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CHOOSING AMONG MAXIMALS

Josep E. Peris and Begona Subiza

ABSTRACT

In a choice situation, it is usually assumed that the agents select the
maximal elements in accordance with their preference relation. Nevertheless,
there are situations in which a selection inside this maximal set is needed.
In such a situation we can select randomly some of these maximal elements,
or we can choose among them according to the behavior of these maximal
elements. In order to illustrate this, let’s imagine a preference relation -,
defined on a finite set A = {x1,x9, ..., 2, }, such that x; is indifferent to each
alternative and x9 is strictly preferred to every x;,¢ > 3. Both z1 and xo
are maximal elements, but we can say that x5 is a "better maximal” than
x1. In this paper we define selections of the set of maximal elements of a
preference relation by choosing the ”better” ones among them.

JEL classification: D11
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1 Introduction

In choice theory, when we analyze the literature dealing with preferences,
it is usually assumed that these preferences can be translated into choices.
Indeed, a fundamental assumption consists of asking the agent to choose
the maximal elements of his preference relation in every feasible set. But,
sometimes, a selection within the maximal set is needed.

Examples in which the choice must select some of the maximal elements
are clear. For instance (see Fine (1995)), ”there may be complete indifference
between the styles or colors of a number of items of clothing, but only one
item will be chosen for wear”. Or, for instance, there may be complete
indifference between several menus in a restaurant, but only one of them will
be selected for dinner. A different example is given by political elections:
several candidates of the same party (which can be indifferent for an elector)
run for a seat in the Spanish Senate, but only three of them can be chosen
by each elector.

When the binary relation used by the agent to select is an order, the
problem is solved by choosing the single maximal element (if k alternatives
must be selected, the way to do it is to choose the k-first elements). So,
orders represent, in this sense, the "ideal” preferences for an agent. If the
preference relation is a preorder, the relationship between two maximal ele-
ments is clear: these elements are indifferent, and if one of them is preferred
to some element, so is the other. So these elements are, in some sense, ”iden-
tical” and, if some of them have to be chosen it must be done in a random
way. But this ”identicality” among the maximal elements does not hold
for more general binary relations (semiorders, interval-orders, quasiorders
or acyclic relations). Consider the following example (see Luce (1956)): an
individual prefers a cup of coffee with 20 grams of sugar but, because of
the lack of sensitivity, he is not able to distinguish between two cups with a
difference of 2 grams of sugar. This preference relation is formally expressed
as follows (z being the amount of sugar in a cup of coffee):

x>y <= |r—20| <l|y—20 —2

therefore the maximal elements are given by the interval [18,22]. Neverthe-
less, his "true” preferences have only one maximal element z* = 20. Thus,
the lack of perception gives rise to a difference between true preference and
actual choice (see Fine (1995)).



Considering Luce’s example, if there are only six possibilities to choose
from (three cups of coffee with 20 grams of sugar, and three more with 15
grams), the maximal set is given by the first three, and moreover, every
maximal element is ”completely identical” to each other (note that, in this
case, the binary relation is a preorder) and it doesn’t matter which one is
selected (in fact, the agent can move from one maximal to another indifferent
alternative without losing utility). But if the six cups of coffee contain 20,
19,...,15 grams of sugar, (in this case, the binary relation is not a preorder),
respectively, the maximal set is achieved again by the first three, but now
the maximal elements are not ”identical”: they are physically different, and,
in terms of preferences, the agent could lose if he moves from one alternative
to another which is indifferent to it because, after several moves, he can end
up with a non-maximal element.

The notion of ”identical” alternatives (in terms of preferences), or alter-
natives with ”identical behavior”, has been well described in the definition of
equivalent elements given in Fishburn (1970). If two alternatives are equiv-
alents, it is not possible to discriminate among them, and the only way of
choosing is to select randomly among the maximals. If the alternatives in
the maximal set are not ”identical”, we can look at the behavior of these
elements. For instance, coming back to Luce’s example, let’s analyze what
happens with the maximal elements [18,22]: all of them are indifferent, but
a difference with the case of preorders appears: 20 grams of sugar are pre-
ferred to 17, but 18 grams or 17 are indifferent; in other words, the behavior
of the maximal elements with respect to the other elements is not identical.
This fact illustrates a way of selecting, from the set of maximal elements,
those which are "better”, in the sense that they have a ”maximal behavior”
with respect to the non maximal elements.

Now, bearing in mind the above-mentioned considerations, we propose
different selections of the set of maximal elements of a binary relation and
analyze conditions which ensure the non-emptiness of these selections. The
first selection we present is taken from Luce (1956), and it is especially in-
dicated when the binary relation is a semiorder. After showing that this
way of selecting is not adequate for more general cases of binary relations,
we propose, in Section 3, the set of undominated maximals (especially in-
dicated in the case of interval-orders), and the set of strong maximals for
more general binary relations (Section 4). The analysis of the equivalence
among the selected maximal elements (in Fishburn’s terms, and by using
a generalization of this notion) shows that, if needed, a selection with less
elements than those given by undominated and strong maximals, it must be
done randomly among them. We close the paper with some final comments.



2 Preliminaries

Throughout the paper A = {x1,z9,...,2n} represents the (finite) set of al-
ternatives and = a reflexive binary relation defined on A. From > the two
following relations (the symmetric and asymmetric part, respectively) are
defined as follows

indifference: r~y&sSrrmyandy mx

strict preference: x=y<xryand not(y = x)

The reflexive binary relation > is said to be a preorder if it is complete
and whenever = > y > z then =z > 2. If in addition x ~ y implies x = y, the
binary relation is said to be an order. It is said to be an interval-order if it
is complete and whenever x > y = z > ¢ then x > ¢. If in addition whenever
x =y > 2z, for any ¢ then x > ¢ or z < ¢, the binary relation is said to be a
semiorder.

An asymmetric binary relation = is said to be a quasiorder if whenever
x >y > z then x > z. Finally, it is said to be acyclic if whenever 1 = x9 >
... = g then not(xy = x1). The transitive closure of a binary relation > is
denoted by > and is defined as usual:

x ==y < A ax,x9,..,Tp_ 1,2 € A such that

T=T1 > X2 > . > Th_1 =T =1

When the initial relation > is acyclic, its transitive closure turns out to be
a quasiorder.

The set of maximal elements of a binary relation = defined on A will be
denoted by

M(A, =) ={2* € A| Ay € A withy = 2*}

Fishburn (1970) introduces an equivalence relation =~ defined from > as
follows:

x=z if andonlyif y =z

x%yﬁandonlylfforallzGA,{ v <z if andonlyif y <z



This relation expresses the fact that two elements have identical behavior
with respect to the other elements in the set of alternatives. In general, the
maximal elements are not equivalent, as Luce’s example shows. The next
result states conditions under which the maximal elements are equivalent
(the elemental proof is omitted).

Proposition 1 Let = be a complete and reflexive binary relation defined
on the (finite) set A. Then, if > is a preorder the maximal elements are
equivalent.

In Luce (1956) a way of selecting among the maximal elements of a
binary relation > is presented by defining a new binary relation from the
original one.

Definition 1 (Luce, 1956). Given the binary relation = defined on A, the
asymmelric binary relation =*is defined as follows: x =* y if and only if
one of the following situations is fulfilled

i)z -y

ii) x ~~y and there is some z € A such that x ~ z,z =y

iii) x ~y and there is some z € A such that © = z,z ~v y

Theorem 1 (Luce, 1956) If the binary relation = defined on A is a semiorder,
then =* (x =* y < not(y =* x) is a preorder. Moreover, ) # M(A,>=*) C
M(A, ).

Definition 2 Let > be a complete and reflexive binary relation defined on
A. We define Luce’s maximals as the following set

LM(A, =) = M(A, =)

Thus, relation =* gives us a way of selecting among the maximal elements
and, in Luce’s sugar example it provides the ”true” maximal:

LM(A, ) = {20}.



3 Undominated Maximals

The problem with Luce’s selection is that Theorem 1, and therefore the way
of selecting among maximals, does not remain valid when relation > is not
a semiorder. The following example shows this fact.

Example 1 Let A= {a,b,c,d, e} and the acyclic binary relation = defined
by:

a>=bb>c,d-a

(being indifferences the non mentioned relationships). Then
M(A,»)={d,e}.

On the other hand, relation »* is not a preorder (in fact it is not acyclic)
and, in this example, M(A, =*) = (.

In order to define a nonempty selection of the set of maximal elements
in general cases, we introduce the following auxiliary relation.

Definition 3 Let = be a binary relation defined on A, and let z,y € A. It
is said that alternative r weak-dominates y, x d y, if for every z € A,
Y-2=>Tr >z
Y 2= 2

We denote by D (dominance relation) the asymmetric part of d,
xDy<sxdyandnot(y d x)

In other words, an alternative x weak-dominates some other alterna-
tive y if it has "better behavior” in a pairwise comparison with the other
elements in the feasible set. This relation is somewhat similar to the ”cover-
ing relation” defined by Miller (1977) and Fishburn (1977) for tournaments
(complete asymmetric binary relations), and extended for general binary
relations in Schwartz (1986).



Definition 4 Let > be a complete and reflexive binary relation defined on
A. It is said that an element x* is an undominated maximal if

a) z* € M(A, )

b) x* € M(A, Q)

We will denote by UM (A, =) the set of undominated maximal elements.
From this definition, it is obvious that every undominated maximal is a
maximal element, UM(A,>) C M(A,>). In Luce’s example of sugar in a
cup of coffee, there is only one undominated maximal, z* = 20. In example
1, it is clear that d D e, therefore UM (A, =) = {d}.

The existence of maximal elements on each subset of A is ensured by
the acyclicity of the binary relation. The next result proves that the same
condition ensures the existence of undominated maximals.

Theorem 2 Let = be a complete and reflexive binary relation defined on
the (finite) set A. If the binary relation is acyclic then UM (A, =) # (.

Proof. If the relation is acyclic, the set of maximal elements M (A, >) is
not empty. On the other hand, the strict dominance relation D is acyclic
because d is a transitive (not necessarily complete) binary relation; so there
is a maximal element of the relation D on the set M (A, >). Call z* such
an element and suppose that there is some z € A such that x D z*. As
a result of the choosing of x*, the element x is not maximal with respect
to the relation =, so there is y € A such that y = xz; but z* > y which
contradicts x D z*. So x* is an undominated maximal element. B

The following result ensures that this way of selecting among maximal
elements is adequate for interval-orders because it always selects equivalent
elements.

Proposition 2 Let > be a complete, reflexive and acyclic binary relation
defined on the (finite) set A. Then, if = is an interval-order the elements
in UM(A, ») are equivalent.

Proof. Let x*,y* € UM(A,>). If no(x* =~ y*) then there is z € A such
that z* = z and y* ~ 2. As z* does not dominate y*, there is 2’ € A such
that y* = 2/ and z* ~ 2. Then, we have z* = z ~ y* = 2 and z* ~ 2/
contradicting the fact that the relation is an interval-order. B



Undominated maximals solve the problems arising with Luce’s maximals
since we always can ensure that UM (A, =) # (. Nevertheless, whenever the
binary relation > is more general than a semiorder or an interval-order we
can not ensure that we are choosing equivalent elements. The following
example shows this case.

Example 2 Let A = {a,b,c,d,e} and the binary relation (quasiorder) =
defined by:

a=-eb>=cb-dcsd
(being indifferences the non mentioned relationships). Then,
M(A,»)=UM(A,») = {a,b},

although a and b are not equivalent elements, and alternative b seems ”bet-
ter” than a, in the sense that b is preferred to more alternatives than a
18.

The following section introduces a more discriminating selection of the
set of maximal elements.

4 Strong Maximals

Orders can be considered as the ”ideal” preferences for an agent, because
in this case he would be able to completely discriminate between any pair
of alternatives and choose just one of them. But the lack of sensitivity or
the impossibility of keeping every option in mind, leads to weaker classes
of preferences. If we deal with quasiorders or acyclic relations, a possible
interpretation of such a preference is to consider that the agent reveals strict
preferences, but he does it only on some pairs of alternatives (in the other
cases he is not able to decide, or he has lost this information) so that the
elements for which no relation is known are considered indifferent in order
to obtain a complete binary relation. Which should be the ideal prefer-
ence (order) of the agent?. In general, it is possible to find different orders
which could be considered as the origin of a binary relation. The notion of
compatible order formalizes with this idea.
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Definition 5 Given a binary relation = defined on A, an order =; is said
to be compatible with = if
T=Y=>x ;Y

Let us denote by ©(>) the set of orders which are compatible with the
binary relation >. If a binary relation > is acyclic, compatible orders with
it always exists, and it is easy to prove that:

M<A7 t) = UM<A7 >‘i) ; i€ ®<i)

The notion of compatible orders is well known in the literature (see, for
instance, Baneerje and Pattanaik (1996) where it is used to describe the
maximal set of a quasiorder). An alternative way of interpreting a qua-
siorder or an acyclic relation is to consider that it is derived by aggregating
several preference relations. In this sense, in Moulin (1985) it is proved that
every quasiorder can be written as the Pareto relation of compatible orders.
So, by looking at the maximal elements of the compatible orders we can get
valuable information on how to select from the maximal set of the relation.
It is obvious that a maximal element which remains maximal in every com-
patible ordering is a "good” candidate. But this is not the usual case (in
fact, it only occurs when there is a unique maximal element of the binary
relation in which case no selection is needed). One possible way to obtain a
selection among the maximal elements is to aggregate the compatible orders
by majority vote. Now, we formalize this idea.

Let > be a binary relation defined on A, an let ©(>) = {>;}ic; ; let us
denote by N(>;z,y) = {i € I such that = ; y}; then we define the binary
relation P as:

x Py<= #N(=;z,y) > #N(=;y,7)

(where #5S stands for the cardinal of the finite set ), and the weak relation
R is given by

x Ry<= #N(=;z,y) > #N(=;y,x) [1]

Relation P is not, in general (when every possible family of orders can
be considered), an acyclic relation so the existence of maximal elements
of P can not be ensured. In our case, since we are considering all the
compatible orders with an acyclic relation, it will ensure that the set of
maximal elements of P is nonempty. These maximal elements will be called
strong maximals of the relation *>.



11

Definition 6 Let > be a complete and reflexive binary relation defined on
A. It is said that an element x* is an strong maximal if z* € M(A, R),
where R is the majority relation defined by [1].

We will denote by SM(A, ) the set of strong maximal elements. In
Example 2, the majority relation defined by [1] yields the order

bPaPcPePd

and then SM(A, =) = {b} GUM(A, =) = M(A,») = {a,b}.

Before proving our result on the existence of strong maximal elements,
let us consider some properties of the majority relation P. First, it must
be mentioned that the family of compatible orders with an acyclic relation
> coincides with those which are compatible with its transitive closure > .
This fact enables us to work with quasiorders instead of acyclic relations, and
therefore any result on the existence of strong maximal elements we obtain
in this case, is immediately true for the general case of acyclic relations. On
the other hand, if we look at P as a way of associating a binary relation P(>)
to every acyclic relation -, it is easy to prove that P satisfies monotonicity
and neutrality:

Monotonicity: if »= and *='coincide on A — {a} and
a=-z=a> z arz=ar z then
a P(x)z=a P(¥') z
Neutrality: for any permutation o of A
a R(=%) b< o 1(a) R(>) o 1(b)
where =7 is defined as usually: a =% b < o (a) = o 1(b).

In the next result we prove that acyclicity also ensures the existence of
strong maximals.

Proposition 3 Let = be a complete and reflexive binary relation defined
on the (finite) set A. Then, if the binary relation is acyclic the set of strong
maximals s nonemply.

Proof. Without loss of generality we will assume that the relation = is a
quasiorder (in other case, we will consider its transitive closure). Then, the
function u(z) = #L(x), where
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L(xz) ={z € A such that = > z}

is a weak-utility function (i.e., z > y = u(z) > u(y)) and every alternative
which maximizes this function is a maximal element. Let * be an alterna-
tive maximizing this function. We are going to prove that x* € SM(A, ).
If not, there is some z € A such that z P z*. As x* is a maximal element,
then z* = z; if the strict preference is fulfilled, then every compatible order
puts x* before z, so * P z, a contradiction; if z* ~ 2z, as £* maximizes
function u(x), we have two possibilities:

1) w(z*) = u(z); let L(x*) = {x1, ..., 2%}, L(2) = {1, ..., 2z, } and consider
a permutation o which translates L(z*) on L(z), leaving invariant the other
alternatives. As the number of compatible orders with > are the same as
the ones compatible with >? (only changing the position of z*, z, x;, z;), the
majority relation will give x* P? z, but this contradicts neutrality, since
o(z*) =x*0(z) = 2.

2) u(z*) > u(z); let L(z*) = {x1, ..., zu;y1, - Up, L(2) = {21, ..., 21},
where {y1,..., yp} N L(z) = (). Being the relation a quasiorder, and x* ~ z, it
must be y; ~ z, for all 7. Consider now the binary relation =’ defined from
= by taking z =" y; ,7 = 1,...,p. By applying monotonicity, z P(>’) z* and
we can reason as in case 1. ll

Note that the proof of the previous proposition provides an easy way
of obtaining strong maximal elements: by maximizing the function u(z).
The following proposition proves that strong maximals are a selection of the
undominated maximals and, therefore, a selection of the maximal elements.

Proposition 4 Let > be a complete, reflexive and acyclic binary relation
defined on the (finite) set A. Then,

SM(A, =) CUM(A, ).

Proof. Let z* € SM(A,>) and suppose z* ¢ UM(A,>). If z* is not
a maximal element, then there is some z € A such that z > z*, but this
implies z P x*, a contradiction. On the other hand, if there is some z € A
such that z D z*, then z gets a better position with respect to any other
element than x* gets, so in the compatible orders the majority relation will
give z P x*, a contradiction. ll

In general, strong maximal elements are not equivalent, as the following
example shows. So, the equivalence notion must be weakened if we try to
select some kind of equivalent elements in the general case.
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Example 3 Let A = {a,b,c,d} and the binary relation (quasiorder) = de-
fined by:

a=cb-d

(being indifferences the non mentioned relationships). Then,
M(A,»)=UM(A,»)=SM(A,») ={a,b},

although a and b are not equivalent elements.

Definition 7 Let = be a binary relation defined on A, and let z,y € A. It
is said that x and y are weak-equivalent clements if there is a permutation
o of A, such that for all z € A
x =2z if andonlyif y > o(z2)
{ x =<z if andonlyif y <o(z)

In words, two elements are weak-equivalent if both are preferred, less
preferred and indifferent to the same number of alternatives. In the next
result we prove that strong maximals are weak-equivalent elements.

Proposition 5 Let = be a complete and reflexive binary relation defined
on the (finite) set A. Then, if = is a quasiorder, the strong maximals are
weak-equivalent elements.

Proof. We are going to prove that if x*,z* are strong maximals, then
w(z*) = u(z*), where u(z) is the weak utility function used in the proof of
Proposition 3. If this is not the case, let

L(z*) ={z1, ..., 2 }; L(x*) = {x1, ..., z, w},w & L(z*)
Then, for every compatible order in ©(>) such that z* »; z*,
UL 25 wee 775 Up 74 ZX UL e i Vs i X YL i e i Y

it is possible to find an order ;€ ©(>) which reverses the relation between
z* and z*, by permuting the alternatives z;, z* by xz;,z*. But for the two
classes of compatible orders of the form:

¥ = w - 2°

¥ 9 2% 9w
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which put z* ahead of z*, only one can be found which reverses the position
of z* and z*, because z* = w

2% g3 x* g w
and then z* P z*, a contradiction. Then u(z*) = u(z*), and

L(z*) ={z1, ..., 21 }; L(x*) ={z1, ..., 21}

By considering a permutation which transforms L(z*) on L(x*), these ele-
ments turn out to be weak-equivalents. B

It must be mentioned that the previous proposition is also valid for
acyclic binary relations, since, on the one hand, the maximal elements of an
acyclic relation coincide with those of its transitive closure (a quasiorder),
and, on the other hand, the compatible orders with an acyclic relation are
those which are compatible with its transitive closure.

5 Conclusions

In the next result we analyze the relationship between maximal, Luce’s
maximal, undominated maximal and strong maximal elements by depending
on the type of relation we consider.

Theorem 3 Let = be a complete and reflexive binary relation defined on
the (finite) set A. Then,
a) If = is acyclic, M(A,=) D UM(A, =) D SM(A, >)

b) If = is an interval-order, M(A,») 2 UM(A, >) M(A,»)
¢) If = is a semiorder, M(A, »=) D LM(A, =) = ( ) = S M(A,»)
d) If = is a preorder, M(A,>) = LM(A,») = UM(A >) M(A,»r)

Proof. Part a) is Proposition 4. In order to prove part b) we only need
to show that each undominated maximal is strong maximal. To prove it,
consider two undominated maximals; then, as proved in Proposition 2, these
elements are equivalent, so the function u(z) coincide on these elements and
both maximize it, so they are strong maximals. As semiorder is a stronger
condition than interval-order, in order to prove part ¢) we only need to

M(A, =) = UM(A, =)
Let z* € LM( ,7); if 2 ¢ UM(A, ») there is some z such that z D z*
that is,

ensure
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z=a=x* or zr-a>=zx* for somea € A

In both cases, z »* x*, a contradiction. On the other hand, if we consider
x* € UM(A, ) and suppose x* ¢ LM(A, >), this implies the existence of
some z such that:

z -z or z ooy -zt or z -y ozt
The first two possibilities contradict that z* is a maximal element. In the
third case, as z* € UM (A, »), there is some a € A such that * = a ~ z or
x* ~v a > z; in the first case we obtain z* = y, which is not possible, and in
the second we have

a-z=1y and ¥ ozt v, oy

which contradicts that > is a semiorder.
Finally, part d) is obvious from the fact that a preorder is a semiorder
such that relation >*coincides with = .

Throughout this paper, several considerations about the maximal ele-
ments of a binary relation have been made and by means of some examples
it has been shown that a selection of the maximal elements is needed in
order to choose those, among the maximals, which have ”better properties”.
If the binary relation is a complete preorder, every maximal element has
the same behavior with respect to the other alternatives. So, in this case, if
we need to select some elements of the maximal set, only a random process
can be applied. If the binary relation is a semiorder, the way proposed in
Luce (1956) for choosing among the maximals is adequate to select equiva-
lent elements. With a similar purpose we define the undominated maximals,
as a way of selecting equivalent elements among the maximal ones and to
eliminate those maximals which have some other alternatives dominating
them. Undominated maximals are specially adequate when the binary rela-
tion is an interval-order. When the binary relation is more general, a more
discriminating selection has been introduced: strong maximals, and an easy
way to compute them is given (by maximizing a real valued function). For
quasiorders and acyclic relations, the existence of strong maximals has been
provided, and a weak-equivalence among these elements has been shown.

On the other hand, as we have shown in Theorem 3, if the binary relation
is an interval-order, then undominated and strong maximals coincide. So
the two possible interpretations (those maximals which are not dominated
by any other alternative; and those maximals which are the winners in
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a majority game among any compatible order) can be used to define the
undominated maximals of an interval-order.
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