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ADJUSTING CORRELATION MATRICES

Ángel León, Josep E. Peris, José A. Silva and Begoña Subiza

A B S T R A C T

This article proposes a new algorithm for adjusting correlation matrices and

for comparison with Finger’s algorithm, which is used to compute Value-at-

Risk in RiskMetrics for stress test scenarios. The solution proposed by the new

methodology is always better than Finger’s approach in the sense that it alters

as little as possible those correlations that we do not wish to alter but they

change in order to obtain a consistent Finger correlation matrix .

Keywords: correlation matrix, Kuhn-Tucker conditions, eigenvalue, Value-

at-Risk.
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1 INTRODUCTION

An important problem, arising when using RiskMetrics (RM) for Value-at-Risk

(VaR), is that sometimes it is desirable to alter the correlation matrix in order

to re‡ect a view of markets that di¤ers from the traditional one. An arbitrary

alteration in the correlation matrix however can breakdown the required consis-

tency of the methodology since the new correlation matrix may be inde…nite.

Finger (1997) introduces a methodology in RM to alter some correlations

from a correlation matrix such that the new matrix is still consistent. A prob-

lem that arises in using this algorithm is that the new matrix indicates more

correlations to be altered than the desired ones.

This paper introduces a new algorithm to adjust the correlation matrix and

compare it with Finger’s. In particular, this new methodology uses the Finger’s

correlation matrix and then modi…es, as little as possible, those correlations

that we do not wish to alter by minimizing the distance to the original ones,

subject to the restriction of the correlation matrix being consistent.

The remainder of the paper is organized as follows. Finger’s algorithm is

reviewed in Section 2. In Section 3, a new algorithm is proposed with the proof

given in the Appendix. Finally, in Section 4, both methodologies are applied to

the hypothetical currency correlation matrix example taken from Finger (1997).

2 FINGER’S ALGORITHM

Let X be a random vector in Rn that represents n asset returns with a mean ¹

and a covariance matrix ­ = [¾ij ]n£n: Let C = [cij ]n£n denote the correlation

matrix of X; i.e. C = ¡­¡ where ¡ = diag
³

¾
¡1=2
11 ; :::; ¾

¡1=2
nn

´
: Then, a 2 £ 1
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partition of X; according to the assets whose correlations we wish to change and

the ones we do not, the two subsets being denoted as I and J respectively, is

X =

2664 XI

XJ

3775
where XI 2 Rm and XJ 2 Rn¡m. We can express C as

2664 C11 C12

CT
12 C22

3775
where C11 is a m£m matrix containing the correlations of I; C22 is a (n ¡ m)£

(n ¡ m)matrix containing the correlations of J and C12 denotes the correlations

between both I and J: Finally, by MT we denote the transpose of a matrix M:

Let eC11 be the matrix containing the new correlations of I: If C11 is replaced

by eC11 in C; a new matrix eC is obtained, which, at times, can produce unde-

sirable results; i.e. eC may be inde…nite and is therefore not a true correlation

matrix. Finger’s algorithm, denoted by F; is a method for altering correlations

consistently, such that a new correlation matrix CF 6= eC is obtained when eC is

inde…nite, verifying that CF is non-negative de…nite. The algorithm is de…ned

as follows:

Let Z be the random vector in Rn such that Z = ¡(X ¡¹); then Z » (0; C) :

Let Z = 1
m

X
i2I

Zi: The random variables (rv’s) XF
i ; i = 1; :::; n are now

de…ned as

XF
i =

8>><>>:
(1¡ µi)Zi + µiZ if i 2 I

Zi otherwise
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where µi 2 [0; 1] : We can express the new rv’s1, in a matrix way, by XF = AZ

where A is a n £ n matrix de…ned as

2664 A11 0

0 I

3775
such that A11 is a m £ m matrix whose elements aij are

aij =

8>><>>:
1¡ µi +

µi

m
if i = j; i 2 I

µi

m
if i 6= j; i; j 2 I

(1)

and I is the identity matrix. Then, E
¡
XF XT

F

¢
= ACAT gives us the covariance

matrix of XF ; denoted as ­F ; which can be partitioned as

2664 ­F
11 ­F

12

­F
21 ­F

22

3775 =
2664 A11C11AT

11 A11C12

CT
12AT

11 C22

3775 :

Consider

¡F =

2664 ¡F
11 0

0 I

3775

where ¡F
11 = diag

³
±

¡1=2
11 ; :::; ±¡1=2

mm

´
and ±ii denotes the (i; i) element of the

matrix ­F
11. Let ZF be a new random vector in Rn such that ZF = ¡F XF :

Then E
¡
ZF ZT

F

¢
= ¡F­F¡F ; denoted as CF ; is the covariance matrix of ZF ;

which is well de…ned2. By splitting matrix CF in the same way as we did with

1 We introduce, here, a di¤erent version of Finger’s algorithm, the only di¤erence is about
de…ning XF

i : In Finger’s paper, µi = µ 8i 2 I while this new version allows µi to be di¤erent
to a better adjusting of the new C11 matrix, obtained through F and denoted as CF

11, to the
matrix eC11:

2 It is easy to prove that CF is non-negative de…nite.
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the previous matrices, we can write

CF =

2664 CF
11 CF

12

CF
21 CF

22

3775 =
2664 ¦C11¦

T ¦C12

CT
12¦

T C22

3775
where ¦ = ¡F

11A11: Notice that when computing CF there may be more than¡
m2 ¡ m

¢
=2 new correlations in CF as was expected at …rst. At most, there can

be
£¡

m2 ¡ m
¢

=2 +m (n ¡ m)
¤

new correlations; i.e., those belonging to CF
12:

Finally, note that A11 is a function of the parameter vector µ 2 Rm; i.e.

A11 = A11 (µ) ; so that the …rst step to computing CF is to solve the following

constrained minimization program:

min
fµigm

i=12[0;1]

°°°£
A11 (µ)C11AT

11 (µ)
¤ ¡ eC11

°°°2

where k¢k denotes the euclidean norm3.

3 NEW ALGORITHM

Now, we shall try to obtain a better correlation matrix than the one presented

in the previous section. Note that C12 6= CF
12; so that our goal is to modify as

little as possible the elements from C12 in the new adjusted correlation matrix.

In order to do so, we present an algorithm which is composed of a two-step

procedure. The …rst step consists of computing CF and the second is to obtain

3 The euclidean norm of a matrix A is de…ned as:

kAk =

0@ pX
i=1

qX
j=1

a2
ij

1A1=2

; A = [aij ]p£q :
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a new correlation matrix C¤; de…ned as C¤ = CF +B; where

B =

2664 0 B12

BT
12 0

3775
being B12 = [bij ] a known m £ (n ¡ m) matrix. We can now write

C¤ =

2664 CF
11 C¤

12

(C¤
12)

T
C22

3775
with C¤

12 = CF
12 + B12: If we denote the elements in CF

12 by [dij ] ; then C¤
12 =

[dij + bij ] : We try to choose bij such that C¤
12 be approximately equal to C12:

In order to guarantee that the new matrix C¤ is a non-negative de…nite matrix,

we apply the following known result4 :

Theorem 1 Let ° be an eigenvalue of C¤ = CF +B; then

° 2
[n

k=1
fz 2 R : jz ¡ »kj · rg

where »1; »2; : : : ; »n are eigenvalues of CF and r = kBk :

Let » = min f»1; »2; : : : ; »ng ; then if » ¸ r we know that »k ¸ r; k =

1; :::; n: So, the following condition is su¢cient to ensure that C¤ is a non-

negative de…nite matrix

»2 ¸ 2
mX

i=1

n¡mX
j=1

b2
ij :

4 See, for instance, Lancaster and Tismenetsky (1985), Chapter 11, p. 388-9.
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We are interested in choosing C¤
12 such that it minimizes kC¤

12 ¡ C12k2 sub-

ject to C¤
12 being non-negative de…nite. We know that

C¤
12 ¡ C12 = CF

12 ¡ C12 +B12:

Let us call E = CF
12 ¡ C12; which is a m £ (n ¡ m) matrix whose elements,

denoted as [eij ] ; are known. To obtain the new correlation matrix C¤ we must

solve the following constrained minimization program where the parameters are

the elements of B12; i.e. [bij ] :

min
fbijg

mP
i=1

n¡mP
j=1

(eij + bij)
2

s:t: 2
mP

i=1

n¡mP
j=1

b2
ij · »2

¡1 · dij + bij · 1

(2)

where the number of constraints is m (n ¡ m)+ 1: Note that the second restric-

tion guarantees that the elements of C¤; speci…cally the elements of C¤
12; must

belong to the interval [¡1; 1] since they are correlations.

Remark 1 It must be noted that, since a feasible possibility in the above prob-

lem consists of considering B = 0; that is C¤ = CF ; the solution proposed by

the new algorithm is always better than the one proposed by Finger’s approach.

Moreover, the feasible set being closed, bounded and non-empty, program (2)

always has a solution, which is unique due to the strict convexity of the objective

function.
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An important feature of this algorithm is that it is possible to …nd conditions

that ensure that matrix C12 does not change under the computations of matrix

C¤: Thus, from the Kuhn-Tucker (K-T) conditions of (2) given in the Appendix

we know that, if

»2 ¸ 2
mX

i=1

n¡mX
j=1

e2
ij

then, we do not need to apply the second step, since we obtain that the solution

for program (2) is bij = ¡eij and we directly have:

C¤ =

2664 CF
11 C12

CT
12 C22

3775 :

In other cases the solution is, bij = ¡eij=' , being ' > 1 the value obtained from

the K-T conditions (see Appendix) so that C¤
12 ¡ C12 = E+B12 = (1¡ 1=')E:

Thus, we directly have:

C¤ =

2664 CF
11 C12 + (1¡ 1=')E

(C12 + (1¡ 1=')E)T C22

3775 :

4 FINGER’S EXAMPLE

We now apply the new algorithm (N-Ag) to an example in the hypothetical cur-

rency correlation matrix taken from Finger5 (1997) and compare it to Finger’s

algorithm (F). Let us consider the following currency correlation matrix:

5 See Table 1 from page 4, though shifting the currencies so that the submatrix C11 contains
the Asian currencies whose correlations we wish to alter.
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HKD MYR PHP THB ARS DEM GBP

1:0000 ¡0:2100 0:1400 ¡0:1500 ¡0:2600 ¡0:1400 0:0600 HKD

1:0000 0:2200 0:1000 0:1900 0:3100 ¡0:0800 MYR

1:0000 0:0700 ¡0:2500 0:1600 0:0400 PHP

1:0000 ¡0:1200 0:0900 0:0400 THB

1:0000 0:1800 ¡0:1300 ARS

1:0000 0:2200 DEM

1:0000 GBP

where the currencies are Argentine Peso (ARS), German Mark (DEM), British

Pound (GBP), Hong Kong Dollar (HKD), Malaysian Ringgit (MYR), Philippine

Peso (PHP) and Thai Baht (THB). Let I denote the Asian currencies in the

matrix, i.e. I ´ fHKD, MYR, PHP, THBg : Following Finger (1997), C11 is

changed to eC11; whose correlations are set to 0:85; so that the new correlation

sub-matrix for Asian currency markets properly describes the market behavior.
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By changing only the I 0s coe¢cients, the new correlation matrix eC is

HKD MYR PHP THB ARS DEM GBP

1:0000 0:8500 0:8500 0:8500 ¡0:2600 ¡0:1400 0:0600 HKD

1:0000 0:8500 0:8500 0:1900 0:3100 ¡0:0800 MYR

1:0000 0:8500 ¡0:2500 0:1600 0:0400 PHP

1:0000 ¡0:1200 0:0900 0:0400 THB

1:0000 0:1800 ¡0:1300 ARS

1:0000 0:2200 DEM

1:0000 GBP

It is shown that eC is not a true correlation matrix since its minimum eigenvalue

is -0.04. The next step consists of introducing an algorithm, F or N-Ag, to

adjust the above correlation matrix in a consistent way. The solution6 of µ for

our example is

[0:8199; 0:7786; 0:7026; 0:7956]T :

6 In order to obtain the µi ’s vector that corresponds to our example, we have used the
GAUSS library ”Constrained Optimization”. In Finger’s algorithm, a unique parameter µ is
estimated, whose value is 0:7874:
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Then, the correlation matrix CF is

HKD MYR PHP THB ARS DEM GBP

1:0000 0:8357 0:8661 0:8521 ¡0:2625 0:1166 0:0443 HKD

1:0000 0:8520 0:8656 ¡0:0784 0:2705 ¡0:0108 MYR

1:0000 0:8348 ¡0:2487 0:1990 0:0368 PHP

1:0000 ¡0:2058 0:1872 0:0369 THB

1:0000 0:1800 ¡0:1300 ARS

1:0000 0:2200 DEM

1:0000 GBP

N-Ag provides the following matrix C¤ for our example

HKD MYR PHP THB ARS DEM GBP

1:0000 0:8357 0:8661 0:8521 ¡0:2620 0:0668 0:0473 HKD

1:0000 0:8520 0:8656 ¡0:0263 0:2781 ¡0:0243 MYR

1:0000 0:8348 ¡0:2489 0:1915 0:0374 PHP

1:0000 ¡0:1891 0:1684 0:0375 THB

1:0000 0:1800 ¡0:1300 ARS

1:0000 0:2200 DEM

1:0000 GBP
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Comparisons between both algorithms are made by using the mean absolute

error (MAE) and the root mean square error (RMSE) as summary statistics,

where the error is de…ned as eC12 ¡Y12 for Y12 = CF ; C¤: The summary statistics

are:

MAE RMSE

F 0:0735 0:1165

N-Ag 0:0592 0:0939

We can observe that N-Ag scores better than F, as expected, under both statis-

tics.
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Appendix

Since the objective function and the constraints from program (2) are convex,

if
©

b¤
ij

ª
veri…es Kuhn-Tucker (K-T) conditions then

©
b¤

ij

ª
is a global minimum.

Moreover, strict convexity of the objective function implies the unicity of such a

minimum and, since the feasible set is compact and non-empty, and the objective

function continuous, the existence of a solution is always ensured. We can

rewrite (2) as

min
fbijg

mP
i=1

n¡mP
j=1

(eij + bij)
2

s:t: 2
mP

i=1

n¡mP
j=1

b2
ij · »2

dij + bij ¡ 1 · 0

¡ (dij + bij + 1) · 0:

The Lagrangian of this problem is given by

L =
mX

i=1

n¡mX
j=1

(eij + bij)
2 + ¸1

0@2 mX
i=1

n¡mX
j=1

b2
ij ¡ »2

1A
+

mX
i=1

n¡mX
j=1

¸ij
2 (dij + bij ¡ 1)¡

mX
i=1

n¡mX
j=1

¸ij
3 (dij + bij + 1) :

K-T conditions are:

[i] 2 (eij + bij) + 4¸1bij + ¸ij
2 ¡ ¸ij

3 = 0; 8i; j;

[ii:1] ¸1

Ã
2

mP
i=1

n¡mP
j=1

b2
ij ¡ »2

!
= 0;

[ii:2] ¸ij
2 (dij + bij ¡ 1) = 0; 8i; j;

[ii:3] ¸ij
3 (dij + bij + 1) = 0; 8i; j;
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[iii] ¸1 ¸ 0; ¸ij
2 ¸ 0; ¸ij

3 ¸ 0; 8i; j;

[iv:1] 2
mP

i=1

n¡mP
j=1

b2
ij ¡ »2 · 0;

[iv:2] dij + bij ¡ 1 · 0; 8i; j;

[iv:3]¡ (dij + bij + 1) · 0; 8i; j:

Solution from K-T conditions:

Note that from [ii:2] and [ii:3] ; ¸ij
2 and ¸ij

3 cannot be di¤erent from zero at

the same time for any given i; j:

We study the following cases according to the possible values of [iii] :

Case 1: If for some i; j we have ¸ij
2 > 0 (which implies ¸ij

3 = 0), then from

[ii:2] we obtain that bij = 1¡ dij ¸ 0 and, by substituting in [i] :

2 (1¡ cij) + 4¸1bij + ¸ij
2 = 0;

which is not possible, since all elements are non-negative and at least one, ¸ij
2 ,

is strictly positive.

Case 2: If for some i; j we have ¸ij
3 > 0, by reasoning in a similar way as in

Case 1, we prove that this is not possible.

So, we know that, for all i; j we must necessarily have:

Case 3: for all i; j ¸ij
2 = 0; ¸ij

3 = 0:

Case 3.1: If ¸1 = 0; from [i] we obtain that

b¤
ij = ¡eij ; 8i; j

is the solution if and only if 2
mP

i=1

n¡mP
j=1

e2
ij · »2:

Case 3.2: If ¸1 > 0; this corresponds to the fact that 2
mP

i=1

n¡mP
j=1

e2
ij > »2
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and then, the solution is

b¤
ij = ¡eij='; 8i; j

where

' =

vuuut2
mP

i=1

n¡mP
j=1

e2
ij

»2 > 1:
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