
ON THE MEASUREMENT OF INEQUALITY
IN THE DISTRIBUTION OF POWER

IN VOTING PROCEDURES

Annick Laruelle and Federico Valenciano

WP-AD 2000-10

Correspondence to Federico Valenciano. Universidad del Pa¶is Vasco. Departamento de

Econom¶ia Aplicada IV. Avenida L. Aguirre, 83. 48015 Bilbao, Spain Phone: 34-94-6013696; Fax:

34-94-4475154; e-mail address; elpvallf@bs.ehu.es.

Editor: Instituto Valenciano de Investigaciones Econ¶omicas, s.a.

First Edition June 2000.

Dep¶osito Legal: V-2095-2000

IVIE working papers o®er in advance the results of economic research under way in order to

encourage a discussion process before sending them to scienti¯c journals for their ¯nal publication.

* We gratefully acknowlegde the ¯nancial support from the DGES of the Spanish Ministerio de Ed-

ucaci¶on y Cultura, under project PB96-0247, from the Basque Government under project PI95-101 and

from the Training and Mobility of Researchers programme initiated by the European Commission. Support

from the Universit¶e catholique de Louvain, where the ¯rst author completed her Ph. D. dissertation, is

also gratefully acknowledged.

* A. Laruelle: Universidad de Alicante. F. Valenciano: Universidad Pa¶is Vasco.

1



ON THE MEASUREMENT OF INEQUALITY IN THE

DISTRIBUTION OF POWER IN VOTING PROCEDURES

Annick Laruelle and Federico Valenciano

A B S T R A C T

This paper deals with the assessment of inequality in the distribution of voting power.

As voting procedures are modeled as simple games and power evaluated through power

indices, two approaches are possible to deal with inequality in this context, depending

on whether the power pro¯les generated by some power index or the simple games that

model the voting rules are taken as primitives. In both cases the mechanical application

of previous results does not make sense. This paper uses the ¯rst approach to found

axiomatically some inequality indices in this speci¯c context and discusses some di±culties

with the second approach.
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1 INTRODUCTION

This paper is concerned with the assessment of inequality in the distribution of power in

collective decision-making procedures. This issue arises naturally in di®erent contexts as

a matter of practical interest. For instance, in the comparison between alternative speci¯-

cations of voting rules for decision-making by a given set of agents (councils, committees,

parliaments, etc.). A precise tool to make such comparisons would be of great interest

for the design of voting procedures. A relevant case-study, the evolution through years of

the distribution of power among the citizens in the European Union has in fact been the

original motivation of this work (Laruelle, 1998).

With this practical-design motivation in mind, the aim of this paper is to provide

a tool to measure inequality in voting procedures. Such a tool should be axiomatically

grounded -it may be convenient to remark- in the speci¯c context of voting power. Usually

decision-making procedures are formally described as simple games and power evaluated

through power indices. Thus, two approaches are possible to deal with inequality in this

context, depending on whether the power pro¯les generated by some power index or the

simple games that model the voting rules are taken es primitives.

The ¯rst option immediately suggests to apply some of the indices provided by the rich

literature on inequality. But this literature is concerned with the distribution of income

(see, e.g., Atkinson (1970), Kolm (1976), Shorrocks (1980), Weymark (1981), Yaari (1988)

and Porath and Gilboa (1994)), while here we are concerned with a completely di®erent

and more elusive concept: "power". Moreover, most axioms in this literature not even ¯t

a domain consisting of a ¯nite set of pro¯les as it happens to be the case. Therefore the

adequacy of tools developed in a thoroughly di®erent conceptual context is not obvious

and would require at least a re-foundation. This is the approach, outlined a few lines

below, adopted here.

Alternatively, the fact that simple games can be used to model voting procedures may

suggest adopting Einy and Peleg's (1991) approach to deal with inequality in TU-games.

They directly axiomatize a family of inequality measures, which are generalized Gini func-

tions of the Shapley value of the games, using these games as primitives. According to

them, any similar endeavour taking as primitives the outcomes of any particular solution

concept would yield an ad hoc measure of inequality, because of the multiplicity of solu-

tions. But, paradoxically, the outcome of their approach is that only one solution, the

Shapley value, ¯lters through their axioms. In fact, they implicitly assume e±ciency in

the underlying solutions which allows them to exclude from consideration any semivalue

but the Shapley value. More generally, their approach has the drawback of mixing the

assessment of two di®erent things: "value" and "inequality" in the distribution of it. As
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a consequence, some of their axioms are not transparent. As to the restriction of their

results to simple games as models of voting procedures, it is even more arguable. In fact,

Einy and Peleg consider this application one of the motivations of their work, but again

the speci¯city of the context poses some problems. First, the implicit assumption of e±-

ciency is especially arguable in the context of simple games as models of decision-making

procedures. Indeed e±ciency is not any more a natural requirement for a solution in this

context: 1, the worth of the grand coalition, cannot be interpreted as a cake that has

to be (e±ciently) distributed among the players1 (Laruelle and Valenciano, 1999). More-

over, this assumption results in arbitrarily considering the Banzhaf index, one of the most

widely applied power indices and arguably the most suitable in many applications (see

Felsenthal and Machover's (1998) and Laruelle (1999)), as any other semivalue, as "un-

reasonable". Second, the addition of two simple games is not a simple game. Therefore

those of their axioms that use addition of games (namely, "restricted additivity" and "in-

dependence") should be reformulated in this speci¯c context. Although the reformulation

is possible (in Section 4 we sketch this adaptation and compare their results with ours),

the natural translation of some of their axioms lacks a compelling justi¯cation in terms

of voting procedures. In the concluding remarks, we come back to this point and show

how one of their axioms even seems quite counterintuitive in this speci¯c context. On

the other hand, they do not single out an index, but a family, and only consider a ¯xed

number of players. Therefore any possible application of their work would require some

further choice to single out an index. But they give no hint for this further choice and the

comparison of inequality in games with di®erent number of players is not considered.

In sum, the mechanical application of indices axiomatically grounded on either ap-

proach would not be justi¯ed. In both cases a re-foundation is previously necessary. This

paper is a ¯rst step in this direction. In a ¯rst step it seems only prudent to separate

power and the inequality in the distribution of it, necessarily intermingled in Einy and

Peleg's approach. Consequently we take the ¯rst approach. Nevertheless, we give some

clues and point out some problems for the adaptation of Einy and Peleg's approach and

show the relation of our indices with theirs.

Thus, our approach can be summarized as follows. Voting rules are modeled as simple

superadditive games. The distribution of power among the agents is then evaluated by

power indices that associate a power pro¯le with each game. To compare power pro¯les

according to the degree of inequality in the distribution of power some indices (i.e., real-

valued functions on the set of all possible power pro¯les) are axiomatically characterized.

1At least if power is interpreted in the sense we use the term here, that is, the a priori capacity to

in°uence the outcome of a vote ("I-power" in Felsenthal and Machover's (1998) terminology).
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To this end we propose properties for an inequality index that have a meaning in terms

of the involved concept of power. As power and inequality are here explicitly separated,

di®erent power indices can be considered. So far, no agreement has been reached among

the scholars concerning the choice of the most suitable index. In fact, it may depend on

the particular context (Laruelle, 1999). Therefore in this paper, we deal with the two best

known power indices, that is to say, the Shapley-Shubik index (1954) and the Banzhaf

index (1965), but in fact our treatment of the latter could be easily extended to any

semivalue. As the set of Shapley-Shubik power pro¯les di®ers from the set of Banzhaf

power pro¯les, they are separately dealt with.

As the number of n-person simple games is ¯nite, the number of possible power pro¯les,

is ¯nite too whatever the power index being used. In order to introduce and formalize in

a more tractable way any index of inequality in this context, we extend the set of feasible

pro¯les by convexifying these ¯nite sets. This convexi¯cation corresponds to enlarging

the underlying set of games to the set of all convex combinations of simple superadditive

games. Any game from this set can be interpreted as a lottery on simple games, in which

the worth of a coalition is its probability of being winning. Then, consistently, the Shapley

value and the Banzhaf semivalue of this game can be interpreted as an expected-power

pro¯le. In this paper, we therefore model and rank decision-making processes and lotteries

on them. As a result, the domain of our inequality indices are closed convex sets of power

pro¯les, instead the usual Rn
+ for income pro¯les. Moreover, this underlying choice gives

support to a solid assumption in this context: our restricted or not "expected inequality

on co-ranked pro¯les."

The results obtained in this paper are the following. In the case of Shapley-Shubik

power pro¯les, two plausible properties restrict drastically the class of indices to a family

closely related to Einy and Peleg's family. Then, adding some conditions we characterize,

up to a positive constant, a unique inequality index for any ¯xed number of players. By

adding any of two alternative equivalence principles we extend in two ways this index to

deal with comparisons of power pro¯les with di®erent number of players. In the case of

Banzhaf power pro¯les a distinction is also made between absolute and relative inequality

indices, so that two indices, one of either class, are characterized up to a positive constant

for any ¯xed number of players. Four inequality indices arise then to deal with comparisons

of power pro¯les with di®erent number of players. The working of the indices is then

illustrated in the UN Security Council.

The paper is organized as follows: in Section 2 the basic game theoretical background

is given. In Section 3 the class of simple superadditive games is extended to deal with

lotteries on decision-making processes. Then Dubey and Shapley's axiomatizations of
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Shapley-Shubik and Banzhaf indices are extended to this wider domain. In Section 4, an

inequality index to compare Shapley-Shubik power pro¯les is axiomatically characterized

for a ¯xed number of agents, and then extended in two ways to compare pro¯les with

di®erent number of agents. In Section 5 a similar construction is done for Banzhaf power

pro¯les, where the distinction between relative and absolute inequality give rise to two

couples of indices. In Section 6 the study of the inequality in the UN Security Council

questions the 1965 reform of its decision-procedure. Finally, Section 7 concludes with some

critical remarks on the results presented in this paper and a brief discussion on some lines

for further research.

2 BASIC GAME THEORETICAL BACKGROUND

A cooperative transferable utility (TU) game is a pair (N; v), where N = f1; :::; ng denotes

the set of players and v a function which assigns a real number to each non-empty subset

or coalition of N and v(;) = 0. The number of players in a coalition S is denoted s. In a

(0; 1)-game, the function v only assigns the values 0 and 1. In these games the coalitions

with worth 1 are referred to as winning, while those with worth 0 as losing. A player i is

said to be a swinger in a coalition S, if S is winning and S n fig is not. For any coalition

S µ N , the S-unanimity game, denoted (N; uS), is the game such that

uS(T ) =

8<: 1 if T ¶ S

0 otherwise.

A simple game is a (0; 1)-game that is not identically 0 and obeys the condition of mono-

tonicity: v(T ) ¸ v(S) whenever T ¶ S. A game is superadditive if v(S [ T ) ¸ v(S) + v(T )

whenever S \ T = ;. In the context of simple games, the superadditivity property is

equivalent to the condition: v(S) + v(N n S) · 1 for all S ½ N . Let SGn (resp., Gn)

denote the set of all simple (resp., the set of all) superadditive n-person games. Note that

Gn is included in the 2n ¡ 1 euclidean space.

A decision-making procedure can be modeled as a (0; 1)-game where the winning coali-

tions are de¯ned as those which can make a decision without the vote of the remaining

players. In this context we usually have that (i) the unanimity of the players can make

a decision; (ii) any subset of a losing coalition is losing; and (iii), any two nonintersect-

ing coalitions cannot be winning at the same time. Thus any decision-making process

satisfying these conditions can be modeled by a simple superadditive game.

A power index is a function © : SGn ! Rn that assigns to each simple superadditive

game (N; v) a vector or power pro¯le ©(v) whose ith component is interpreted as a measure

of the in°uence that player i can exert on the outcome. To evaluate the distribution
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of power among the players, the two best known power indices are the Shapley-Shubik

(1954) index and the Banzhaf (1965) index. Formally, the Shapley-Shubik index is given

by Shn(v) = ('1(v); :::; 'n(v)), where

'i(v) =
X

S µ N
(S 3 i)

(s ¡ 1)!(n ¡ s)!

n!
[v(S) ¡ v(S n fig)] , i = 1; :::; n. (1)

While the Banzhaf index is given by Bzn(v) = (¯1(v); :::; ¯n(v)), where

¯i(v) =
1

2n¡1

X
S µ N
(S 3 i)

[v(S) ¡ v(S n fig)] , i = 1; :::; n. (2)

Both 'i(v) and ¯i(v) can be interpreted as the probability of player i being a swinger in

the coalition voting a proposal according to the voting rule modeled by v. They di®er in

the expectations about this coalition. The ¯rst index corresponds to the assumption that

S is formed by i and the players who precede her or him in an ordering chosen at random.

While ¯i(v) in coalition S is chosen at random among all coalitions to which i belongs.

Both indices are in fact the restriction to SGn of two well-known linear maps from Gn to

Rn, the Shapley value and the Banzhaf semivalue, that we will denote Shn and Bzn too.

3 LOTTERIES ON VOTING PROCEDURES

We are concerned with the problem of ranking decision-making procedures, taking power

pro¯les generated either by the Shapley-Shubik index or by the Banzhaf index as prim-

itives. Note that in both cases the number of possible power pro¯les, that is, the sets

Shn(SGn) and Bzn(SGn), are ¯nite, as the number of simple superadditive n-person

games is. In order to introduce and formalize in a more tractable way any index of

inequality in this context, it is more convenient to extend the set of feasible pro¯les by

convexifying these ¯nite sets. That is, considering the convex hull of the set of the Shapley-

Shubik (resp., Banzhaf ) pro¯les of all n-person simple superadditive games as the set of

pro¯les to deal with. Let us denote this set Co(Shn(SGn)) (resp., Co(Bzn(SGn))).

This choice makes sense. The Shapley value, Shn, and the Banzhaf semivalue, Bzn,

both de¯ned on Gn, are linear maps. Therefore, Co(Shn(SGn) = Shn(Co(SGn)), where

the last set is formed by the Shapley values of the convex hull of the set of all n-person

simple superadditive games. Similarly, with the same notation, we have Co(Bzn(SGn)) =

Bzn(Co(SGn)). So, in both cases this convexi¯cation corresponds to enlarging the under-

lying set of games to Co(SGn), the set of all convex combinations of simple superadditive

games. Games in this set can be interpreted as -and identi¯ed with- lotteries on simple

superadditive games if the worth of a coalition in a lottery is de¯ned as the expected worth
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in the involved games, that is, its probability of being winning. Then, consistently, the

power pro¯le of a lottery on simple superadditive games, interpretable as an expected-

power pro¯le, is the value of the corresponding convex combination of games, given by

formulae (1) and (2) that, as commented above, make sense for any game in Gn and in

Co(SGn) in particular.

Moreover, an axiomatic characterization of both indices in Co(SGn) can be easily

achieved using some of the following assumptions concerning a map: © : Co(SGn) ! Rn;

v ! ©(v) = (©1(v); :::; ©n(v)). Some axioms that are common requirements both in SGn

and Gn also make sense in this domain. These are:

Anonymity (AN): For any permutation ¼ of N , and any i 2 N , ©i(¼v) = ©¼(i)(v);

where (¼v)(S) := v(¼(S)).

Null Player (NP): If v(S) = v(S n fig) for all S; then ©i(v) = 0.

The anonymity axiom states that a player's measure of power does not depend on her or

his name. The null player axiom postulates that if a player's presence in any coalition

does not contribute to increase its probability of being winning, this player has no power.

The following two axioms, that distinguish the Shapley-Shubik and the Banzhaf indices

in SGn, also make sense in this domain. They are:

Constant Total Power (CTP):
nP

i=1
©i(v) = 1.

Banzhaf Total Power (BTP):
nP

i=1
©i(v) = 1

2n¡1 ¹́(v); where ¹́(v) =
nP

i=1
´i(v) and ´i(v) =P

SµN
S3 i

(v(S) ¡ v(S n fig)).

The constant total power axiom requires that all players' measures of power add up to 1

in any game. The Banzhaf total power axiom states that the players' measures of power

add up to the expected total number of swings divided by the number of coalitions to

which any player belongs.

In SGn these axioms together with Dubey's (1975) "transfer" axiom permit charac-

terizing both indices. In fact, the transfer axiom, devoid of any compelling interpretation,

plays in SGn the role that linearity plays in Gn. Moreover, the transfer axiom does not

make sense in Co(SGn), not even mathematically, for it is not closed with respect to the

operators "_" and "^". The same can be said with respect to linearity. Instead, the

right assumption, both from the mathematical and the intuitive point of view, in our

intermediate domain is:
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Expected Power (EP): For all v; w 2 Co(SGn); and ¸ 2 [0; 1] ; ©(¸v + (1 ¡ ¸)w) =

¸©(v) + (1 ¡ ¸)©(w).

The meaning of this axiom is clear: it states that a player's measure of power in a lottery is

the expected power in the involved games. This assumption is especially natural if power,

as measured by both indices, is interpreted as an expectation. Then we can easily extend

Dubey and Shapley's (1979) characterization to Co(SGn):

Theorem 1 Let © : Co(SGn) ! Rn; be an index of power.

1. The only © that satis¯es anonymity, null player, expected power and constant total

power is the Shapley value.

2. The only © that satis¯es anonymity, null player, expected power and Banzhaf total

power is the Banzhaf semivalue.

Proof: The proof is a simple adaptation in the set Co(SGn) of Dubey and Shapley's

characterization of the Shapley-Shubik index and of the Banzhaf index in SGn.

(i) The Shapley value obviously satis¯es all four axioms. With regard to uniqueness, ¯rst

note that EP on Co(SGn) implies Dubey and Shapley's transfer axiom on SGn. Moreover,

NP, AN and CTP restricted to SGn yield Dubey and Shapley's other axioms. Therefore

the restriction of © to SGn is the Shapley value. Then, by EP, © and the Shapley value

must also coincide in all Co(SGn).

(ii) Similarly, the Banzhaf semivalue is the only value that satis¯es AN, NP, EP and BTP.

The di®erence between the Shapley value and the Banzhaf semivalue lies in one axiom:

the constant or the Banzhaf total power. The ¯rst axiom, usually referred to as "e±ciency"

in spite of the lack of meaning of this term in the context of value as a measure of power

(Laruelle and Valenciano, 1999), entails a constant addition of the players' power. While

for the Banzhaf semivalue, the (variable) addition of all players' power can be considered

as a measure of the expected ease of making a decision. Dubey and Shapley interpret

¹́(v) in the context of decision-making processes as "a kind of democratic participation

index, measuring the decision's rule sensitivity to the desires of the 'average voter' or to

the 'public will'." (Dubey and Shapley, (1979), p. 106). The same interpretation can be

given in the context of lotteries on voting rules in terms of expectations.

According to the above discussion, even if Co(SGn) is the common starting point,

we have two di®erent sets of power pro¯les to deal with depending on the index used to

generate them. If the Shapley index is used, this set is Co(Shn(SGn)), that is, the (n¡1)-

dimensional simplex whose extreme points are the vectors of the natural basis of Rn. We
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will denote ¢n this simplex. If Banzhaf is the index being used, this set is Co(Bzn(SGn)),

a symmetric (i.e., closed under permutations of the players), compact and convex subset

of Rn
+.

4 INEQUALITY INDICES FOR SHAPLEY-SHUBIK POWER

PROFILES

If Shapley-Shubik is the index used to generate the power pro¯les, we have the following

framework for each number n of players:

Shn In

Co(SGn) ¡! ¢n ¡! R.

That is, an inequality index is a function that associates a number with each power pro¯le

in the (n ¡ 1)-simplex ¢n that is used to rank power pro¯les according to the so assessed

degree of inequality. In fact, in this way we have a composite index In ± Shn that ranks

games in Co(SGn) and in SGn in particular.

As stated before, the choice of an inequality index In should be based on the properties

one desires the index to satisfy, and these properties must be consistent with the properties

of the power index being used, Shapley-Shubik in this case. As recalled in the previous

section, the Shapley-Shubik value is characterized as the unique power index in Co(SGn)

that satis¯es anonymity, null player, expected power and constant total power. Constant

total power is behind the choice of the domain for In, that is, the (n ¡ 1)-simplex ¢n.

Consistent with the anonymity axiom of Shn, it is natural to require the following condition

that we will refer to as anonymity too:

Anonymity (AN): For all ' 2 ¢n; and any permutation ¼ of N : In('1; :::; 'n) =

In('¼(1); :::; '¼(n)).

The meaning of this axiom, usual in other contexts, is obvious: the degree of inequality

in a power pro¯le does not depend on how are labelled its components.

Now we turn our attention to the expected power axiom characterizing Shn. In fact this

is equivalent to require the convex linearity of the power index, a weak form of linearity

restricted to convex combinations. If In satis¯ed convex linearity, this would compose

nicely with Shn's convex linearity, and would permit to interchange In and randomization.

But it is clear that asking for linearity unrestrictedly for an inequality index in ¢n would

not work. This condition together with anonymity would yield a constant index because

any point in the simplex ¢n is a convex combination of its extreme points. So, for any
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pro¯le ' 2 ¢n, we would have: In('1; ::::; 'n) = '1In(1; 0; ::::; 0) + ::: + 'nIn(0; :::; 0; 1) =

In(1; 0; ::::; 0). In fact, this is the e®ect of requiring, together with anonymity, convex

linearity on pro¯les in which the players are di®erently ranked according to their power.

Convex linearity can only be required on "co-ranked" pro¯les, that is, pairs of pro¯les ',

'0 such that for all i; j 2 N; 'i < 'j ) '0
i · '0

j. Moreover, taking into account the

interpretation of convex combinations as random mixtures, this requirement would mean

that lotteries on voting procedures, in which the players are equally ranked according to

their power, are ranked according to a von Neumann-Morgenstern preference ordering.

In other words, the inequality in a lottery on decision-making processes (with identically

ranked players) is the expected inequality of the involved decision-making processes. This

seems a very reasonable assumption in any context in which, as in this case, ordering

lotteries on a given ¯xed set of alternatives is the point at issue. So we propose the

following condition:

Expected Inequality on Co-ranked pro¯les (EIC): For all pair of co-ranked power

pro¯les '; '0 2 ¢n; and all ¸ 2 [0; 1] : In(¸' + (1 ¡ ¸)'0) = ¸In(') + (1 ¡ ¸)In('0):

Note that any index satisfying anonymity is fully determined by its restriction to any of

the n! sets of co-ranked vectors in ¢n. The following lemma shows that any of these sets

is an (n ¡ 1)-subsimplex of the simplex ¢n, and is the convex-hull of the Shapley-Shubik

power pro¯les of n unanimity games. Using ek to denote the vector where the k ¯rst

components are equal to 1=k and the others are null, we have:

Lemma 1 The set of all power pro¯les ('1; ::::; 'n) 2 ¢n such that '1 ¸ ::: ¸ 'n is an

(n ¡ 1)-simplex whose extreme points are: e1, ...,ek,..., en. Moreover, taking 'n+1 = 0,

we have:

('1; ::::; 'n) =
nX

k=1

k('k ¡ 'k+1)ek:

Proof: It su±ces to check that ('1; ::::; 'n) can be uniquely written as a convex combina-

tion of e1, ...,ek,..., en to get the result.

Just permuting the components we get the extreme points of the other n!¡1 simplices

of co-ranked pro¯les. In fact, they form a simplicial partition of ¢n. This means that any

power pro¯le in ¢n can be uniquely expressed as a convex combination of the Shapley-

Shubik power pro¯les of n unanimity games co-ranked with it. In sum, any index satisfying

expected inequality on co-ranked pro¯les would rank co-ranked power pro¯les according

to a preference ordering satisfying von Neumann-Morgenstern assumptions, and would

be fully determined by the values of the index for these 2n ¡ 1 pro¯les. If the index also
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satis¯es anonymity then it would be fully determined by In(e1),...., In(ek); :::, In(en). More

precisely, we have the following result:

Theorem 2 An index In : ¢n ! R, satis¯es anonymity and expected inequality on co-

ranked pro¯les if and only if it can be written as:

In('1; ::::; 'n) =
nX

k=1

³
kIn(ek) ¡ (k ¡ 1)In(ek¡1)

´
'̂k, (3)

where '̂ = ('̂1; ::::; '̂n) denotes the vector that results by re-ordering ''s components de-

creasingly, and In(e0) is set up equal to 0.

Proof: First it is easy to check that the index given by (3) satis¯es AN and EIC. Now let

In be an index satisfying these axioms. By AN, In(') = In('̂). By Lemma 1 and EIC,

we obtain:

In('̂1; ::::; '̂n) = In

Ã
nX

k=1

k('̂k ¡ '̂k+1)ek

!

=
nX

k=1

k('̂k ¡ '̂k+1)In(ek)

=
nX

k=1

³
kIn(ek) ¡ (k ¡ 1)In(ek¡1)

´
'̂k.

So, these two conditions, anonymity and expected inequality on co-ranked pro¯les,

restrict drastically the class of indices. In fact, this is Einy and Peleg's ¯rst family of

indices (Theorem 3.1). More precisely, comparing (3) and formula (3.4) in Einy and Peleg

(1991), it easily follows the following

Corollary 1 An ordering on Co(SGn) is the restriction to this domain of an ordering on

Gn that satis¯es the assumptions in Theorem 3.1 of Einy and Peleg (1991) if and only if

it is representable by a composite index In ±Shn where In satis¯es anonymity and expected

inequality on co-ranked pro¯les.

This family of orderings/indices on Co(SGn) can be characterized also directly adapt-

ing Einy and Peleg's axioms to our domain. This can be done by means of some plausible

adaptations (for instance, using convex combinations instead of additions of games, and

taking into account that the only inessential games in our domain are the convex combina-

tions of dictatorships). But the result, though mathematically correct, is not completely

satisfactory. As we discuss with more detail in the concluding remarks, the natural adap-

tation of some of their axioms lacks intuitive appeal in the context of voting procedures.
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Observe also that formula (3) is more expressive than formula (3.4) of Einy and Peleg

(1991), for it gives a precise meaning to the coe±cients about which Einy and Peleg's

formula says nothing. In particular it permits at least a plausible further narrowing of

the family, as we presently show. As we have mentioned in the introduction, the original

motivation of our work was to assess inequality in the distribution of power in real world

collective decision-making situations. This requires an index, not just a family of them.

So, accepting anonymity and expected inequality on co-ranked pro¯les, a further narrow-

ing of the resulting class of indices is still to be done. In order to single out an index,

according to formula (3), a choice for the values of In(ek) (k = 1; :::; n) is necessary (and

su±cient).

Some reasonable constraints on this choice can easily be made. The comparison of the

degree of inequality in pro¯les in which the power is equally shared by a group of players

is obvious: the bigger the number of null players the bigger the degree of inequality. For

each nonempty S µ N , let eS denote the pro¯le whose S-components are 1
s and the rest

are 0. Then, a plausible requirement is:

In

³
eS

´
> In

³
eT

´
whenever s < t.

A further natural condition is to require some relative-to-size sensitivity to the addition

of null players, that is, for all S; T ½ N such that s · t to require

In

³
eS

´
¡ In

³
eS[fig´

¸ In

³
eT

´
¡ In

³
eT [fjg´

for all i 2 N n S, j 2 N n T: The ¯rst condition is a form of monotonicity, while the

second is a form of convexity. Both restrict the range of choice of In(ek); and therefore

the coe±cients in formula (3). In fact, adding these conditions entail, respectively, the

positivity and the nondecreasing order of the coe±cients in (3), exactly the two further

conditions Einy and Peleg (Theorems 3.4 and 3.6) get for their coe±cients by adding their

"monotonicity" and "equality mindedness" requirements (see also Weymark (1981) and

Yaari (1988)). But none of this assumptions is strong enough to single out an index. The

same can be said about other assumptions common in the literature of inequality, as for

instance the "progressive transfer".

Thus, in this point any step beyond is arguable, though necessary to specify an index.

Our choice here is the simplest one compatible with the above conditions: we just require

that these di®erences are constant and positive. As we will show it yields a tractable

index. We have then the following condition:

Constant Sensitivity to Null Players (CSNP): There exists a constant Kn > 0

such that for all S ½ N; and all i 2 N n S, In

³
eS

´
¡ In

³
eS[fig

´
= Kn:
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It seems clear that the power pro¯le in which the power is shared equally among all

players corresponds to the minimum of inequality. On pure normalizing grounds we can

assign to this power pro¯le a zero index of inequality. That is:

Zero Normalization (ZN): In

³
eN

´
= 0.

It can be shown that these axioms are not independent. Anonymity is implied by two

of the other axioms as the following lemma shows:

Lemma 2 If an index In : ¢n ! R satis¯es expected inequality on co-ranked pro¯les and

constant sensitivity to null players, then it satis¯es anonymity.

Proof: Let In be an index satisfying EIC and CSNP. Let s < n. Applying (n ¡ s) times

CSNP, one easily obtains: In

³
eS

´
= In

³
eN

´
+ (n ¡ s)Kn, that is, In

³
eS

´
only depends

on s: So we have s = t ) In

³
eS

´
= In

³
eT

´
: Now let ' 2 ¢n. By Lemma 1, ' can be

uniquely written as a convex combination of the extreme points of an (n ¡ 1)- simplex of

power pro¯les co-ranked with it. If these extreme points are eS1 ; eS2 :::; eSn; where the

cardinality of Sk is k, we have: ' =
nP

k=1
¸keSk (for some ¸k ¸ 0 such that

nP
k=1

¸k = 1).

Then by EIC: In(') =
nP

k=1
¸kIn(eSk). But then In(') = In(¼') for any permutation ¼ of

N , for each In(eSk ) only depends on k.

The remaining three axioms uniquely characterize (up to a constant) an inequality

index as follows:

Theorem 3 There is a unique (up to a positive proportionality constant Kn) inequality

index In : ¢n ! R, satisfying expected inequality on co-ranked pro¯les, constant sensitivity

to null players and zero normalization, and it is given by

In('1; ::::; 'n) = Kn

nX
k=1

(n ¡ 2k + 1)'̂k. (4)

Proof: First, it is easy to check that the index given by (4) satis¯es these axioms. Now let

In be an index satisfying them. By Lemma 2, it satis¯es AN too. Thus, by Theorem 2,

In('1; ::::; 'n) is given by (3). Denoting Kn := In

³
1S

´
¡In

³
1S[fig

´
, constant for any pair

i; S such that i =2 S µ N by CSNP, and using ZN, it follows easily that In(ek) = (n¡k)Kn.

Then, substituting in (3), it yields (4).

In the preceding discussion the number of players has been considered ¯xed. But in

certain cases one can be interested in comparing power pro¯les involving di®erent number
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of players. For instance, in the case mentioned in the introduction -the evolution of the

distribution of power in the European Union along the years- the number of countries and

the number of citizens are not constant. Then an inequality index should be de¯ned as

a function I :
S

n ¢n ! R, while the above three axioms would only characterize up to a

family of constants (Kn)n2N , a family of indices I = fIn : ¢n ! R j n = 2; 3; :::g, one for

each number of players.

In fact, the domain of each function in this family is di®erent, and only zero nor-

malization connects the value of the index for di®erent number of players establishing a

"common zero" for °at pro¯les. So, even if the above axioms are accepted for any number

of players n, there is still a constant Kn undetermined for each number of players. The

choice of this constant is immaterial for a ¯xed number of players. But this choice matters

if power pro¯les with di®erent number of players are to be compared by means of the cor-

responding In. In this case the above family of functions can be used to de¯ne a function

I :
S

n ¢n ! R. Assuming the three axioms for any number of players, an index I would

be completely speci¯ed if we postulate some equivalence principle relating the inequality

index of pro¯les with di®erent number of players. A weak reasonable principle would be

requiring I(1; 0n¡1) · I(1; 0n), where (1; 0n) = (1; 0; :::; 0) 2 Rn+1, that is, the degree of

inequality cannot increase if we reduce the number of 0-players in a dictatorship. Using

formula (4), we have I(1; 0n¡1) = (n ¡ 1)Kn, thus this would entail for the constants the

condition (n ¡ 1)Kn · nKn+1, for n = 2; ::: Within this range of choices we underline two

that can be defended on their own grounds. A most simple choice is that of a common

degree of inequality for any dictatorship, whatever the number of players. That is:

Dictator Player Equivalence Principle (DPEP): For all n = 2; 3; :::,

I(1; 0n¡1) = I(1; 0n):

Note that for a given number of players, the dictatorship is the situation in which the

degree of inequality is maximal. Therefore the above mentioned principle establishes a

"common maximum" of inequality for any number of players, which is reached when there

is a dictator. This entails for the constants the relation Kn = ( 1
n¡1)K, where K is an

arbitrary positive constant.

This principle can be criticized on the basis that, from the inequality point of view,

it can be argued that the bigger the number of players in a dictatorship the worse. A

di®erent equivalence principle that is sensitive to this idea is the following:

Null Players Equivalence Principle (NPEP): For all n = 2; 3; :::,

I(1; 0n¡1) = I(1
2 ; 1

2 ; 0n¡1):
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That is, the index of the pro¯le associated with a dictatorship is the same as that of a

pro¯le in which the power of the dictator is equally split into that of two members, without

changing the number of null players. This implies a simple relation between the constants:

all of them are equal, that is, Kn = K, where K is an arbitrary positive constant. Note

that this axiom is a weaker form of a general and clear principle that is satis¯ed by the

index so characterized below, as it can be easily checked. The general principle considers

as equivalent from the inequality point of view pro¯les with di®erent number of players in

which the power is equally shared by a group of them, as far as the number of null players

is the same in both.

So, two indices (depending on which equivalence principle is assumed) are characterized

up to a positive constant:

Theorem 4 There is a unique (up to a positive proportionality constant K) inequality

index:
S

n ¢n ! R satisfying expected inequality on co-ranked pro¯les, constant sensitivity

to null players and zero normalization for any n, and satisfying the dictator player equiv-

alence principle (respectively the null players equivalence principle). They are respectively

given by:

IDP ('1; ::::; 'n) = K( 1
n¡1)

nX
k=1

(n ¡ 2k + 1)'̂k, (5)

INP ('1; ::::; 'n) = K
nX

k=1

(n ¡ 2k + 1)'̂k: (6)

Reconsidering the constant sensitivity to null players, another characterization of INP

can be given. Let us examine the e®ect of adding a null player to a decision-making

process. It is easy to check that the following equation is satis¯ed:

INP ('1; ::::; 'n; 0) = INP ('1; ::::; 'n) + K: (7)

This property could be properly called "constant sensitivity to null players" in a stronger

and more general sense than the meaning we have given to these words in our axiom. More-

over, assuming INP (1) = 0; this property together with zero normalization implies both

the constant sensitivity to null players axiom and the null players equivalence principle.

Thus this property can replace both axioms in the characterization of INP .

It is worth noting that if we choose instead, for each n, Kn = 1
n as the value of the

constants, we obtain the usual, in other contexts, Gini index. It does not, however, obey

any clear equivalence principle. We get in this case:

I(1; 0n) = ( n2

n2¡1) I(1; 0n¡1):

Note also that when the number of players is large, the Gini index is very close to IDP .

16



5 INEQUALITY INDICES FOR BANZHAF POWER PRO-

FILES

Let us consider now the case of power pro¯les generated by the Banzhaf semivalue. In

this case the framework for each number n of players is:

Bzn Jn

Co(SGn) ¡! Co(Bzn(SGn)) ¡! R:

So, now the generated set of pro¯les is Co(Bzn(SGn)), as mentioned before, a symmetric,

compact and convex subset of Rn
+ that strictly contains the (n¡1)-simplex ¢n. Thus, now

the set of feasible pro¯les is not a simplex, nor (n ¡ 1)-dimensional either. For instance,

even in the case of only three players, there are Banzhaf pro¯les whose components add

up to more than one, and less in other cases. So, an inequality index in this context is a

function that associates a number with each power pro¯le in this set. Again for any such

an index Jn we have a composite index Jn ± Bzn that ranks games in Co(SGn).

In principle similar arguments to those used in Section 3 would motivate the assump-

tions of anonymity, constant sensitivity to null players and zero normalization for an

inequality index Jn, now applied to pro¯les in the new domain Co(Bzn(SGn)). But now

the domain is wider, and the wider the domain the stronger any requirement on the objects

of the domain. This is specially so in the case of expected inequality on co-ranked pro¯les.

As we will see later on, this assumption in this domain, though meaningful, restricts too

much the set of indices. So, instead, we will require only a restricted form of this condition.

Recall the sum of the components of a Banzhaf pro¯le can be interpreted as a democratic

participation index of the decision-making process. We require convex linearity only on

pairs of co-ranked power pro¯les with identical democratic participation index. We have

thus the following axiom:

Restricted Expected Inequality on Co-ranked pro¯les (RCLC): For any pair of

co-ranked power pro¯les ¯; ¯0 2 Co(Bzn(SGn)) such that
P

i2N
¯i =

P
i2N

¯0
i; and all

¸ 2 [0; 1] : Jn(¸¯ + (1 ¡ ¸)¯0) = ¸Jn(¯) + (1 ¡ ¸)Jn(¯0):

Now we need some axiom relating the inequality index of power pro¯les with di®erent

"democracy indices", for none of the former axioms does. In the literature on inequality,

a distinction is often made between relative and absolute indices, depending on which is

considered relevant, the ratios or the di®erences between the components of any pro¯le.

Note that this distinction was meaningless for the Shapley-Shubik power pro¯les whose

components always add up to 1. These two principles can be expressed as follows:
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Relative Index (RI): For all pairs of power pro¯les ¯; ¸¯ 2 Co(Bzn(SGn)); (¸ 2 R):

Jn(¸¯) = Jn(¯):

Absolute Index (AI): For all pairs of power pro¯les ¯; ¯ + ¸eN 2 Co(Bzn(SGn)); (¸ 2
R): Jn(¯ + ¸eN) = Jn(¯):

Each of these principles, together with the former axioms, will allow us to characterize

two inequality indices.

Theorem 5 There is a unique (up to a positive proportionality constant Kn) absolute (re-

spectively, relative) inequality index Jn : Co(Bzn(SGn)) ! R satisfying restricted expected

inequality on co-ranked pro¯les, constant sensitivity to null players and zero normalization.

They are respectively given by:

Jan(¯1; ::::; ¯n) = Kn

nX
k=1

(n ¡ 2k + 1) ^̄
k , (8)

Jrn(¯1; ::::; ¯n) = Kn

nX
k=1

(n ¡ 2k + 1)
^̄

kP
i2N

¯i
. (9)

Proof: First, it is straightforward to check that Jan is an absolute index (AI) and Jrn a

relative index (RI). It is also immediate to check that both satisfy REIC, CSNP and ZN.

Now, let Jn be an absolute index satisfying the other three conditions in Co(Bzn(SGn)).

Note that ¢n is contained in Co(Bzn(SGn)), and REIC implies EIC on ¢n. Then, by

Theorem 3, such an index, satisfying EIC, CSNP and ZN in ¢n, must be given by (8) on

¢n. It is only left to be shown that this formula is valid for any pro¯le in the domain. So,

let ¯ be a pro¯le in Co(Bzn(SGn)) such that do not exist ¯0 2 ¢n and ¸ 2 R such that

¯ = ¯0 + ¸eN (otherwise, by AI, it is immediate). Then, denoting ´(¯) :=
nP

k=1
¯k, it must

be ´(¯) > 1. As Co(Bzn(SGn)) is symmetric and convex, it contains ´(¯)eN . Then, for

¹ 2 (0; 1) su±ciently close to 0, it will be ¹¯ + (1 ¡ ¹)´(¯)eN + (1 ¡ ´(¯))eN 2 ¢n. Then,

applying ¯rst ZN and AI, then REIC, and again AI, we have:

¹Jn(¯) = ¹Jn(¯) + (1 ¡ ¹)Jn(´(¯)eN) = Jn(¹¯ + (1 ¡ ¹)´(¯)eN )

= Jn(¹¯ + (1 ¡ ¹)´(¯)1N + (1 ¡ ´(¯))eN + (´(¯) ¡ 1)eN)

= Jn(¹¯ + (1 ¡ ¹)´(¯)eN + (1 ¡ ´(¯))eN)

= Jn(¹¯ + (1 ¡ ¹´(¯))eN).

The last pro¯le belongs to ¢n, so that (8) can be applied. Thus, we have ¹Jn(¯) =

¹Kn

nP
k=1

(n ¡ 2k + 1) ^̄
k, that is, Jn(¯) = Jan(¯). Finally, let Jn be a relative index

satisfying the other three conditions in Co(Bzn(SGn)). Now the proof is immediate: as

before, by Theorem 2, the index must be given by (8) on ¢n (note in ¢n (8) and (9)
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coincide). For any pro¯le ¯ in Co(Bzn(SGn)), it is ¯=´(¯) 2 ¢n. Then, by RI, we have

Jn(¯) = Jn(´(¯)(¯=´(¯))) = Jn(¯=´(¯)) = Jrn(¯).

It can be shown that (unrestricted) expected inequality on co-ranked pro¯les, constant

sensitivity to null players and zero normalization (extended to all °at pro¯les) characterize

Jan on Co(Bzn(SGn)). Therefore, requiring expected inequality on co-ranked pro¯les on

Co(Bzn(SGn)) implicitly implies the choice of an absolute index. It is in this sense that

we have said that expected inequality on co-ranked pro¯les is too strong an assumption

in this wider domain.

Now we turn our attention to a general index J :
S

n Co(Bzn(SGn)) ! R to deal with

di®erent numbers of players. The situation is similar to that in the previous section: only

the zero normalization connects the value of the index for di®erent number of players,

establishing, together with the relative (resp., absolute) index axiom, a "common zero"

for all °at pro¯les. So, assuming either a relative index or an absolute index and the

other three axioms, there is still a constant Kn undetermined for each number of players.

Again, we can use any of the two equivalence principles used with the same purpose in

the previous section. Thus, depending on the relative or absolute character of the index

and the equivalence principle used, four di®erent indices arise.

Theorem 6 There is a unique (up to a positive proportionality constant K) absolute

inequality index:
S

n Co(Bzn(SGn)) ! R satisfying restricted expected inequality on co-

ranked pro¯les, constant sensitivity to null players, and zero normalization for any n, and

satisfying the dictator player equivalence principle (respectively the null players equivalence

principle). They are respectively given by:

JaDP (¯1; ::::; ¯n) = K( 1
n¡1)

nX
k=1

(n ¡ 2k + 1) ^̄
k, (10)

JaNP (¯1; ::::; ¯n) = K
nX

k=1

(n ¡ 2k + 1) ^̄
k: (11)

Theorem 7 There is a unique (up to a positive proportionality constant K) relative in-

equality index:
S

n Co(Bzn(SGn)) ! R satisfying restricted expected inequality on co-

ranked pro¯les, constant sensitivity to null players, and zero normalization for any n, and

satisfying the dictator player equivalence principle (respectively the null players equivalence

principle). They are respectively given by:

JrDP (¯1; ::::; ¯n) = K( 1
n¡1)

nX
k=1

(n ¡ 2k + 1)
^̄

kP
i2N

¯i
, (12)
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JrNP (¯1; ::::; ¯n) = K
nX

k=1

(n ¡ 2k + 1)
^̄

kP
i2N

¯i
: (13)

It is worth remarking that despite the apparent perfect symmetry between the char-

acterizations of both pairs of absolute and relative indices, there are some important

di®erences concerning the meaning of the equivalence principles, or more precisely, their

consequences, in the presence of the remaining assumptions.

Let us ¯rst consider the dictator player equivalence principle, which states that the

degree of inequality is identical in all dictatorships, whatever the number of players. As

noted in the previous section, in the case of Shapley-Shubik power pro¯les, this princi-

ple entails a "common maximum" degree of inequality, that is reached when there is a

dictator, whatever the number of players. Similarly, in the case of Banzhaf power pro¯les

the relative inequality index is maximal when there is a dictator. Therefore, the dicta-

tor player equivalence principle also entails a "common maximum" of inequality for any

number of players in the case of the relative index. But this is not true for the absolute

inequality index: there exist simple superadditive games2 whose Banzhaf pro¯les lead to a

larger absolute index of inequality than the index of a dictatorship with the same number

of players. This fact, intimately related to the absolute character of the index, makes the

interpretation of this equivalence principle less intuitive.

Now, let us turn our attention to the null player equivalence principle. As noted in

the previous section, in the context of Shapley-Shubik pro¯les, this is a particular case of

a more general principle stating that pro¯les with di®erent number of players in which

the power is equally shared by a group of them, are considered as equivalent from the

inequality point of view if the number of null players is the same. It can be seen that this

general principle continues to be valid for the relative index, but no more for the absolute

index. This general principle does not even hold any more for a ¯xed number of players,

as illustrated in the following example3:

JaNP (
1

4
;
1

4
;
1

4
; 0) =

3

4
6= 3

2
= JaNP (

1

2
;
1

2
;
1

2
; 0).

Finally, let us consider the constant sensitivity to null players. It is easy to check that

2For instance, let u be the compound game (see Owen (1982) for a de¯nition) in which the ¯rst stage

games are the simple majority games with 7; 3; 5 and m4 players, respectively, and the second stage game

is the 4-person simple game in which the only minimal coalitions are f1; 2g and f1; 3g. It can be checked

that Ja(Bz(u)) > Ja(1; 014+m4) whenever m4 > 5.
3The ¯rst Banzhaf pro¯le corresponds to a game where any coalition containing the ¯rst three players

is winning, while the second corresponds to a game where any coalition containing at least two of the ¯rst

three players is winning.
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JaNP and JrNP satisfy the following equations:

JaNP (¯1; ::::; ¯n; 0) = JaNP (¯1; ::::; ¯n) + K
nP

k=1
¯k; (14)

JrNP (¯1; ::::; ¯n; 0) = JrNP (¯1; ::::; ¯n) + K; (15)

where K is the constant that appears in (11) or (13). Again, in the case of the relative

index, this property could be properly called "constant sensitivity to null players" in the

stronger and more general sense given in the previous section. This property can also

replace the constant sensitivity to null players axiom and the null players equivalence

principle in the characterization of JrNP . But let us examine the situation underlying

formulae (7), (14) and (15). In fact, this corresponds to the addition of a null player to

a game. Indeed, if we consider two games (N; v) and (N 0; v0), with N 0 = N [ fn + 1g
and v0(S) = v(S \ N) for any coalition S µ N 0, it follows from formulae (1) and (2) that

Shn+1(v0) = (Shn(v); 0) and Bzn+1(v0) = (Bzn(v); 0): That is, the e®ect in the power

pro¯le is just adding one zero for the new component, the rest continuing to be the same.

Thus these formulae yield:

INP (Shn+1(v0)) = INP (Shn(v)) + K ,

JaNP (Bzn+1(v0)) = JaNP (Bzn(v)) + K
¹́(v)

2n¡1
;

JrNP (Bzn+1(v0)) = JrNP (Bzn(v)) + K:

These equations re°ect through our inequality indices some di®erences between the Shap-

ley value and the Banzhaf semivalue used as power indices and between the absolute and

the relative inequality indices. In fact, the impact of adding a null player on JaNP is

not constant, as it is on INP or JrNP . It depends on the game the null player joins. To

illustrate it, let us consider two symmetric decision-making processes: a unanimity rule

and a simple majority rule. Each player's Shapley value is identical in both games (by the

constant total power axiom), while each player's Banzhaf semivalue is larger in the simple

majority game than in the unanimity game. The inequality indices are, however, identical

in all cases and equal to zero. The introduction of a null player in both games changes

in both cases the inequality index from zero to K if the Shapley pro¯les are considered.

The result is the same for the relative inequality index with the Banzhaf pro¯les while

the absolute inequality index varies from zero to K ¹́(v)
2n¡1 . Therefore the impact of adding

a null player is bigger with regard to the absolute inequality in the simple majority rule

than in the unanimity rule. This re°ects that the di®erence in terms of power between the

null player and the others is larger in the simple majority rule than in the unanimity rule.

This seems consistent with Dubey and Shapley's interpretation of ¹́(v) as a "democratic

participation index".
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Finally, observe that, if for any Banzhaf pro¯le ¯, ¯a and ¯r denote, respectively, the

additive and the multiplicative normalization of ¯; then Ja(¯) = I(¯a) and Jr(¯) = I(¯r),

if I is de¯ned by formula (4) on the hyperplane
P

i2N
¯i = 1 (and this for each of the variants

of these indices).

6 ILLUSTRATION: THE U.N. SECURITY COUNCIL

As an illustration of the computation and working of the inequality indices introduced in

Sections 4 and 5, we apply them to compare the two di®erent decision processes, before

and after 1965, of the UN Security Council.

Since the creation of the Security Council, in 1945, up to 1965, decisions on issues

of substance required the approval of its 5 permanent members and at least 2 of its 6

non-permanent members. This procedure was often criticized because of the excessive

power given to the ¯ve permanent members. In 1965, in order to reduce the power of

the permanent members, the number of non-permanent members was augmented to 10,

and decisions required, in addition to that of the 5 permanent members, the positive

vote of 4 of the 10 non-permanent members. The e®ectiveness of this reform has been

critically analyzed with di®erent approaches (see, e.g., Riker and Ordeshook (1973) and

Winter (1996)). We just apply our inequality indices to both Shapley-Shubik and Banzhaf

power pro¯les of the following 11 and 15-person games that formally describe both decision

processes.

Before 1965: let N = P [T be the set of players, where P denotes the permanent members

(p = 5), and T denotes the non-permanent members (t = 6). Then

v(S) =

8<: 1 if P ½ S and s ¸ 7,

0 otherwise.

After 1965: let N 0 = P [T 0 be the set of players, where P denotes the permanent members

(p = 5), and T 0 denotes the non-permanent members (t0 = 10). Then

v0(S) =

8<: 1 if P ½ S and s ¸ 9,

0 otherwise.

The power pro¯les are respectively given by

Before 1965 (N; v) After 1965 (N 0; v0)

Sh(permanent) 0:1974 0:1963

Sh(non-permanent) 0:0022 0:0019

Bz(permanent) 0:0557 0:0517

Bz(non-permanent) 0:0049 0:0051
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Applying formulae (5, 6, 10, 11, 12, and 13), we respectively get:

Before 1965 (N ,v) After 1965 (N 0; v0)

IDP (Sh) K 0:5857 K 0:6943

INP (Sh) K 5:8571 K 9:7203

JaDP (Bz) K 0:1523 K 0:1665

JaNP (Bz) K 1:5234 K 2:3315

JrDP (Bz) K 0:4952 K 0:5371

JrNP (Bz) K 4:9524 K 7:5197

It is remarkable the coincidence in the assessment of the comparative degree of in-

equality: all inequality indices, either based on the dictator player equivalence principle

or based on the null players equivalence principle, either applied to Shapley-Shubik or to

Banzhaf pro¯les, either absolute or relative in this case, rank both decision-making pro-

cesses in the same way: after 1965 the inequality has increased. This seems contradictory

with the supposed aim of the reform. But as we have mentioned before, doubts about

its e®ectiveness have been already raised. Winter (1996) points out two opposite e®ects

of the reform: "On the one hand, it becomes harder for veto players to form a winning

coalition because that requires the supporting votes of more non veto members. On the

other hand, the power of non veto members may be reduced since each such member now

has more substitutes than before." So, the permanent members' power decreases, but in

the whole our indices evaluate that from the inequality point of view the situation has

been worse since 1965.

7 CONCLUDING REMARKS

As we say in the introduction, this paper is meant as a ¯rst step to provide an axiomatic

support to some inequality indices to deal with comparisons of voting procedures according

to the degree of inequality in the distribution of power. To do so we have tried to put

forward conditions that make sense in terms of the involved concept of power in voting

systems. We want to stress some positive points and some di±culties, as well as pointing

out some lines of further research along the two approaches discussed in the introduction.

We want to emphasize the meaningfulness of the underlying domain of games that we

propose, that is, the convex hull of simple superadditive games. This domain, interpreted

as the set of probabilistic mixtures of simple superadditive games is a natural extension

of the usual domain of simple superadditive games as formal descriptions of voting pro-

cedures. In connection with our endeavor, it is worth stressing two points. First, this

underlying choice gives a clear support in this context to our assumption of (restricted
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or not) "expected inequality on co-ranked pro¯les". Second, signi¯cantly, this one seems

to be the only domain where Einy and Peleg's work could be meaningfully restated in

the context of distribution of power. Indeed, on the one hand, the class of TU-games

that they consider goes too far beyond the models of voting rules. On the other hand, in

the domain of simple superadditive games that is usually used to model voting rules, the

axioms that they propose do not make sense (because the addition of two simple games

is not a simple game). In the domain that we propose the worth of a coalition can be

interpreted as the probability of being winning, and the axioms they propose make sense

if convex combination of games is taken instead of addition of games.

We have extended Dubey and Shapley's axiomatizations of the two best-known power

indices to this domain. Then, taking the corresponding power pro¯les as primitives, we

have axiomatized some measures of inequality in the distribution of power. Consequently,

the choice of one of our inequality indices requires the previous choice of a power index.

This choice may depend on the context (Laruelle, 1999), but to evaluate the a priori

capacity to in°uence the outcome of a vote in a given voting rule, the Banzhaf semivalue

seems more suitable than the Shapley-Shubik index (and any other existing power indices).

However, the results concerning the Shapley-Shubik pro¯les seem more solid because the

absence of the absolute/relative dichotomy raises no doubts. Instead, when dealing with

Banzhaf pro¯les this issue may raise some doubts. Indeed, as discussed in the last few

paragraphs of Section 5, both "equivalence principles", as well as the "constant sensitivity

to null players" have a more clear meaning for a relative inequality index than for an

absolute one. In this sense, the indices I and Jr seem to be better founded. Concerning the

practical applications of these tools, in the example considered in Section 6 the message

transmitted by all indices go in the same direction. However it remains to be checked

whether this is often the case or not.

With respect to the second approach, using the simple games (or lotteries over them)

as primitives, we claim that the mechanical application of Einy and Peleg's results do

not make sense. This approach, maybe more ambitious, is still an interesting line for

further research to be carried out in this speci¯c context. Here we would like to stress

again the speci¯city of simple superadditive games when they are used to model decision-

making procedures. Indeed, if simple superadditive games are a subdomain of TU-games,

compelling intuitions for TU-games do not necessarily remain intuitive when they are

interpreted as decision-making processes. For instance, if Einy and Peleg's work appears

well-founded for the general class of TU-games, they implicitly take for granted e±ciency,

which seems indeed quite natural in many contexts. But in the context of decision-

making processes, the e±ciency implicit in their independence axiom may lead to some
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counterintuitive results. Restated in our domain, this axiom would say that for any games

u; v; w 2 Co(SGn) such that u and v are T -symmetric4 for some coalition T , and any ¸

(0 · ¸ · 1), it must be: ¸u + (1 ¡ ¸)w » ¸v + (1 ¡ ¸)w. But the following example

shows how counterintuitive some of the consequences of this axiom can be in the context

of decision making processes. Let N = f1; 2; ::; 6g; T = f1; 2; 3g, u and w the unanimity

games u = uT , w = uNnT and v the simple superadditive game whose winning coalitions

are those containing at least two players of coalition T . As u and v are T -symmetric

games, any binary relation on Co(SGn) satisfying the adapted IND must yield: 1=2uT +

1=2uNnT » 1=2v+1=2uNnT . And while intuition (as just anonymity) compellingly suggests

that in the left hand side lottery equality is perfect, this is not the case in the right hand

side lottery, where the power of any player in T seems prima facie di®erent from that

of any player in NnT . In fact, this example yields some interesting conclusions. First,

it shows that the validity of the above sketched translation of Einy and Peleg's results

to our domain is quite questionable. Therefore, their program, according to which the

axiomatic foundation of inequality should take as primitives the games instead of the

pro¯les associated to them by any particular solution, is still to be re-thought from the

beginning in the context of collective decision processes. Second, the direct intuition

provided by this example can be held critically against the suitability of the Shapley value

as a measure of power in collective decision processes: this measure associates identical

power pro¯les with both lotteries, and, a fortiori, any inequality measure that explicitly

or implicitly embodies this index would identify them from the point of view of inequality,

against the direct assessment provided by intuition. It is remarkable how in this example

both concepts, power and inequality, or, better, the clear and direct intuition of them at

a pre-formal level, con°icts with the use of the Shapley value as a measure of power.

4A T -symmetric game is a game in which all players outside coalition T are null players, while all

players inside T are substitutes.
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