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ABSTRACT

In the context of time series regression, we extend the standard Tobit model
to allow for the possibility of conditional heteroskedastic error processes of the
GARCH type. We discuss the likelihood function of the Tobit model in the
presence of conditionally heteroskedastic errors. Expressing the exact likeli-
hood function turns out to be infeasible, and we propose an approximation
by treating the model as being conditionally Gaussian. The performance of
the estimator is investigated by means of Monte Carlo simulations. We find
that, when the error terms follow a (GARCH process, the proposed estimator
considerably outperforms the standard Tobit quasi maximum likelihood esti-
mator. The efficiency loss due to the approximation of the likelihood is finally

evaluated.

Key Words: censored regressions; conditional heteroskedasticity; Monte

Carlo simulations.
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1 Introduction

In empirical applications we often encounter examples where the dependent
variables in regression models can be observed only in a limited range. As
pointed out by Maddala (1983, p.1), it is not always necessary to introduce the
complications implied by this type of model. However, when the variables are
limited in their range because of some underlying stochastic choice mechanism,
the limited-dependent variable (LDV) models provide the suitable theoretical
framework.

The first application of an LDV model to economic problems was pro-
posed in a pioneering work by Tobin (1958). Analyzing demand for durable
goods, he found that most households report zero expenditure on automobiles
or other durable goods during the year. The linearity assumption underly-
ing the regression model was clearly inappropriate, and some suitable form of
discontinuity had to be introduced. This led to a censored regression model
and, given the strict connection with the literature on Probit models, Gold-
berger (1964) introduced the term Tobit to synthesize in one word the concept
“Tobin’s Probit”.

In subsequent years the simple censored regression, which is also referred
to as standard Tobit model, was generalized and more complicated versions of
it are now routinely used in various fields of economics and social sciences (see
Amemiya, 1984).

The use of LDV models is certainly more frequent in the microeconomet-
ric analysis of survey data. Nevertheless, recent examples of LDV applications
can be found also in time series models.

Bank of Italy (1988) reports the results related to the estimation of
the demand of discount window borrowing (see also Calzolari and Fiorentini,
1993). Edin and Vredin (1993) and Garcia (1994) apply standard LDV models

to target zone exchange rates.



Particularly relevant is the limited-dependent variable rational expec-
tations (LDV-RE) model of Pesaran and Samiei (1992a) used to explain the
exchange rate behaviour and the devaluation risk in a target zone (see also
Baxter 1987, and Bertola and Svensson 1990). Other applications of LDV-RE
models can be found in Lee (1994), Pesaran and Ruge-Murcia (1993, 1995) and
Pesaran and Samiei (1992b, 1995). Beside their use in the empirical analysis
of the exchange rate target zone mechanism, these models are apt to describe
the behavior of the dependent variable in government-regulated markets. Ex-
amples are commodity price support schemes and targeted interest rates. In
addition, when agent expectations are involved, the LDV approach is important
even when the endogenous variable remains within the bounds.

What the above investigations on time series LDV models have in com-
mon is the nature of the variables being analyzed. They concentrate on the
behaviour of financial and monetary series, and it is well known that the as-
sumption of normality is usually not appropriate for this kind of series as they
rather seem to follow some thick-tailed distribution. As a consequence, finan-
cial and monetary variables are usually better modelled assuming a conditional
heteroskedastic error process of the ARCH type (see Engle 1982 or, for a survey,
Bollerslev, Engle, and Nelson 1994).

Contrary to the linear regression model, ignoring conditional heteroskedas-
ticity in a Tobit model rises several problems. For instance, Maddala and Nel-
son (1975) show that, if we ignore heteroskedasticity, the resulting estimates
are not consistent. Also Hurd (1979), and Arabmazar and Schmidt (1981) in-
vestigate the properties of the Tobit maximum likelihood estimator when the
error process is heteroskedastic. Under non-normality of the disturbances, the
Gaussian quasi-maximum likelihood (QML) Tobit estimator yields inconsistent
estimates of the parameters (e.g. Arabmazar and Schmidt, 1982).

This motivates our proposal of a Tobit model with conditionally het-



eroskedastic errors which is developed in this paper. The main difficulty is

discussed in Pesaran and Ruge-Murcia (1995):

“ ... notice that the limited-dependent nature of the endogenous

variable 7 makes the exact calculation of the residuals for the cen-
sored observation infeasible. The difficulty arises because for the
case of observations at the bound, the exact values of the residuals
are not observed by the econometrician. Thus, it does not seem

viable ... 7

In what follows we propose a Tobit model with GARCH errors which is
described in details in Section 2 where we also discuss the feasible approximated
maximum likelihood estimator. Section 3 displays the results of some Monte
Carlo simulations which exemplify the improved behavior of the Tobit-GARCH
estimator over the standard Tobit-ML estimator. We also notice that a Tobit-
GARCH-ML estimator, based on knowledge of past disturbances, can be defined
but it turns out to be infeasible with real data. Its feasibility is confined to
simulated data, and therefore, using simulation, this optimal estimator can be
used as a benchmark to evaluate the efficiency loss in our feasible estimator.

Section 4 draws the conclusion.

2 The Model

The censored regression (or Tobit) model is defined as

=y if RHS >0
yr = b+ uy = (1)
=0 1 RHS <0
where y; is an unobservable random variable, x; is the vector of exogenous

explanatory variables at time ¢, b is the vector of unknown coefficients, 1 is

the observed censored value of the dependent variable. A typical assumption



is that of independent identically distributed normal error terms u;. However,
when financial or monetary variables are involved, it is more realistic to assume
that u; follows a conditional heteroskedastic process of the ARCH class.

The definition of a Tobit model with conditional heteroskedastic distur-
bances raises several problems. Primarily because the conditional distribution
of the error terms may depend on the entire past history of the process that,
in a censored regression, is only partially observed by the econometrician. In
order to give a clear picture of the issues related to the definition of such
models we need to carefully discuss various possibilities concerning processes
and estimators. In this respect, let 7, = {y, x4, 4y} |, Z¢ 1,...} denote the in-
formation set that embodies the past realization of the process. If censoring
occurs, the information set available to the econometrician will be smaller than
Z;. For this reason, we also need to define ¥, = {y;, x4,y 1,%¢ 1,...} as the
econometrician information set.

We first consider the standard case of normality and constant variance
(l.e. uy ~ N(O, 02)). Since the distribution of the disturbances u; conditional
on the available information U, ; is censored normal (e.g. Amemiya 1984),

the log-likelihood function is given by

T 1
log L(b,0) = Zojlog(l —d) — - 1og 0’ — 557 leyt —xb)? (2)

where
®, = cumulated distribution function of a standard normal evaluated at x}b/c;
Yo = summation referring to the zero observations;
51 = summation referring to non-zero observations;
T} = number of nonzero observations.
Let us now move to conditional heteroskedastic processes but, for the mo-

ment, assume that the variance is some known function of exogenous variables



as in

Uy ’ Liy ~ N(O; ‘7?) 3 Ut2 = bo + 5137?,#1 <3>

for some z; € Z. This model specification implies no additional complications
with respect to the standard case since, given the parameters, the conditional

variance is measurable also in ¥; 1. Then, the log-likelihood function becomes

1 1 — 2.b)?
log L(1.6) = Ylog(1 — 9,) - Y logo? - - W H
0 1 1

ot
where ¢’ = (8o, 61) and @, is now evaluated at x;b/0;. This standard approach
to heteroskedasticity requires a specification of the causes of the changing

variance which are often not straightforward to determine.

A preferable model is the (strong) GARCH(p,q) process, i.e.

q p
Ut ’ It,1 ~ N(O,O_f) ) O_t2 = Qg + ZOQU??Z- + Zﬂjo_gfj . (5)
i—1 =

Notice that, because of censoring, the past values of the error term u; are not
directly observable and, as a consequence, the distribution of u; conditional
on the econometrician information set ¥; ; is not (censored) Gaussian. We
have that ¥, ; C Z; 1, and the conditional distribution of the disturbances,
u; | Uy 1, cannot be determined readily. A simple example is given by the
extreme situation in which the conditioning set is the empty set, the conditional
distribution is then equal to the marginal. It is well known, from ARCH theory,
that this marginal distribution function is unknown, thick tailed, with zero
mean and variance that is easily obtained from the parameters of the ARCH
process.

In practice ¥; 1 will not be empty and will convey a lot of information,
especially when the degree of censoring is not severe, it is thus worth to incor-

porate this information into the likelihood function. In order to get a feasible



approximation of the log-likelihood, we may proceed, as in Harvey, Ruiz and
Sentana (1992), on the basis that the model can be treated as though it were
conditionally (censored) normal and we will refer to the resulting log-likelihood

function as the Tobit-ARCH approximate log-likelihood, given by

1 _ /b 2
logL*bozﬂ Zlog1_ __Zlog 22(% N;Ut ) (6)
1 gi
where o = (ap,...a,), ' = (01,...05,) and P, is now evaluated at z,b/G;. In

the above expression, 72 is computed from

Ut —ozo—I—ZozZut Z+Z/6]O_t g (7)

It only remains to determine #? ,. For this purpose, we have to distinguish

between censored and observed y;_;. When the dependent variable is observed

then u? ; is in ¥, ; and we take @’ , = u? , = (y_; — x; ;b)2. When 3 ;

is censored we define @? , as an approximation to the expected value of u? ;
calculated by proceeding as if u, ; were conditionally Gaussian zero mean and

variance 7 ,, in which case it can be easily shown (see Johnson and Kotz,

1970) that
U’t Z_Et Z(“’tz’yt ZSO)_O_tz (ajt zb)Et Z<ut Z’yt ZSO) (8)

where

- Ot—iPt—i
By i(ue s | yp  <0) =— 1 t_ itt - 9)

Note that by doing so we introduce another source of approximation. The
next section is devoted to assess, by means of simulation, whether all these
approximations are of great importance in practice.

Perhaps, it is also noteworthy to point out that if we modified slightly the
assumptions about the data generation process, then log L*(b, t, 3) could be
seen as the exact log-likelihood function. In this respect consider the following

conditional heteroskedastic process for the disturbances u;, that is

Uy ’ qjtleN<075_t2)7 U§_a0+ZaZEt z U’t i ’ qjt z +Zﬂjo_t g <1O>

=1 =1



Harvey, Ruiz and Sentana (1992) discuss and derive the statistical properties
of processes like the one in (10). Unless there is some compelling reason to
assume such a data generation process, we think it is preferable to stay with
the (strong) GARCH(p,q) process of equation (5) and interpret log L*(b, , (3)
as an approximation to the unknown log-likelihood function.

The approximated maximum likelihood estimator of the Tobit-GARCH
model is given by the values of Z;, &, and B that maximize log L*(b, «, 3). The
parameter estimates can then be computed with a computationally efficient
mixed-gradient algorithm (analogous to the one described in Fiorentini, Cal-
zolari and Panattoni, 1996), which in early iterations of the quasi-Newton
maximization procedure, makes use of the matrix of outer products of the first
derivatives of the log-likelihood, then switches to the Hessian matrix and uses
it until convergence to a maximum is reached.

Unlike standard Tobit models (without GARCH errors), or standard
GARCH models (without limited dependent variables), the analytical deriv-
atives of log L*(b, o, 3) are extremely burdensome to compute in our case. We
have therefore employed numerical derivatives to approximate their analytical
counterparts.

For hypothesis testing purposes, the inverse of the Hessian matrix (with
minus sign) of the approximated log-likelihood function will be used as an
estimator of the covariance matrix of the parameter estimates. Let # denote
the vector of all parameters of the model, ¢ = (¥, ¢/, 3')’; our approximation

to the finite sample covariance matrix of 6 has been computed as

X PlogL*(0) \
Cov (Q) = (— 869—89<’)> ) (11)

0=0
Since 6 is obtained by maximizing an approximate likelihood function it would
be natural to follow White (1982) and compute the QML covariance estima-

tor. Calzolari and Fiorentini (1996) adopt this estimator and results are not

significantly different from those obtained with the expression in (11).



3 Simulation Results

In order to investigate the finite sample performance and potential applicability
of the Tobit-(GARCH estimator discussed above, some Monte Carlo simulation
experiments were conducted.

To facilitate the presentation, all the simulated models were nested within

the following specification

yr = bo + 0111, 4 baxo s + bams 4 Uy (12)

u |y ~ N(0,07); o] = ap+ ayu] | + oy . (13)

The three exogenous variables were generated according to the following zero-

mean stable VAR(1) process

T 4 =2 2 T1t—1 €1t
Lot = a7 -4 1 To -1 + €2t ) (14>
T3t 2 7 .6 X3,t—1 €3,t
where
1 .7 2
¢ ~ N(0, %) ¥ = 7 1 5 (15)
2 51

3.1 Evaluation of the Efficiency Gain

We were interested in evaluating the performance of the Tobit-(GARCH es-
timator with respect to the usual Tobit-QML estimator (which ignores het-
eroskedasticity) when the error terms in the data generation process follow a

conditional heteroskedastic process of the GARCH type (given in (5)). In doing

10



this we concentrated on how this performance depends on the specification of
the error process, on the percentage of censored observations in the sample
and on the sample length. Therefore, the simulated models differ with respect
to the specification adopted for the error process, with respect to the average
percentage of censored observations and with respect to the sample length.

For the error terms we have assumed in some experiments an ARCH(1)
process with a; = .5 and unconditional variance equal to 1, and in other exper-
iments a GARCH(1,1) process with oy = .3, #; = .5 and, again, unconditional
variance equal to 1.

The average percentage of censored observations was controlled by set-
ting different values for the intercept coefficient. In particular we set by equal
to 20.0, 1.2, 0.38 and -0.38, which imply an average percentage of censored
observations equal to 0, 20, 40 and 60 respectively.

Finally, the sample lengths were set equal to 200, 400, and 1000. This
makes a total of 24 different model specifications to experiment with. Notice
that the values of the slope coefficients (b = 3, by = 2 and b3 = 1) were kept
fixed across the experiments limiting, to some extent, the general validity of
the experiments, but permitting a more compact presentation of the results.

For each model specification we performed 2000 replications of the Monte
Carlo process in the following way. First, we generated values of the exogenous
variables, held fixed over all replications, according to the vector autoregres-
sive scheme of equations (14) and (15). Independently of the explanatory
exogenous variables we then generated the conditionally heteroskedastic dis-
turbance terms, u;, over the sample period, with the given ARCH-GARCH
structure. Values of the unobserved endogenous variable, y;, were computed
using the vector of true parameters of the regression equation. The observed
variable was finally computed as 3 = max(0,y;), and was used for estimation

of the Tobit-GARCH parameters and of the Tobit quasi-maximum likelihood

11



parameters (the Tobit-QML carried out under the hypothesis of omoskedastic
Gaussian error terms).

At the end of the 2000 replications, we computed the following:

— The Monte Carlo means of the parameter estimates, obtained from Tobit-

QML and Tobit-(GARCH.

— The Monte Carlo means of the estimated variance-covariance matrices of
all parameters. These matrices are computed in each Monte Carlo repli-
cation from the Hessian of the Gaussian log-likelihood for the Tobit-QML
case, and from the Hessian of the approximated log-likelihood (eq. 11)
for the Tobit-GARCH. The square root of the mean estimated variance

is displayed in parentheses under each parameter.

— The Monte Carlo variances! of the estimated parameters. Monte Carlo
standard errors are obtained as square roots and are displayed in square

brackets under each parameter.

— Mean squared errors over the Monte Carlo replications for the Tobit-
QML and for the Tobit-GARCH estimators. Their ratio is displayed in

the tables.

If, for a particular sample, the estimation algorithm did not converge the
Monte Carlo replication was discarded and ignored. However, non-convergencies
were not a serious problem and only occurred for small sample lengths and high
censoring percentages with a maximum of roughly 3% for the case of T=200

and 60% censoring.

!By Monte Carlo variance (mean squared error) of the parameter estimates we mean
the variance (mean squared error) of the sampling distribution of the parameter estimates.
Let 6; denote the parameter estimate at the i-th replication and let n be the number of

replications. We define the Monte Carlo variance of 0 as 1/n S 02 — (1/n S 0:)%.

12



Detailed results of the simulation experiments are displayed in Tables 1
and 3 only for the case of an average 40% of censored observations, being Table
1 related to the ARCH(1) specification of the error terms and Table 3 to the
GARCH(1,1).2 Tables 2 and 4 report, for all the models, the ratios between
the MSE of the Gaussian Tobit quasi-maximum likelihood estimates and the
MSE of the Tobit-GARCH estimates.

When the true data generating mechanism is Tobit-GARCH, results of
Tables 1-4 show that the efficiency gain of our Tobit-(GARCH estimator is sub-
stantial. The MSE of the standard Gaussian Tobit ML estimates is usually
between 30% and 50% larger than the MSE of the Tobit-GARCH estimates
(this percentage reaches, on occasions, values that are even much larger).

Tables 1 and 3 tell us that the efficiency of both estimators, measured by
the Monte Carlo MSE, increases with the sample length. However, the results
of our experiments do not clearly show what is the effect of the sample length
and of the censoring on the relative efficiency of the Tobit-GARCH over the
standard Tobit-ML. It seems that the MSE ratios of the slope coefficients are
invariant to (or possibly decreasing with) the percentage of censoring. This is
confirmed by the figures in the first row of Tables 2 and 4 which refer to the
case of zero censored observations. On the other hand, when the percentage
of censored observations is high, the relative efficiency of the Tobit-GARCH
estimator slightly improves as the sample period lengthens.

The results in Tables 1 and 3 also show that the inverse of the Hessian
(with minus sign) of the approximated log-likelihood provides a good estimator

of the finite samples covariance matrix of parameter estimates.

2The results related to the whole set of experiments and the FORTRAN program employed

in the Monte Carlo are available on request from the authors.
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3.2 Evaluation of the Efficiency Loss

Finally, it would be of interest to know to what extent the use of the ap-
proximation to the exact likelihood function affects the performance of the
Tobit-GARCH estimator. An idea about the magnitude of the efficiency loss,
due to the approximation, can be obtained using a procedure already exploited,
in a different set-up, in Harvey, Ruiz and Sentana (1992).

Since in a Monte Carlo simulation the y; are artificially constructed we
can write the likelihood conditioning on Z; instead of ¥, and the fully efficient

estimator is given by maximization of

1 T y*_a,/./bQ
g 10,0, 7) = ~3 Y tog? - 1 3 LT (16
t=1 t

which is the usual GARCH regression model log-likelihood function. However,
we think that this would not provide a suitable basis for comparison because
the above estimator is not affected by censoring.

A better candidate is a model like (4) where the data are censored but
the conditional variance is measurable with respect to the available informa-
tion. For this purpose we can define a log-likelihood function based on the
distribution of u; conditional on Ay = {vys, v, Y5 1, Tt 1,Y; o, - -} in which past
disturbances are treated as known but current observations may be censored.

This yields

log L{b, 1, 8) = 3 log(1 = @) ——Zlogat——z (17)
where
q p
01t2 = Qo + Z oziuf,i + Zﬂjo_?*j . (18>
i=1 Jj=1

Maximization of (17) provides consistent parameter estimates and it is only
feasible with simulated data. The above model is indeed an artifact but permits

a precise assessment of the efficiency loss in the Tobit-Garch estimator that

14



is due to the approximation arising from non measurability of the conditional
variance with real data.

The Monte Carlo experiments were re-run, but this time the parameters
of the models were estimated with the infeasible Tobit-(FARCH estimator de-
fined in (17) (labelled “Tobit infeasible” in the tables) that was then compared
with our feasible estimator. Tables 5-8 report the results of these simulations.

Looking at the tables, we observe that the efficiency loss of the Tobit-
G ARCH estimator with respect to the infeasible one is rather small, unless the
censoring percentage and the sample length are both very large.

It is curious to notice that when the sample size and the censoring per-
centage are small the Tobit-GARCH estimator of the a; parameter is more
efficient than the corresponding infeasible estimator. One might think that
this odd outcome is due to the variance of the Monte Carlo and therefore
we repeated those experiments running 15000 replications of the simulation
process but the results did not change significantly. Thus, we must conclude
that this behavior is due to some small sample effect which is not straightfor-
ward to interpret.

A last comment should be made about the inconsistency of the Tobit-
GARCH estimator which is evident only for large censoring percentage and,
anyhow, is always smaller than in the standard Tobit-QML. Overall the mag-
nitude of the small sample and asymptotic bias of the Tobit-GARCH estimates
does not seem to represent a major problem in most practical applications.

Still, by resorting to indirect inference techniques, the Tobit-GARCH esti-
mator proposed in this paper can serve as a basis for constructing a consistent
estimator of the parameters of censored regression models with GARCH errors.
The approximation to the exact likelihood and the dimension of the parameter
vector of the Tobit-GARCH model make it suitable to be used as the “incorrect”

criterion in the indirect inference procedure described in Gourieroux, Monfort

15



and Renault (1993).

Indirect inference techniques can solve the asymptotic bias problem but
will produce an estimator with larger asymptotic variance than the Tobit-
(GARCH so that the overall outcome is not clear. This issue is analyzed in
Calzolari and Fiorentini (1996). They find that the indirect inference procedure
achieves a negligible bias reduction at the cost of a considerable increase in

small sample variance of the estimator.

4 Conclusion

Heteroskedasticity of the error terms has long been recognized as a critical con-
dition for the performance of the Tobit ML estimator. When Tobit models are
applied to time series regression involving financial and monetary dependent
variables, the conditional distribution can be reasonably assumed to follow a
process of the GARCH type.

In this paper we propose a feasible approximation to the maximum likeli-
hood estimator of the Tobit-GARCH model. The performance of this estimator
are analyzed by means of simulations and the results show that it considerably
outperforms the usual Gaussian Tobit-QML estimator.

Still by simulation, we evaluate the efficiency loss with respect to an
ideal Gaussian Tobit-(GFARCH maximum likelihood estimator which is, however,
infeasible with real data.

A limitation of this paper is that it only analyses the standard Tobit
model, while many time series applications consider, for example, more so-
phisticated versions of LDV models. However, we believe that this research
provides the basis to generalize the Tobit-GARCH model. This is the direction

for possible future investigation.
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