaussian pseudo log-likelihood function,

but which computes the value of the corresponding multiplier from the relevant

…rst order condition. For the sake of brevity, we refer to the estimator that allows

´ to vary freely within its bounds as the “inequality restricted” estimator, and to

the other as the “equality restricted” one. Nevertheless, the remaining auxiliary

parameters are always estimated subject to the other bounds in (26).

3.3.2 Monte Carlo study

We assess the performance of our proposed procedures by means of an extended

Monte Carlo analysis, with the same experimental design as Jacquier, Polson and

Rossi (1994) (JPR). In this respect, the results in JPR suggest that the most

important determinant of the performance of the di¤erent estimators will be the

unconditional coe¢cient of variation of the unobserved volatility level ht, · say,

where

·2 =
V (ht)

E2(ht)
= exp(

¾2
v

1¡ ±2 )¡ 1

Intuitively, the reason is that when ·2 is low, the observed process is close to

Gaussian white noise, and the estimation of the stochastic volatility parameters

is di¢cult. Unfortunately, the existing empirical evidence suggests that low ·20s

are the rule, rather than the exception (see JPR and the references therein).

The Monte Carlo designs considered by JPR in their tables 5, 6 and 7, have nine

entries, arranged in three rows and columns. The rows are de…ned in terms of ·2,

and the columns by the autocorrelation coe¢cient for log volatility, ±. Finally, the

remaining parameter Ã is chosen so that the unconditional mean of the volatility

level equals .0009. Although most of their reported results correspond to a sample

size of T = 500 observations, we have also considered T = 1; 000 and 2; 000.

7We chose ´min = :0005, which corresponds to 2,000 degrees of freedom.
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For convenience, we …rst optimise the pseudo log-likelihood function in terms

of some unrestricted parameters µ¤, where Ã = µ¤2
1 , ' = 'min +(1¡'min) sin2(µ¤

2),

¼ = (1¡') sin2(µ¤
3) and ´ =

£
1¡ sin2(µ¤

4)
¤

´min +sin2(µ¤
4)´max. Then, we compute

the score in terms of the original parameters µ = (Ã; '; ¼; ´)0 using the analytical

expressions derived by Calzolari, Fiorentini and Sentana (2000), and introduce

one multiplier for each of the four …rst order conditions in order to take away any

slack left. Since there are no closed-form expressions for the expected value of

the modi…ed score, we compute them on the basis of single simulations of length

TH, with H = 10, as explained in section 2.5. A larger value of H should in

theory reduce the Monte Carlo variability of the EMM estimators according to

the relation (1+H¡1), but at the cost of a signi…cant increase in the computational

burden. Finally, we minimise numerically the GMM criterion function in terms

of some unrestricted parameters ½¤, with ® = ½¤
1, ± = ±max sin(½¤

2) and ¾v = ½¤2
3 ,

where ±max = :9999, so as to ensure that j±j < 1 and ¾v ¸ 0.

Tables 1, 2 and 3 contain the proportion of inequality and equality restricted

pseudo-ML estimators of µ that satisfy with equality the di¤erent restrictions

in (26). When ·2 is 1, such restrictions are hardly ever binding, especially for

T = 2; 000. However, when ·2 is large (=10), most of the estimated garch

models are of the igarch variety. This is particularly true when ´ is free, but it

also happens when the conditional distribution is assumed Gaussian. Somewhat

surprisingly, such a …nding does not seem to constitute a …nite sample problem,

because the proportion of boundary cases actually increases with the sample size.

In contrast, in those empirically relevant situations in which ·2 is small (=.1),

igarch parameter con…gurations are hardly ever estimated, but the estimates of

the arch and garch coe¢cients, and the reciprocal of the degrees of freedom

parameter, reach their lower bounds fairly often, especially for the smaller sample

sizes. For instance, when T = 500 and ± = :98, almost 60% of the simulations
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have inequality constrained pseudo-ML estimators for which at least one of those

restrictions is binding. As pointed out by Shephard (1996), part of the empirical

success of the stochastic volatility and t-garch models simply lies on their ability

to capture the fat-tailed behaviour of asset returns. Therefore, when one tries to

…t a t-distributed garch(1,1) auxiliary model to arti…cial data that shows little

volatility clustering, and only a small degree of leptokurtosis, it is not totally

surprising that one ends up with parameter estimates that correspond to Gaussian

white noise. In any case, the results clearly show that our proposed generalisations

of EMM and II procedures are not only of theoretical interest, but also highly

relevant in practice.

Tables 4 to 9 present the means, root mean square errors, mean biases and

standard deviations of the inequality and equality restricted EMM estimators of

the parameters of interest ½ for the case in which the optimal GMM weighting

matrix is estimated as the variance in the original data of the modi…ed score of the

auxiliary model evaluated at the pseudo-ML parameter estimates. In this respect,

note that by including a multiplier in each …rst order condition, we automatically

centre the scores around their sample mean. Given that the auxiliary model tends

to …t the simulated data rather well, we have not included any correction for serial

correlation (cf. GT).

As expected, the estimates of the autoregressive parameter ± are downward

biased. This is particularly so when ±0 is high, and/or ¾0
v low, which mimics the

behaviour of a pseudo-ML estimator of the autoregressive parameter of an ar(1)

process observed subject to measurement error. And exactly like in that situation,

the downward bias in the estimator of ± is transmitted into an upward bias in

the absolute value of the estimates of the mean constant, ®, and the standard

deviation of the log-volatility innovations ¾v. Therefore, it is not surprising that

the most important determinant of the performance of the di¤erent estimators is
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precisely ·2, which e¤ectively plays the role of a signal to noise ratio.

But perhaps more importantly for our purposes, neither of the two restricted

versions of the EMM estimator seems to dominate the other across all Monte

Carlo designs. When ·2 is 10, the inequality restricted EMM estimator systemat-

ically outperforms the equality restricted one in terms of root mean square error,

although not necessarily in terms of mean bias for T = 500. In contrast, when

·2 is .1, the equality restricted EMM estimator tends to outperform the inequal-

ity restricted one, except perhaps as far as ¾v is concerned. The reason is that

when the behaviour of the data is close to Gaussian white noise, our attempts

to estimate simultaneously the reciprocal of the degrees of freedom, ´, result in a

deterioration of the estimators of the garch parameters relative to the Gaussian

case. At the same time, since the …rst order condition for ´ is the most directly

related to the degree of leptokurtosis of the observed data, the equality restricted

EMM estimator of ¾v is somewhat less precise than its inequality restricted coun-

terpart. As for the middle row, the results are mixed, at least for T = 500. As T

increases, the inequality restricted EMM estimator tends to have a smaller root

mean square error than the equality restricted one, at the cost of a slightly higher

mean bias.

Finally, a comparison of our results with the ones reported by JPR suggests

that our EMM procedures tend to outperform the QML and MM estimators

considered by these authors, except in those instances in which, according to

JPR, the performance of the latter is exceptionally good. In contrast, the EMM

estimators are dominated by the empirical Bayesian estimators proposed by JPR,

which is not very surprising given that our auxiliary model does not nest the

model of interest, and we do not use any prior information. In this respect, it is

important to mention that the relatively poor performance of the EMM estimators

is partly due to those simulations in which ± is estimated as being negative. For
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instance, the root mean square error of the equality restricted estimator of ± in

row 2, column 3 of Table 5 decreases from .0765 to .0524 if we exclude the only

two negative estimates of ± found in 1,000 replications.

4 CONCLUSIONS

In this paper, we generalise the II approaches of GT and GMR to those empir-

ically relevant situations in which there are constraints on the parameters of the

auxiliary model. In the EMM case, speci…cally, we derive the moments used in

GMM estimation from either the Kuhn-Tucker …rst order conditions for inequality

constraints, or the usual Lagrange …rst order conditions for equality restrictions.

Similarly, in the II case, we minimise the distance between an extended vec-

tor that includes both pseudo-ML parameter estimates and multipliers, and the

corresponding binding functions. Equality constrained estimators may be par-

ticularly useful from a computational point of view, since in many situations of

interest, it is considerably simpler to estimate a special restricted case of the aux-

iliary model. We also obtain expressions for the optimal GMM weighting matrix,

and the MD one that yields asymptotically equivalent II estimators. In addition,

we also consider EMM and II procedures based on partially optimised uncon-

strained estimators, as well as those that impose the constraints depending on the

signi…cance of some preliminary speci…cation test.

For illustrative purposes, we discuss the usual example of ma(1) estimated

as ar(1), and show that the inequality restricted EMM and II estimators are

asymptotically equivalent to the unrestricted estimators, and indeed, to equality

restricted EMM and II estimators that set the autoregressive parameter to 0 in the

auxiliary model, but include either the corresponding …rst order condition in the

set of moments, or the Lagrange multiplier in the distance function. Importantly,
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the equivalence of the di¤erent EMM and II estimators in this example does not

really depend on the speci…c inequality restriction imposed, or the nature of the

true model, but rather on the particular form of the auxiliary model used. In

this respect, the same result continues to hold if the auxiliary model is given by

a conditionally homoskedastic Gaussian ar(p) process with linear restrictions on

the autoregressive parameters. We also discuss the reverse example in which an

ar(1) model is estimated via ma(1). It turns out that the equality restricted

EMM and II estimators that impose the white noise restriction not only dominate

the unrestricted estimators, but also become as e¢cient as maximum likelihood,

even though the auxiliary model does not nest the true one. Finally, we compare

the performance of our proposed procedures for a log-normal stochastic volatility

process estimated as a garch(1,1) model with either Gaussian or t-distributed

errors. In this case, we …nd that the pseudo-ML estimators are quite often at the

boundary of the parameter space. We also …nd that although neither estimator

systematically outperforms the other, the equality restricted estimator dominates

the inequality restricted one in those situations in which there is little information

in the data about the additional tail-thickness parameter.
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Appendix

1 PROOFS OF RESULTS

1.1 Proposition 1

If we linearise the complementary slackness conditions

h(~µT )¯ ~¹T = 0

around ¯i
T (½0), taking into account that h

£
µi

T (½0)
¤ ¯ ¹i

T (½0) = 0, and that

Hadamard products are commutative, we obtain:

¹¤
T ¯

@h0 (µ¤
T )

@µ

p
T

h
~µT¡µi

T (½0)
i

+ h(µ¤
T )¯

p
T

£
~¹T¡¹i

T (½0)
¤

= 0

where ¯¤
T = (µ¤0

T ; ¹¤0
T )0 is an “intermediate” value (in fact, a di¤erent one for each

row). Then, given that in view of our high level assumptions, ¹¤
T¡¹i

T (½0) = op(1),

h(µ¤
T )¡h

£
µi

T (½0)
¤

= op(1), and @h(µ¤
T )=@µ¡@h

£
µi

T (½0)
¤

=@µ = op(1), the result

follows. ¤

1.2 Proposition 2

If we linearise the …rst-order Kuhn-Tucker conditionsp
T

T

X
t

"
@lt(~µT )

@µ
+

@h0(~µT )

@µ
~¹T

#
= 0

around ¯i
T (½0), we obtain:
p

T

T

X
t

"
@lt

£
µi

T (½0)
¤

@µ
+

@h0 £
µi

T (½0)
¤

@µ
¹i

T (½0)

#

+
1

T

X
t

½
@l2

t (µ?
T )

@µ@µ0 + (¹?
T  Iq)

@vec [@h0(µ?
T )=@µ]

@µ0

¾p
T

h
~µT¡µi

T (½0)
i

+
@h0(µ?

T )

@µ

p
T

£
~¹T¡¹i

T (½0)
¤
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where ¯?
T = (µ?0

T ; ¹?0
T )0 is another “intermediate” value. Then, since in view of

Assumption 1

1

T

X
t

½
@l2

t (µ?
T )

@µ@µ0

¾
= J i

0T + op(1)

(¹?
T  Iq)

@vec [@h0(µ?
T )=@µ]

@µ0 =
£
¹i

T (½0) Iq

¤ @vec
©

@h0 £µi
T (½0)

¤
=@µ

ª
@µ0 + op(1)

@h0(µ?
T )

@µ
=

@h0 £
µi

T (½0)
¤

@µ
+ op(1)

a straightforward application of Crámer’s theorem completes the proof. ¤

1.3 Proposition 3

Let’s now linearise the sample moments mT (½0; ~̄T ) around ¯i
T (½0) to obtain

p
TmT (½0; ~̄T ) =

p
TmT

£
½0; ¯i

T (½0)
¤

+
@mT (½0; ¯¦

T )

@µ0
p

T
h
~µT¡µi

T (½0)
i

+
@mT (½0; ¯¦

T )

@¹0
p

T
£
~¹T¡¹i

T (½0)
¤

where ¯¦
T is yet another “intermediate” value. This implies that under Assumption

1,
p

TmT (½0; ~̄T ) has the same asymptotic distribution as

@m0
T

£
½0; ¯i

T (½0)
¤

@µ

p
T

h
~µT¡µi

T (½0)
i

+
@m0

T

£
½0; ¯i

T (½0)
¤

@¹

p
T

£
~¹T¡¹i

T (½0)
¤

where

@mT

£
½0; ¯i

T (½0)
¤

@µ0 = J i
0T +

£
¹i

T (½0) Iq

¤ @vec
©

@h0 £
µi

T (½0)
¤

=@µ
ª

@µ0 = Ki
11;0T

@mT

£
½0; ¯i

T (½0)
¤

@¹0 =
@h0 £

µi
T (½0)

¤
@µ

= Ki
12;0T

But then, Proposition 2 directly yields the required result ¤
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1.4 Proposition 4

The …rst order conditions associated with ~½G
T [(I i

0T )¡1] can be written as
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T [(I i
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Expanding around ½0 yields
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have that
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as required. ¤

1.5 Proposition 5

The result follows directly if we combine the proofs of Propositions 2 and 3 to

show that

p
TmT (½0; ~̄T )¡

n
Ki

11;0T

p
T

h
~µT¡µi

T (½0)
i

+Ki
12;0T

p
T

£
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T (½0)
¤o

= op(1)
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2 THE EXPECTED VALUE OF THE SCORE

OF AN MA(1) MODEL

In order to …nd

m1(½; ¯) = E

·
1

Ã
ut(±)

@ºt(±)

@±
+ ¹1

¯̄̄̄
½

¸

m2(½; ¯) = E

·
1

Ã

·
u2

t (±)

Ã
¡ 1

¸
+ ¹2

¯̄̄̄
½

¸
it is convenient to write

ut(±) =

1X
j=0

±jxt¡j =
1

1¡ ±L
xt

and
@ºt(±)

@±
= ¡

1X
j=1

j±j¡1xt¡j =
¡L

(1¡ ±L)2
xt

so that we can understand both ut(±) and @ºt(±)=@± as the output of linear …lters

applied to the original series xt. In this light, we can obtain the required expec-

tations as the constant terms in the autocovariance generating function of u2
t (±)

and ut(±) ¢ @ºt(±)=@±. In particular, ¡ut(±);ut(±)(z) will be given by

1
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which for the special case of the true process being a stationary ar(1) reduces to

E
£
u2

t (±)
¯̄
½

¤
=

!¡
1¡ ±2

¢ ¡
1¡ Á2

¢ ¢ 1¡ ±Á

1 + ±Á
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In fact, given that we can write

ut(±) =
1

1¡ ±L
xt =

1

(1¡ ±L)(1¡ ÁL)
vt;

it is not surprising that E [u2
t (±)j½] coincides with the unconditional variance of

an ar(2) process with autoregressive roots ± and Á, and innovation variance !.

Similarly, the cross-covariance generating function of @ºt(±)=@± and ut(±),

¡@ºt(±)=@±;ut(±)(z), will be given by (minus) the following expression

z

(1¡ ±z)2
¢ ¡xt(z) ¢ 1

1¡ ±z¡1

=

1X
j=1

j±j¡1zj £
Ã

°0(½) +

1X
l=1

°l(½)zl +

1X
l=1

°l(½)z¡l

!
£

Ã
1 +

1X
k=1

±kz¡k

!

= °0(½)
1X

j=1

j±j¡1zj +
1X

j=1

1X
l=1

j±j¡1°l(½)(zl + z¡l)zj

+°0(½)

1X
j=1

1X
k=1

j±j¡1±kzjz¡k +

1X
j=1

1X
k=1

1X
l=1

j±j¡1±k°l(½)(zl + z¡l)z¡kzj

Therefore, the coe¢cient associated with the constant term will be

°0(½)

1X
j=1

j±2j¡1 +

1X
l=1

l±l¡1°l(½) + 2

1X
l=1

±l°l(½)

1X
j=1

j±2j¡1 +

1X
l=1

l±l°l(½)

1X
j=1

±2j¡1

But since for j±j < 1

1X
j=1

±2j¡1 = ±

1X
j=0

±2j =
±

1¡ ±2

1X
j=1

j±2j¡1 = ±
1X

j=0

(j + 1)±2j =
±¡

1¡ ±2
¢2

we will have that

E

·
ut(±)

@ºt(±)

@±

¯̄̄̄
½

¸
= ¡ °0(½)

(1¡ ±2)2

(
± +

1X
l=1

£
2±2 +

¡
1¡ ±2

¢
l
¤

±l¡1 °l(½)

°0(½)

)
For the special case of a stationary ar(1) process, this expression reduces to:

E

·
ut(±)

@ºt(±)

@±

¯̄̄̄
½

¸
=

!

(1¡ Á2)
¡
1¡ ±2

¢2
(1¡ ±Á)2

¡
±3Á2 + ±2Á¡ ± ¡ Á

¢
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Figure 1: Binding Functions for MA(1) estimated as AR(1)
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Figure 2: Binding Functions for AR(1) estimated as MA(1)
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Wdeoh 4

Sursruwlrq ri dx{loldu| prgho sdudphwhu hvwlpdwhv dw wkh erxqgdu|

+Lqhtxdolw|2Htxdolw|,

W@833/ K@43/ Il{hg JPP zhljkwlqj pdwul{/ 4/333 uhsolfdwlrqv

�2 � � �� � � �� � � ��
43 01;54 1< 19:8 017439 1<8 17;68 014975 1<; 163;

* @ *4�? 323 323 323
� @ 3 323 323 323
*. � @ 4 1<9:21;48 1<7<21;9: 1;4921:95
� @ �4�? 324 324 324
wrwdo 1<9:21;48 1<7<21;9: 1;4921:95

4 01:69 1< 1696 0169; 1<8 159 0147:5 1<; 1499

* @ *4�? 133521337 133621335 133921336
� @ 3 133621336 133423 133621337
*. � @ 4 134521343 13962137: 1444213:9
� @ �4�? 324 324 134724
wrwdo 134821349 13992137< 1465213;5

14 01:39 1< 1468 01686 1<8 13<97 01474 1<; 13947

* @ *4�? 15<4215;: 1593215;3 16392165;
� @ 3 149<214:: 146621495 147<21448
*. � @ 4 321337 133421337 321334
� @ �4�? 154824 159724 15<<24
wrwdo 1866216;6 185921696 18::216<6

Wdeoh 5

Sursruwlrq ri dx{loldu| prgho sdudphwhu hvwlpdwhv dw wkh erxqgdu|

+Lqhtxdolw|2Htxdolw|,

W@4/333/ K@43/ Il{hg JPP zhljkwlqj pdwul{/ 4/333 uhsolfdwlrqv

�2 � � �� � � �� � � ��
43 01;54 1< 19:8 017439 1<8 17;68 014975 1<; 163;

* @ *4�? 323 323 323
� @ 3 323 323 323
*. � @ 4 1<<821;<7 1<;<21<87 1<9321<4;
� @ �4�? 324 324 324
wrwdo 1<<821;<7 1<;<21<87 1<9321<4;

4 01:69 1< 1696 0169; 1<8 159 0147:5 1<; 1499

* @ *4�? 323 323 323
� @ 3 323 323 321334
*. � @ 4 133421334 136321353 1445213;4
� @ �4�? 324 324 133524
wrwdo 133421334 136321353 1447213;5

14 01:39 1< 1468 01686 1<8 13<97 01474 1<; 13947

* @ *4�? 15482155; 14;;21546 156<21574
� @ 3 13;521433 138<2138< 138421368
*. � @ 4 321336 323 323
� @ �4�? 144624 145924 149<24
wrwdo 1685215:: 16532156< 16;921593



Wdeoh 6

Sursruwlrq ri dx{loldu| prgho sdudphwhu hvwlpdwhv dw wkh erxqgdu|

+Lqhtxdolw|2Htxdolw|,

W@5/333/ K@43/ Il{hg JPP zhljkwlqj pdwul{/ 4/333 uhsolfdwlrqv

�2 � � �� � � �� � � ��
43 01;54 1< 19:8 017439 1<8 17;68 014975 1<; 163;

* @ *4�? 323 323 323
� @ 3 323 323 323
*. � @ 4 421<:6 421<<8 1<<;21<;;
� @ �4�? 324 324 324
wrwdo 421<:6 421<<8 1<<;21<;;

4 01:69 1< 1696 0169; 1<8 159 0147:5 1<; 1499

* @ *4�? 323 323 323
� @ 3 323 323 323
*. � @ 4 323 133<21335 13;<2139<
� @ �4�? 324 324 324
wrwdo 323 133<21335 13;<2139<

14 01:39 1< 1468 01686 1<8 13<97 01474 1<; 13947

* @ *4�? 147:21486 14632145; 14<;214<5
� @ 3 135:21367 134821345 133;21339
*. � @ 4 321334 323 323
� @ �4�? 136724 138924 13<924
wrwdo 14<:2149< 14;921466 15;4214<7



Wdeoh 7

Phdq/ urrw phdq vtxduh huuru/ phdq eldv dqg vwdqgdug ghyldwlrq ri wkh

lqhtxdolw| uhvwulfwhg HPP hvwlpdwru

W@833/ K@43/ Il{hg JPP zhljkwlqj pdwul{/ 4/333 uhsolfdwlrqv

�2 � � �� � � �� � � ��
43 01;54 1< 19:8 017439 1<8 17;68 014975 1<; 163;

phdq 01<946 1;;67 19;37 01887< 1<658 17<8< 016675 1<8<8 165<3
upvh 16<35 1379; 14336 16457 136;4 13;77 164;4 136;< 13:75
phdq eldv 014736 013499 13387 014776 0134:8 13457 014:33 013538 13543
vwg1 ghy1 16974 1376; 14334 15::4 1366< 13;68 159;; 13663 13:45

4 01:69 1< 1696 0169; 1<8 159 0147:5 1<; 1499

phdq 041343; 1;95; 16;73 019735 1<463 15<3: 017346 1<785 14<<:
upvh 19<9< 13<5< 14397 195;7 13;:9 13<:6 18764 13:74 13<46
phdq eldv 015:7; 0136:5 13543 015:55 0136:3 1363: 015874 01367; 1366:
vwg1 ghy1 19737 13;84 14377 18996 13:<7 13<56 17;33 13987 13;7;

14 01:39 1< 1468 01686 1<8 13<97 01474 1<; 13947

phdq 0516;4< 19975 14:45 041<85: 1:57: 14859 04189;7 1::<5 1455:
upvh 616;98 17::6 1474; 614435 176;6 14753 51;9<6 17358 14676
phdq eldv 0419:8< 01568; 13695 0418<<: 015586 13895 04175:7 01533; 13946
vwg1 ghy1 51<75; 17483 146:4 5199:6 16:8< 14637 517;<4 167;; 144<9

Wdeoh 8

Phdq/ urrw phdq vtxduh huuru/ phdq eldv dqg vwdqgdug ghyldwlrq ri wkh

htxdolw| uhvwulfwhg HPP hvwlpdwru

W@833/ K@43/ Il{hg JPP zhljkwlqj pdwul{/ 4/333 uhsolfdwlrqv

�2 � � �� � � �� � � ��
43 01;54 1< 19:8 017439 1<8 17;68 014975 1<; 163;

phdq 01<578 1;;;7 18;69 01857< 1<698 176;9 0163;7 1<95< 15<8;
upvh 188;5 1398: 14<59 16:8< 1376; 14638 15::5 13665 13<47
phdq eldv 014368 013449 013<47 014476 013468 01377< 014775 0134:4 013455
vwg1 ghy1 187;8 1397: 149<8 168;4 1374: 14558 1569: 135;7 13<39

4 01:69 1< 1696 0169; 1<8 159 0147:5 1<; 1499

phdq 01<879 1;:44 16756 0189:4 1<56: 158:: 016953 1<848 14:;4
upvh 1:59: 13<;6 14546 188<3 13:6< 14356 19463 13:98 13;78
phdq eldv 0154;9 0135;< 01353: 014<<4 013596 013356 01547; 0135;8 13454
vwg1 ghy1 19<63 13<73 144<8 18856 139<3 14356 18:74 13:43 13;6:

14 01:39 1< 1468 01686 1<8 13<97 01474 1<; 13947

phdq 0515346 19;<5 14969 041;65: 1:749 1477< 04174<7 1:<<< 14464
upvh 613;:< 17696 146;3 51;7<8 1734< 14673 519793 16:57 14584
phdq eldv 0417<86 01543; 135;9 0417:<: 0153;6 137;8 0415:;7 014;34 1384:
vwg1 ghy1 51:34: 16;53 14683 517685 1676: 1457< 51649: 16593 1446<



Wdeoh 9

Phdq/ urrw phdq vtxduh huuru/ phdq eldv dqg vwdqgdug ghyldwlrq ri wkh

lqhtxdolw| uhvwulfwhg HPP hvwlpdwru

W@4/333/ K@43/ Il{hg JPP zhljkwlqj pdwul{/ 4/333 uhsolfdwlrqv

�2 � � �� � � �� � � ��
43 01;54 1< 19:8 017439 1<8 17;68 014975 1<; 163;

phdq 01;:85 1;<73 19:59 017:59 1<75: 17;:3 0156<8 1<:39 164;;
upvh 156;; 135;4 13:45 14;69 13558 1389; 147<; 134;6 13778
phdq eldv 013875 013393 013357 013953 0133:6 13368 013:86 0133<7 1343;
vwg1 ghy1 15659 135:8 13:44 14:5; 13546 1389: 145<8 1348: 13765

4 01:69 1< 1696 0169; 1<8 159 0147:5 1<; 1499

phdq 01;759 1;;8< 16:36 0179:< 1<699 15:58 015854 1<98; 14;73
upvh 16676 1377: 139:: 156<9 13659 13874 15356 135:: 137;8
phdq eldv 014399 013474 133:6 013<<< 013467 13458 01437< 013475 134;3
vwg1 ghy1 1649; 13758 139:6 154:; 135<: 1385: 14:63 1356: 13783

14 01:39 1< 1468 01686 1<8 13<97 01474 1<; 13947

phdq 041:5<8 1:88< 149;7 04158;7 1;559 146;4 01<686 1;9;3 14395
upvh 5164<9 165:3 143;8 5145<7 15<<8 14343 41<<96 15;46 13<88
phdq eldv 0413568 014774 13667 01<387 0145:7 1374: 01:<76 014453 1377<
vwg1 ghy1 513;48 15<69 14366 41<5:6 15:44 13<53 41;647 158;4 13;76

Wdeoh :

Phdq/ urrw phdq vtxduh huuru/ phdq eldv dqg vwdqgdug ghyldwlrq ri wkh

htxdolw| uhvwulfwhg HPP hvwlpdwru

W@4/333/ K@43/ Il{hg JPP zhljkwlqj pdwul{/ 4/333 uhsolfdwlrqv

�2 � � �� � � �� � � ��
43 01;54 1< 19:8 017439 1<8 17;68 014975 1<; 163;

phdq 01;55; 1<333 19365 017943 1<776 17857 0156:6 1<:47 16353
upvh 16576 136:; 14749 1566: 1359; 13<86 14:67 134<< 13955
phdq eldv 01334; 13333 013:4; 013837 01338: 013644 013:64 0133;9 013393
vwg1 ghy1 16576 136:; 14553 155;5 13595 13<34 148:5 134:< 1394<

4 01:69 1< 1696 0169; 1<8 159 0147:5 1<; 1499

phdq 01;57< 1;;;8 167<: 01788: 1<6;8 158;3 0157;3 1<99; 14:86
upvh 169:: 137<3 13;9< 1584; 13669 13986 163<4 136;; 13863
phdq eldv 013;;< 013448 013466 013;:: 013448 013353 014334 013465 133<6
vwg1 ghy1 1689; 137:9 13;8< 15693 13648 13986 15<55 13697 13854

14 01:39 1< 1468 01686 1<8 13<97 01474 1<; 13947

phdq 0419::; 1:964 148;3 04154:9 1;5;5 14676 01;<:8 1;:66 14348
upvh 516464 16597 14395 5134:6 15;7: 14348 41;<;7 159:9 13<56
phdq eldv 01<:4; 01469; 13556 01;979 01454; 136;3 01:898 01439: 13734
vwg1 ghy1 513<<4 15<96 1436: 41;559 158:6 13<74 41:745 15788 13;64



Wdeoh ;

Phdq/ urrw phdq vtxduh huuru/ phdq eldv dqg vwdqgdug ghyldwlrq ri wkh

lqhtxdolw| uhvwulfwhg HPP hvwlpdwru

W@5/333/ K@43/ Il{hg JPP zhljkwlqj pdwul{/ 4/333 uhsolfdwlrqv

�2 � � �� � � �� � � ��
43 01;54 1< 19:8 017439 1<8 17;68 014975 1<; 163;

phdq 01;8<3 1;<8: 19::: 017796 1<78; 17;:5 0153:7 1<:7: 16483
upvh 14936 134<3 13843 1448: 1346; 1373: 13<65 1344: 1364<
phdq eldv 0136;3 013376 1335: 01368: 013375 1336: 013765 013386 133:3
vwg1 ghy1 1488; 134;8 1383< 14434 13465 13739 13;59 13437 13645

4 01:69 1< 1696 0169; 1<8 159 0147:5 1<; 1499

phdq 01:<93 1;<54 169<9 0174;7 1<765 159:9 01533< 1<:5: 14:85
upvh 14<88 13594 13798 14656 134;3 13699 1443< 13489 13675
phdq eldv 013933 0133:< 13399 013837 01339; 133:9 01386: 0133:6 133<5
vwg1 ghy1 14;93 1357< 13793 14556 1349: 1368; 13<:3 1346: 13663

14 01:39 1< 1468 01686 1<8 13<97 01474 1<; 13947

phdq 0415684 1;587 14937 01:88; 1;<66 14589 017;:7 1<646 13<67
upvh 4174:7 15334 13:<4 413933 147<6 13:36 413967 14756 13987
phdq eldv 0185<4 013:79 13587 01735; 01389: 135<5 016797 0137;: 13653
vwg1 ghy1 416483 14;89 13:83 1<;38 146;5 13973 1<888 1466: 138:3

Wdeoh <

Phdq/ urrw phdq vtxduh huuru/ phdq eldv dqg vwdqgdug ghyldwlrq ri wkh

htxdolw| uhvwulfwhg HPP hvwlpdwru

W@5/333/ K@43/ Il{hg JPP zhljkwlqj pdwul{/ 4/333 uhsolfdwlrqv

�2 � � �� � � �� � � ��
43 01;54 1< 19:8 017439 1<8 17;68 014975 1<; 163;

phdq 01;55< 1;<<< 195;; 01757< 1<7;8 178:9 015345 1<:8; 1635:
upvh 156<: 135:< 143;6 14684 1348< 139<6 13<85 13443 13768
phdq eldv 01334< 013334 013795 013476 013348 01358< 0136:3 013375 013386
vwg1 ghy1 156<9 135:< 13<;3 14676 1348; 13976 13;:: 13435 13765

4 01:69 1< 1696 0169; 1<8 159 0147:5 1<; 1499

phdq 01::<; 1;<76 1687< 01747< 1<76< 158<6 014<87 1<:69 14:56
upvh 15545 135<8 138<9 147<; 134<< 1377< 14376 1346; 1367<
phdq eldv 01376; 01338: 0133;4 01379< 013395 01333: 0137;5 013397 13396
vwg1 ghy1 1549; 135<3 138<3 14755 134<3 1377< 13<58 13456 13676

14 01:39 1< 1468 01686 1<8 13<97 01474 1<; 13947

phdq 0414<88 1;643 1487< 01:463 1;<<7 14545 0174;7 1<743 13;;8
upvh 416;97 14<89 13:;6 1<587 14634 139;: 19<67 13<9< 13934
phdq eldv 017;<8 0139<3 134<< 016933 013839 1357; 015::7 0136<3 135:4
vwg1 ghy1 415<:4 14;63 13:8: 1;858 144<; 13974 19688 13;;: 1386:
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