# ADJUSTING CORRELATION MATRICES 

Á ngel León, J osep E. Peris, J osé A. Silva and Begoña Subiza

## WP-AD 2000-24

Correspondence to Á ngel León: University of Alicante. Departamento E conomía Financiera, Contabilidad y M arketing. E-03071 Alicante (Spain). Tel.: 349659036 11 / Fax: 34965903621 / E-mail: aleon@ua.es.

Editor: Instituto Valenciano de Investigaciones Económicas, s.a.

First Edition November 2000.

Depósito Legal: V-4599-2000

IVIE working papers oxer in advance the results of economic research under way in order to encourage a discussion process before sending them to scienti..c journals for their ..nal publication.

[^0]
## ADJUSTING CORRELATION MATRICES

Á ngel León, J osep E. Peris, J osé A. Silva and Begoña Subiza

## A B STRACT

This article proposes a new algorithm for adjusting correlation matrices and for comparison with Finger's algorithm, which is used to compute Value-atRisk in RiskM etrics for stress test scenarios. The solution proposed by the new methodology is always better than Finger's approach in the sense that it alters as little as possible those correlations that we do not wish to alter but they change in order to obtain a consistent Finger correlation matrix .

K eywords: correlation matrix, Kuhn-Tucker conditions, eigenvalue, Value-at-Risk.

## 1 INTRODUCTION

An important problem, arising when using RiskM etrics (RM) for Valueat-Risk $(\mathrm{VaR})$, is that sometimes it is desirable to alter the correlation matrix in order to re $\ddagger$ ect a view of markets that dixers from the traditional one. An arbitrary alteration in the correlation matrix however can breakdown the required consistency of the methodology since the new correlation matrix may be inde..nite.

Finger (1997) introduces a methodology in RM to alter some correlations from a correlation matrix such that the new matrix is still consistent. A problem that arises in using this algorithm is that the new matrix indicates more correlations to be altered than the desired ones.

This paper introduces a new algorithm to adjust the correlation matrix and compare it with Finger's. In particular, this new methodology uses the Finger's correlation matrix and then modi..es, as little as possible, those correlations that we do not wish to alter by minimizing the distance to the original ones, subject to the restriction of the correlation matrix being consistent.

The remainder of the paper is organized as follows. Finger's algorithm is reviewed in Section 2. In Section 3, a new algorithm is proposed with the proof given in the A ppendix. Finally, in Section 4, both methodologies are applied to the hypothetical currency correlation matrix example taken from Finger (1997).

## 2 FINGER'S ALGORITHM

Let X be a random vector in $\mathrm{R}^{\mathrm{n}}$ that represents n asset returns with a mean ${ }^{1}$ and a covariance matrix $\Omega=\left[3 / \mu_{\mathrm{j}}\right]_{\mathrm{n} £ \mathrm{n}}$ : Let $\mathrm{C}_{3}=\left[\mathrm{c}_{\mathrm{ij}}\right]_{\mathrm{n} £ \mathrm{n}}$ denote the correlation matrix of $X$; i.e. $C=\Gamma \Omega \Gamma$ where $\Gamma=\operatorname{diag} 3 / 1_{1}^{1=2} ;::: ; 3 /$ n $_{n}^{1=2}$ : Then, a $2 £ 1$
partition of $X$; according to the assets whose correlations we wish to change and the ones we do not, the two subsets being denoted as I and J respectively, is

$$
x=\begin{gathered}
2 \\
x_{1} \\
x_{1} \\
x_{j}
\end{gathered}
$$

where $X_{1} 2 R^{m}$ and $X_{J} 2 R^{n_{i} m}$. We can express $C$ as

| 2 |  |  | 3 |
| :--- | :--- | :--- | :--- |
| $C_{0}$ | $C_{11}$ | $C_{12}$ | 7 |
| 4 |  |  |  |
|  | $C_{12}^{\top}$ | $C_{22}$ | 5 |

where $\mathrm{C}_{11}$ is a m m matrix containing the correlations of I ; $\mathrm{C}_{22}$ is a $\left(\mathrm{n}_{\mathrm{i}} \mathrm{m}\right) £$ ( $\mathrm{n}_{\mathrm{i}} \mathrm{m}$ ) matrix containing the correlations of J and $\mathrm{C}_{12}$ denotes the correlations between both I and J: Finally, by $M^{\top}$ we denote the transpose of a matrix M :

Let $\mathbb{C}_{11}$ be the matrix containing the new correlations of I : If $\mathrm{C}_{11}$ is replaced by $\mathbb{C}_{11}$ in $C$; a new matrix $\mathbb{C}$ is obtained, which, at times, can produce undesirable results; i.e. ee may be inde..nite and is therefore not a true correlation matrix. Finger's algorithm, denoted by F; is a method for altering correlations consistently, such that a new correlation matrix $C_{F} \in \mathbb{C}$ is obtained when $\mathbb{C}$ is inde..nite, verifying that $C_{F}$ is non-negative de..nite. The algorithm is de..ned as follows:

Let $Z$ be the random vector in $R^{n}$ such that $Z=\Gamma\left(X i^{1}\right)$; then $Z$ » $(0 ; C)$ : Let $\bar{Z}=\frac{1}{m}^{X}{ }_{i 21} Z_{i}$ : The random variables (rv's) $X_{i}^{F} ; i=1 ; \cdots ; n$ are now de..ned as

$$
X_{i}^{F}=\begin{array}{ll}
\stackrel{8}{\gtrless}\left(1 i \mu_{i}\right) Z_{i}+\mu \bar{Z} & \text { if i } 21 \\
\gtrless Z_{i} & \text { otherwise }
\end{array}
$$

where $\mu_{\mathrm{i}} 2[0 ; 1]$ : We can express the new $r \mathrm{v}^{\prime} \mathrm{s}^{1}$, in a matrix way, by $X_{F}=A Z$ where $A$ is a $n £ n$ matrix de..ned as

| 2 |  | 3 |  |
| :--- | :--- | :--- | :--- |
| 6 | $A_{11}$ | 0 | 7 |
| 4 |  | 5 |  |

such that $A_{11}$ is a $m £ m$ matrix whose elements $a_{i j}$ are

$$
a_{i j}=\begin{array}{ll}
8  \tag{1}\\
\gtrless & 1 i \mu+\frac{\mu_{i}}{m} \\
\text { if } i=j ; & i 2 l \\
\gtrless & \text { if } i 6 j ; \quad i ; j 2 l
\end{array}
$$

and $I$ is the identity matrix. Then, $E^{i} X_{F} X_{F}^{\top}=A C A^{\top}$ gives us the covariance matrix of $X_{F}$; denoted as $\Omega_{F}$; which can be partitioned as

\[

\]

Consider

$$
\Gamma_{\mathrm{F}}=\begin{array}{lll}
2 & & 3 \\
6 & \Gamma_{11}^{\mathrm{F}} & 0 \\
4 & & 3 \\
0 & 1
\end{array}
$$

3
 matrix $\Omega_{11}^{\mathrm{F}}$. Let $\mathrm{Z}_{\mathrm{F}}$ be a new random vector in $\mathrm{R}^{\mathrm{n}}$ such that $\mathrm{Z}_{\mathrm{F}}=\Gamma_{\mathrm{F}} \mathrm{X}_{\mathrm{F}}$ : Then $E^{i} Z_{F} Z_{F}^{\top}=\Gamma_{F} \Omega_{F} \Gamma_{F}$; denoted as $C_{F}$; is the covariance matrix of $Z_{F}$; which is well de..ned ${ }^{2}$. By splitting matrix $C_{F}$ in the same way as we did with

[^1]the previous matrices, we can write
\[

$$
\begin{aligned}
& 23 \begin{array}{lll}
2 & 2
\end{array}
\end{aligned}
$$
\]

where $\Pi=\Gamma_{11}^{F} A_{11}$ : Notice that when computing $C_{F}$ there may be more than ${ }^{\mathrm{i}} \mathrm{m}^{2} \mathrm{i} \mathrm{m}^{\dagger}=2$ new correlations in $\mathrm{C}_{\mathrm{F}}$ as was expected at ..rst. At most, there can be ${ }^{f_{i}} \mathrm{~m}^{2}{ }_{\mathrm{i}} \mathrm{m}^{\Phi}=2+\mathrm{m}\left(\mathrm{n}_{\mathrm{i}} \mathrm{m}\right)^{\mathrm{d}}$ new correlations; i.e., those belonging to $\mathrm{C}_{12}^{\mathrm{F}}$ :

Finally, note that $A_{11}$ is a function of the parameter vector $\mu 2 R^{m}$; i.e. $A_{11}=A_{11}(\mu) ;$ so that the ..rst step to computing $C_{F}$ is to solve the following constrained minimization program:
where $k \not k$ denotes the euclidean norm ${ }^{3}$.

## 3 NEW ALGORITHM

Now, we shall try to obtain a better correlation matrix than the one presented in the previous section. Note that $C_{12} \in C_{12}^{F}$; so that our goal is to modify as little as possible the elements from $\mathrm{C}_{12}$ in the new adjusted correlation matrix. In order to do so, we present an algorithm which is composed of a two-step procedure. The ..rst step consists of computing $C_{F}$ and the second is to obtain

[^2]a new correlation matrix $C^{\text {}}$; de. ned as $C^{ম}=C_{F}+B$; where
\[

\mathrm{B}=$$
\begin{array}{ccc}
2 & & \\
6 \\
6 & 0 & B_{12} \\
4 & 7 \\
B_{12}^{\top} & 0 & 5
\end{array}
$$
\]

being $B_{12}=\left[b_{j}\right]$ a known $m £\left(n_{i} m\right)$ matrix. We can now write

$$
C^{a}=\begin{array}{rllr}
2 & & 3 \\
= & C_{11}^{F} & C_{12}^{\square} & 7 \\
4 & \left(C_{12}^{x}\right)^{\top} & C_{22} & 5
\end{array}
$$

with $\mathrm{C}_{12}^{[r}=\mathrm{C}_{12}^{\mathrm{F}}+\mathrm{B}_{12}$ : If we denote the elements in $\mathrm{C}_{12}^{\mathrm{F}}$ by $\left[\mathrm{d}_{\mathrm{ij}}\right]$; then $\mathrm{C}_{12}^{[1}=$ $\left[d_{i j}+b_{j}\right]$ : We try to choose $b_{j}$ such that $C_{12}^{1}$ be approximately equal to $C_{12}$ : In order to guarantee that the new matrix $\mathrm{C}^{x}$ is a non-negative de..nite matrix, we apply the following known result ${ }^{4}$ :

Theorem 1 Let ${ }^{\circ}$ be an eigenvalue of $C^{\mathbb{a}}=C_{F}+B$; then

$$
\circ 2_{k=1}^{[n} f z 2 R: j z_{i}>_{k} j \cdot r g
$$

where ${ }_{1} ;{ }_{2} ;::: ;>_{n}$ are eigenvalues of $C_{F}$ and $r=k B k$ :

Let $»=\min f »_{1} ;>_{2} ;::: ;>_{n} g$; then if $», r$ we know that $»_{k}, r ; k=$ $1 ;: \ldots ; \mathrm{n}$ : So, the following condition is sut cient to ensure that $\mathrm{C}^{\mathbb{}}$ is a nonnegative de..nite matrix

$$
»^{2}, 2_{i=1 j=1}^{x^{m} x^{m}} b_{j}^{2}:
$$

[^3]We are interested in choosing $C_{12}^{x}$ such that it minimizes $k C_{12}^{x} i \quad C_{12} k^{2}$ subject to $C_{12}^{p}$ being non-negative de..nite. We know that

$$
C_{12}^{x} \text { i } \quad C_{12}=C_{12}^{F} \text { i } C_{12}+B_{12}:
$$

Let us call $E=C_{12}^{F}$ i $C_{12}$; which is a $m £\left(\mathrm{n}_{\mathrm{i}} \mathrm{m}\right)$ matrix whose elements, denoted as $\left[\mathrm{e}_{\mathrm{j}}\right]$; are known. To obtain the new correlation matrix $\mathrm{C}^{\mathbb{}}$ we must solve the following constrained minimization program where the parameters are the elements of $\mathrm{B}_{12}$; i.e. $\left[\mathrm{b}_{\mathrm{j}}\right]$ :

$$
\begin{align*}
& \min _{f b_{j} g_{i=1} j=1}^{P n n P m}\left(a_{j}+b_{j}\right)^{2} \\
& \text { s:t: } \quad 2_{i=1 j=1}^{\text {Pn } n P m} l_{j}^{2} \cdot>^{2}  \tag{2}\\
& \mathrm{i} 1 \cdot \mathrm{~d}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{j}} \cdot 1
\end{align*}
$$

where the number of constraints is $m\left(n_{i} m\right)+1$ : N ote that the second restriction guarantees that the elements of $C^{x}$; speci..cally the elements of $C_{12}^{x}$; must belong to the interval [i $1 ; 1]$ since they are correlations.

Remark 1 It must be noted that, since a feasible possibility in the above problem consists of considering $B=0$; that is $C^{\infty}=C_{F}$; the solution proposed by the new algorithm is always better than the one proposed by Finger's approach. M oreover, the feasible set being closed, bounded and non-empty, program (2) always has a solution, which is unique due to the strict convexity of the objective function.

An important feature of this algorithm is that it is possible to ..nd conditions that ensure that matrix $\mathrm{C}_{12}$ does not change under the computations of matrix $C^{\wedge}$ : Thus, from the K uhn-Tucker ( $K-T$ ) conditions of (2) given in the A ppendix we know that, if

$$
»^{2}, 2_{i=1 j=1}^{X^{m n n} M_{j}^{m}}
$$

then, we do not need to apply the second step, since we obtain that the solution for program (2) is $\mathrm{b}_{\mathrm{j}}=\mathrm{i} \mathrm{e}_{\mathrm{j}}$ and we directly have:

$$
C^{a}=\begin{array}{lll}
2 & & 3 \\
6 & C_{11}^{F} & C_{12} \frac{7}{7} \\
C_{12}^{\top} & C_{22}
\end{array}
$$

In other cases the solution is, $\mathrm{b}_{\mathrm{j}}=\mathrm{i} \mathrm{e}_{\mathrm{j}}=$, being ' $>1$ the value obtained from the $K-T$ conditions (see A ppendix) so that $C_{12}^{\mathfrak{p}} \mathbf{i} C_{12}=E+B_{12}=(1 ; 1=) E$ : Thus, we directly have:


## 4 FINGER'S EXAMPLE

We now apply the new algorithm ( $\mathrm{N}-\mathrm{Ag}$ ) to an example in the hypothetical currency correlation matrix taken from Finger ${ }^{5}$ (1997) and compare it to Finger's algorithm ( F ). Let us consider the following currency correlation matrix:

[^4]| HK D | MYR | PHP | THB | ARS | DEM | GBP |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1:0000 | $\mathrm{i} 0: 2100$ | $0: 1400$ | $\mathrm{i} 0: 1500$ | $\mathrm{i} 0: 2600$ | $\mathrm{i} 0: 1400$ | $0: 0600$ | HKD |
|  | $1: 0000$ | $0: 2200$ | $0: 1000$ | $0: 1900$ | $0: 3100$ | i | $0: 0800$ |
|  |  | $1: 0000$ | $0: 0700$ | i | $0: 2500$ | $0: 1600$ | $0: 0400$ |
| PHP |  |  |  |  |  |  |  |
|  |  |  | $1: 0000$ | $\mathrm{i} 0: 1200$ | $0: 0900$ | $0: 0400$ | THB |
|  |  |  |  | $1: 0000$ | $0: 1800$ | i | $0: 1300$ |
| ARS |  |  |  |  |  |  |  |
|  |  |  |  |  | $1: 0000$ | $0: 2200$ | DEM |

where the currencies are A rgentine Peso (ARS), German M ark (DEM), B ritish Pound (GBP), Hong K ong Dollar (HK D), M alaysian Ringgit (MY R), Philippine Peso (PHP) and Thai Baht (THB). Let I denote the A sian currencies in the matrix, i.e. I'fHKD, MYR, PHP, THBg: Following Finger (1997), $\mathrm{C}_{11}$ is changed to $\Theta_{11}$; whose correlations are set to $0: 85$; so that the new correlation sub-matrix for Asian currency markets properly describes the market behavior.

By changing only the ${ }^{\circ}$ s coe $\phi$ cients, the new correlation matrix $\mathbb{e}$ is

| HKD | MYR | PHP | THB | ARS | DEM | GBP |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $1: 0000$ | $0: 8500$ | $0: 8500$ | $0: 8500$ | $\mathrm{i} 0: 2600$ | $\mathrm{i} 0: 1400$ | $0: 0600$ | HKD |  |
|  | $1: 0000$ | $0: 8500$ | $0: 8500$ | $0: 1900$ | $0: 3100$ | i | $0: 0800$ | MYR |
|  |  | $1: 0000$ | $0: 8500$ | i | $0: 2500$ | $0: 1600$ | $0: 0400$ | PHP |
|  |  |  | $1: 0000$ | $\mathrm{i} 0: 1200$ | $0: 0900$ | $0: 0400$ | THB |  |
|  |  |  |  | $1: 0000$ | $0: 1800$ | i | $0: 1300$ | ARS |
|  |  |  |  |  | $1: 0000$ | $0: 2200$ | DEM |  |

It is shown that $\mathbb{C}$ is not a true correlation matrix since its minimum eigenvalue is -0.04 . The next step consists of introducing an algorithm, F or $\mathrm{N}-\mathrm{Ag}$, to adjust the above correlation matrix in a consistent way. The solution ${ }^{6}$ of $\mu$ for our example is

$$
[0: 8199 ; 0: 7786 ; 0: 7026 ; 0: 7956]^{\top}:
$$

[^5]Then, the correlation matrix $C_{F}$ is

| HKD | MYR | PHP | THB | ARS | DEM | GBP |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1: 0000$ | $0: 8357$ | $0: 8661$ | $0: 8521$ | i $0: 2625$ | $0: 1166$ | $0: 0443$ | HKD |  |
|  | $1: 0000$ | $0: 8520$ | $0: 8656$ | i $0: 0784$ | $0: 2705$ | i $0: 0108$ | MYR |  |
|  |  | $1: 0000$ | $0: 8348$ | i $0: 2487$ | $0: 1990$ | $0: 0368$ | PHP |  |
|  |  |  | $1: 0000$ | i $0: 2058$ | $0: 1872$ | $0: 0369$ | THB |  |
|  |  |  |  | $1: 0000$ | $0: 1800$ | i $0: 1300$ | ARS |  |
|  |  |  |  |  |  | $1: 0000$ | $0: 2200$ | DEM |

$\mathrm{N}-\mathrm{Ag}$ provides the following matrix $\mathrm{C}^{a}$ for our example

| HKD | MYR | PHP | THB | ARS | DEM | GBP |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1: 0000$ | $0: 8357$ | $0: 8661$ | $0: 8521$ | i $0: 2620$ | $0: 0668$ | $0: 0473$ | HKD |
|  | $1: 0000$ | $0: 8520$ | $0: 8656$ | i $0: 0263$ | $0: 2781$ | i $0: 0243$ | MYR |
|  |  | $1: 0000$ | $0: 8348$ | i $0: 2489$ | $0: 1915$ | $0: 0374$ | PHP |
|  |  |  | $1: 0000$ | i $0: 1891$ | $0: 1684$ | $0: 0375$ | THB |
|  |  |  |  | $1: 0000$ | $0: 1800$ | i $0: 1300$ | ARS |
|  |  |  |  |  | $1: 0000$ | $0: 2200$ | DEM |

Comparisons between both algorithms are made by using the mean absolute error (MAE) and the root mean square error (RMSE) as summary statistics, where the error is de..ned as $e_{12} i Y_{12}$ for $Y_{12}=C_{F} ; C^{k}$ : The summary statistics are:

|  | MAE | RMSE |
| :---: | :---: | :---: |
| F | $0: 0735$ | $0: 1165$ |
| N-Ag | $0: 0592$ | $0: 0939$ |

We can observe that N -A g scores better than F , as expected, under both statistics.

## Appendix

Since the objective function and the constraints from program (2) are convex,
 M oreover, strict convexity of the objective function implies the unicity of such a minimum and, since the feasible set is compact and non-empty, and the objective function continuous, the existence of a solution is always ensured. We can rewrite (2) as

$$
\begin{gathered}
\min _{f b_{j} g_{i=1}=1}^{P n P m}\left(a_{j}+b_{j}\right)^{2} \\
\text { s:t: } \quad 2_{i=1 j=1}^{P n n m} b_{j}^{2} \cdot »^{2} \\
d_{i j}+b_{j} i 1 \cdot 0 \\
i \quad\left(d_{i j}+b_{j}+1\right) \cdot 0:
\end{gathered}
$$

The Lagrangian of this problem is given by

$$
\begin{aligned}
& L=x_{i=1}^{x^{n} x^{m}}\left(e_{j}+b_{j}\right)^{2}+, 1 @_{2}^{0} x_{i=1 j=1}^{n x^{m}} b_{j}^{2} i>^{2} A
\end{aligned}
$$

K-T conditions are:
[i] $2\left(\mathrm{e}_{\mathrm{j}} \hat{A}+\mathrm{b}_{\mathrm{j}}\right)+4,1 \mathrm{a}_{\mathrm{j}}+\underset{\underset{\sim}{i j} \mathrm{i}}{\mathrm{i}}, \stackrel{i j}{i j}=0 ; \quad 8 \mathrm{i} ; \mathrm{j} ;$
[ii:1], $1 \quad 2{ }_{i=1 j=1}^{\text {Pn nPm }} b_{j}^{2} i>^{2}=0$;
$[i i: 2] \quad \underset{2}{i j}\left(d_{i j}+b_{j} i \quad 1\right)=0 ; \quad 8 i ; j ;$
$[\mathrm{ii}: 3] \quad, \quad \mathrm{ij}\left(\mathrm{d}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{j}}+1\right)=0 ; \quad 8 \mathrm{i} ; \mathrm{j} ;$
[iii] $, 1,0 ;, \frac{i j}{2}, 0 ;, \frac{i j}{3}, 0 ; 8 i ; j$;

[iv:2] $d_{i j}+b_{j} i 1 \cdot 0 ; 8 i ; j ;$
$[i v: 3] i \quad\left(d_{i j}+b_{j}+1\right) \cdot 0 ; 8 i ; j:$

## Solution from K-T conditions:

Note that from [ii:2] and [ii:3]; , ij and, ij cannot be dixerent from zero at the same time for any given $i ; j$ :

We study the following cases according to the possible values of [iii] :
Case 1: If for some $i ; j$ we have, ${ }_{2}^{i j}>0$ (which implies,,$\frac{i j}{3}=0$ ), then from [ii:2] we obtain that $\mathrm{b}_{\mathrm{j}}=1 \mathbf{i} \mathrm{~d}_{\mathrm{ij}}, 0$ and, by substituting in [i]:

$$
2\left(1 \mathrm{i} c_{i j}\right)+4,1 \mathrm{~b}_{\mathrm{j}}+,{ }_{2}^{\mathrm{ij}}=0 \text {; }
$$

which is not possible, since all elements are non-negative and at least one,,$\frac{i j}{2}$, is strictly positive.

Case 2: If for some i ; j we have,,${ }_{3}^{\mathrm{ij}}>0$, by reasoning in a similar way as in Case 1, we prove that this is not possible.

So, we know that, for all i; j we must necessarily have:
Case 3: for all $\mathrm{i} ; \mathrm{j} \quad \mathrm{S}_{2}^{\mathrm{ij}}=0 ; \quad{ }_{3}^{\mathrm{ij}}=0$ :
Case 3.1: If, $1=0$; from [i] we obtain that

$$
\mathrm{b}_{j}^{\mathrm{x}}=\mathrm{i} \mathrm{e}_{\mathrm{j}} ; \quad 8 \mathrm{i} ; \mathrm{j}
$$

is the solution if and only if $2{ }_{i=1}^{P n n=1} n \mathrm{IPm}_{\mathrm{j}}^{2} \cdot »^{2}$ :
Case 3.2: If, $1>0$; this corresponds to the fact that $2 \underset{i=1 j=1}{\text { Pn nPm }} \epsilon_{j}^{2}>»^{2}$
and then, the solution is

$$
\mathrm{b}_{\mathrm{j}}^{\mathrm{a}}=\mathrm{i} \mathrm{e}_{\mathrm{j}}=; ; 8 \mathrm{i} ; \mathrm{j}
$$

where

$$
\begin{aligned}
& = \\
& \frac{i=1 \mathrm{j}=1}{>^{2}}>1 \text { : }
\end{aligned}
$$

## REFERENCES

Finger, C. (1997) A methodology to stress correlations, RiskM etrics M onitor, Fourth Quarter, 3-11.

Lancaster, P. and T ismenetsky, M. (1985) The Theory of Matrices, A cademic Press, Inc.


[^0]:    * The authors would like to acknowledge the ..nancial support provided by DGICYT grants PB 97-0120, PB 97-0621 and PB 96-0339.
    ** University of Alicante.

[^1]:    ${ }^{1}$ We introduce, here, a dixerent version of $F$ inger's algorithm, the only dixerence is about de..ning $X_{i}^{F}$ : In Finger's paper, $\mu_{i}=\mu$ 8i 2 I while this new version allows $\mu_{i}$ to be dixerent to a better adjusting of the new $\mathrm{C}_{11}$ matrix, obtained through F and denoted as $\mathrm{C}_{11} \mathrm{~F}_{1}$, to the matrix $\mathbb{C}_{11}$ :
    ${ }^{2}$ It is easy to prove that $C_{F}$ is non-negative de..nite.

[^2]:    ${ }^{3} \mathrm{~T}$ he euclidean norm of a matrix A is de..ned as:

    $$
    \mathrm{KAk}=@_{\mathrm{i}=1 \mathrm{j}=1}^{X^{p} X^{q}} \mathrm{a}_{\mathrm{ij}}^{2} \mathrm{~A}_{1=2} ; \quad \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{pfq}} \text { : }
    $$

[^3]:    ${ }^{4}$ See, for instance, Lancaster and Tismenetsky (1985), Chapter 11, p. 388-9.

[^4]:    ${ }^{5}$ See Table 1 from page 4, though shifting the currencies so that the submatrix $\mathrm{C}_{11}$ contains the A sian currencies whose correlations we wish to alter.

[^5]:    ${ }^{6}$ In order to obtain the $\mu_{i}$ 's vector that corresponds to our example, we have used the GAUSS library "Constrained Optimization". In Finger's algorithm, a unique parameter $\mu$ is estimated, whose value is $0: 7874$ :

