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MULTIPLE ADVERSE SELECTION

Javier M. Lépez Cuiiat

ABSTRACT

We study an adverse selection model, with a principal and several agents, where
contracting is under asymmetric information. The number of agents is finite and types are
"continuous" and independent. We analyze two settings. In the first one, the performance
functions of mechanisms may depend on all the reported types. In the second one, each
performance function depends only on the respective announced type.

Under the standard hypotheses in the basic one-agent adverse selection model and the
independence assumption, there is not loss of generality if the principal considers only
mechanisms for which every agent reports his true type as a dominant strategy. We consider also
the relaxation of the monotonicity hypothesis about the agents’ welfare and we will prove that
the former "equivalence" between the Bayesian implementation and the dominant strategy one
stands firm in some cases.

We examine the properties of the optimal mechanism, supposing that the principal’s
"virtual income" depends on the agents’ performances only through the aggregate total
performance (which is natural in the context of regulation of a good produced by an oligopoly),
and also, assuming the frame of regulation of a monopolist with several independent divisions
(or the one of a group of firms), each one producing a different good.

Unlike the standard properties of the optimal mechanisms in the basic one-agent adverse
selection model, in our model the optimal mechanism may ask very efficient agents for an
individual performance higher than the one of complete information.

We show also that if agents are symmetrical, the principal may prefer ex ante to hire
more than one agent.

Keywords: Adverse Selection; Independent Types; Optimal Mechanisms.



1.- INTRODUCTION

This paper aims at analyzing the adverse selection relationship of a principal with several
agents. An example is the Japanese automobile firm: Japanese management made much less
extensive use of competitive bidding that the U.S. management [see Milgrom & Roberts (1992),
chapter 16]. We can also think about the internal structure of a firm whose head office is related
to several divisions. Our approach may also represent the regulation of an oligopoly producing
a homogeneous good or the one of a monopoly with several divisions (or the one of a group of
firms), each one producing a different good.

We study an adverse selection model, with a principal and several agents, where the
"type" of each agent is only known by himself before contracting. The number of agents is
finite and types are independent realizations of absolutely continuous random variables with
strictly positive density functions.

The utility function of each agent is quasilinear and separable. It is the addition of three
terms: his remuneration, a personalized function clustering externalities which are originated by
agent’s actions, and a disutility (or utility) depending only on his type and on his individual
action (performance). The principal’s utility function is the difference between a profit,
depending on agent’s actions and types, and the sum of payments multiplied by a parameter
representing principal’s preferences on the agents’ welfare.

We consider two settings. In the first one, individual performance functions depend on
every reported type and in the second one, each individual performance function is only based
on the type announced by the respective agent. We are interested in the properties of optimal
performances and in the principal’s ex ante preferences on the agents’ number.

Model and results.

Our first setting represents situations where an economic agent (the principal) proposes
personalized take-it-or-leave-it "prices" and "quantities" to another agents, so that each
individual "menu" of contracts depends on every announced type. Think of a producer, of a
variable quality good, being ignorant of the consumers’ preferences upon the quality, or a firm
purchasing an input, which is unfamiliar with the suppliers’ productivity, Such menu of contracts
may represent also, for example, several classes of managerial compensations in some
enterprises [see the chapter 13 of Milgrom & Roberts (1992)].

We will make assumptions warranting that there is not loss of generality if the principal
considers only mechanisms for which reporting the true type is a dominant strategy for each



agent. The proof of this "equivalence”, between the Bayesian implementation and the dominant
strategy one, is realized by showing that the two of the respective optimization programs are
equivalent to the "virtual" program consisting in the maximization of a distortion of the
principal’s expected utility of complete information, taking into account the social cost of
revelation of the agents’ hidden information. _

We prove also that this equivalence stands firm, in some cases, when each agent’s
welfare is not monotonous in his type. Nevertheless, in this case, there is two classes of
distortions in the principal’s expected utility and the optimal mechanism may ask different types
for the same performance (bunching).

For our first setting, we examine the properties of the optimal mechanism considering
three cases. In both two first cases we suppose that the principal’s "virtual income" ! depends
on the agents’ performances only through the aggregate total performance (this is natural, for
example, in the frame of the regulation of a homogeneous good).

In the first case [Linear Case], we assume that each agent’s utility depends linearly on
his type ? (in the frame of the regulation of a homogeneous good, this case represents that every
firm has a constant marginal production cost). We prove that, under some conditions, the
principal prefers to offer direct dominant strategy mechanisms such that only the most virtually
efficient agents (generically only one) produce. Moreover, if agents are symmetrical, the
principal may prefer ex ante to hire more than one agent because the expected efficiency of the
virtually best agent increases with the agents’ number.

For this Linear Case, if agents are symmetrical, the properties of optimal performances
are similar to those of the basic one-agent model: Although they are discontinuous, the aggregate
total performance is monotonous and each individual performance is monotonous in the
respective agent’s type. Moreover each individual performance is lower than the one of complete
information. Nevertheless, if the agents’ ex ante distributions of types are different, the optimal
mechanism may ask an agent, with a null performance under complete information, for a
positive performance: virtual efficiencies induce an "order” over agents which may be different
to the one induced by efficiencies. '

In the second case [Convex Case], agents are symmetrical and each agent’s type enters
into the respective utility function affecting its third term which is a strictly convex (or concave
if it represents a profit) function in his performance (in the frame of the regulation of an

T It is the principal’s virtual wtility plus the total agents’ virtual cost [following the terminology of
Myerson (1981)].

2 His type multiplies his action in his utility function.
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homogeneous good, this case represents that each firm has a strictly increasing marginal
production cost). Although the aggregate total performance is lower than the one of complete
information, if the set of contractual types is heteroge neous enough, the optimal mechanism can
ask the most efficient agents for an individual performance higher than the one of complete
information. The intuition is that the principal "saves” informational rent of an agent inducing
the truthful revelation of others agent’s types.

Considering an agents’ quadratic disutility function we prove that, for the Convex Case,
the principal may also prefer ex ante to hire more than one agent.

In the third case, we examine the regulation of a monopolist with several independent
divisions (or the one of a group of firms), each one producing a different good. Considering a
cuadratic surplus and assuming that each type is the constant marginal cost of each division (or
firm), we prove that, when goods are substitutes, the optimal regulatory mechanism may ask the
most efficient divisions (or firms) for an individual production higher than the one of complete
information. Nevertheless, when goods are complements, every individual production is lower
than the one of complete information.

In our second setting, feasible mechanisms have each individual performance function
based only on the announced type by the respective agent. This is justified if two circumstances
coincide: on the one hand, if only contracts depending on the agents’ (verifiable) performances
are feasible and on the other hand [like in Demski & Sappington (1984)], if each agent’s
performance depends only on both an individual state (type) and a hidden action, in such a way
that the state is privately observed by him-self before taking the action.

We show firstly that if the principal can only propose contracts depending on observed
performances, the implementation by contracts is equivalent to the one by direct mechanisms for
which each individual performance function is based only on the announced type of the
respective agent.

Now, the equivalence between the Bayesian implementation and the dominant strategy
one is obtained under less assumptions and the optimal mechanism entails that the most efficient
agents may be asked for individual performances higher than the correspondent ones under
complete information.

Differences with the previous research.

It is known that the basic adverse selection model, with only one agent and a continuum
of types can be interpreted like the problem of a principal in front of a continuum of agents with



independent types [see Guesnerie & Laffont (1984)]. Our model, on the contrary, assumes a
finite agents’ number, '

There are adverse selection models, with several agents, where types are correlated [see,
for example, Demski & Sappington (1984) and Cremer & McLean (1988)]. The main conclusion
is that the principal is able to exploit the information owned by each agent about rival types
(correlation) and he implements optimally the complete information solution. On the contrary,
we suppose type-independence and this implies that all agent will obtain an informational rent
and that the complete information mechanism cannot be the solution of incomplete information.

Note that in our model there is not an initial auction like, for example, in Laffont &
Tirole (1987) who analyze the problem where several firms may carry out an indivisible public
project having a large value for consumers. Under asymmetrical information they characterize
the optimal Bayesian auction and prove that it can be implemented by a dominant strategy
auction, In our model, the principal contracts several agents without utilizing a mechanism to
select one agent. As mentioned above, an example of this class of relationship 1s the Japanese
automobile firm. We can also think about the internal structure of a firm or about the regulation
of an oligopoly.

Mookherjee & Reichelstein’s (1992) analyze a general agency model, with a principal
and several agents with independent types, and they prove that, the above equivalence between
the Bayesian implementation and the dominant stratcgy one holds under some conditions.
Nevertheless, their model can not be applied, for example, in the setting of the regulation of a
private good, because the utility which they assume for their agents does not take into account
the agent’s externalities.

Our analysis proves that the equivalence between the Bayesian implementation and the
dominant strategy one can be extended to another frames as regulation.

We consider also the relaxation of the monotonicity hypothesis upon the agents’ welfare
[implicitly supposed by Mookherjee & Reichelstein (1992)] and we will prove that the
equivalence stands firm in some cases.

Lewis & Sappington (1989) analyze the regulation of a monopolist with a production
costs function which is not monotonous in type. They prove that the monopolist may prefer
understate or overstate his type and that the optimal mechanism may ask for a performance with
bunching.



We consider also such a relaxation, with a cost function more general than the one
supposed by Lewis & Sappington (1989). We prove that the equivalence, between the Bayesian
implementation and the dominant strategy one, stands firm under hypothesis which are natural
in the frame of regulation of the industrial pollution of a group of firms.

Structure of the paper.

The paper is organized as follows: Section 1 sets up the general model. Section 2
analyzes the equivalence between the Bayesian implementation and the dominant strategy one
in our first setting. Section 3 explores the relaxation of the monotonicity hypothesis upon the
agents’® welfare. Section 4 analyzes the Linear Case, the Convex case and the regulation case.
Finally, Section 5 explores our second setting.



2.- GENERAL FORMULATION

We consider a principal hiring n agents.
The agent i’s utility function (i=1,..,n) is:

s + Vix,0), 6, € (6, ai] = 0,

where x=(x,,...,X,) € R, is the vector of agents’ verifiable performances (actions), the
parameter 6; is the agent i’s type and s indicates his remusneration.

We suppose the following separability assumption. We will consider two versions to
COver 1more cases.

Separable Utility (SU)
Vix,8) = R(x) - vi(x;,,0) vi=1,...,n. (SU-)
Vilx,8) = Ri(x) + v(x,0) Vi=1,...,n (SU+)

The principal’s utility function is:
Bx,0) -2 Y s

where 8=(0,,...,0,) € 6:= IIO, is the vector of contractual types and A = 0 represents the
principal’s preferences on the agents’ welfare. The parameter A may also be the shadow cost of
publics funds in the regulation setting.

In order to fix ideas, let us consider several specifications of the model.

i) If the principal was a producer of a variable quality good, we should have A=1, R;=0,
B(x,0) = - C(x), where C(-) would be the cost function. Type 6; , in SU+, would measure the
for good of quality x;.

ii) If the principal was a firm purchasing an input, we should have A=1, R, =0, B(x,#)
= [P(Zx;)-c] Zx; , where P(-) would be the inverse demand function and c would be the
marginal cost. Type 8, in SU-, would be the supplier i’s cost parameter and s, would be the
price for the quantity x; bought to supplier i.
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iii) In the case of the regulation of a private good, the regulator’s utility function would
be the sum of the consumers’ net surplus plus the firms’ total profit weighed with 1-A, where
AET0,1]:

SCx)-PEX)Ix-Z 8 + (1N T s, + P x) % - vilXie, 81

The function v,(+, -} would be the firm k’s production cost, the consumers’ gross surplus would

Q
be represented by S(Q)= 1 P(g)dg and P(+) would denote the inverse demand function.

Moreover R (x)=P(X x)x, , and therefore: B(x,8) = S(T x)) - A P(T x) ¥ x; - (1-N) ¥ vi(x,60)).

iv) For the regulation of a monopoly with several independent divisions (or of a group
of firms), each one producing a different private good, the objective function of government
would be: |

Sx) - TP () % - Ds + (N B[ s + P (%) %, - Vie (05,00 3

where S(+) would be the consumers’ gross surplus, P(+ )=6ka(-) would be the price of the

good k and v (-, +) would be the firm k’s production cost. According to our formulation, we
should have

B(x,0) = §(x) - A L B (%) x¢ - (1-M) T vilx000),  Ri(30) = Pe(®) %,

We assume that types are independent realizations of absolutely continuous random
variables with density and distribution functions denoted respectively by f(6)) and Fy(8), 6,€0,,
with f(+)>0, i=1,...,n, Each agent, before contracting, observes privately his type realization.
For each agent i, let E'{+} denote the expectation with regard to the random vector 6.
o=(004,...,0.4,0,,1,...,0,). From the revelation principle [see, for instance, Myerson (1982)] we
know that the principal will offer a direct revelation mechanism that induces truthful revelation
of the agents’ types. Such mechanisms are based on the vector of announced types 8=(0,,...,0,)
€ O:=II6; and they will be denoted:

t:0->R",x:0->R", .
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We assume that the transfer functions t(-) and the performance functions x(-) are
bounded and continuously differentiable functions almost everywhere. Note that they can be
discontinuous ?. For the second setting we will assume moreover that the component x(+)
i=1,...,n of all feasible vector of performances x(-) depends only on # in ©.

The optimal mechanism has to solve the following program BP:

Bayesian program (BF)
max E){ B(x(0),0) - A Z (0) }

x{+ ) 4(
s.t.

6i € argmax El{ ti(eqaéi) + Vi(x(e-i,ai)aei) } Vei: vi (1)

E{ &) + Vx®,8)} 2w V0, Vi

The problem would be simplified if we could replace the self-selection Bayesian
constraints (1) by the correspondent ones of the dominant strategy implementation. In that case,
the principal would solve the program:

Dominant strategy program (DP)

gta.g,t (?){ Bx(%),0) - A I t(0) }

5.t - -
6 € argmax { 00.:,0) + Vi(x(0.,6),6) } V6, Vb, vi @)

E{ t(® + Vix(®),6) } = y Ve, vi

Constraints (2) point out that the mechanism induces truthful revelation of types like a
dominant strategy for agents. An additional advantage of the dominant strategy implementation
is that it may mitigate the problem of muitiple equilibria.

Similarly, let BP’ and DP’ denote the programs for the second setting.

3 In the case of only one agent, under weak assumptions. the must be continuous at the optimum [see
Guesnerie & Laffont (1984)].
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2.- THE EQUIVALENCE OF IMPLEMENTATIONS IN THE FIRST SETTING

In this section we will extend the Mookherjec & Reichelstein’s (1992) analysis showing
that the programs BP and DP are equivalent.

They consider the case V(y,8) = - v;(h(y),0), where YEY represents the general
decision to be implemented and h,(y)ER vi, with a principal’s utility equal to B(y)-Zt. On the
contrary, we assume the utility function of each agent being given by two personalized functions
(see assumption SU). The first one, R(+), gathers together the agents’ externalitics and the
second one, vi(+,*), represents a personalized cost (or profit) depending on type and on
individual action. Moreover, in our model the equivalence would stand if we supposed a bit
more general setting with:

Viy,6) = R() - vilh(),8) or Vi(y,6) = RO} + vithi(),6).

We will prove the equivalence through the virtual program (VP). We consider two
versions corresponding to assumptions SU- and SU+.

Virtual program (VP)
max  E[ 0(x(0),0) ]
x(+)

where (-, ) is defined, under SU-, as

0 (x,0)=B(x,0) +\ Y V(x,6)-1Y, [;’gi)). VX 8)1-NY
and, under SU+, as
Q(x,0) =B(,6) +A Y V(x,6) -\ Y| 1}2()9*') 3,v,0)1 - N3

let us give an explanation of the virtual program, Firstly, note that, under complete
information and when individual performances can depend on the whole vector of types (first
setting), the principal solves, for each @, the following program:

Complete information program (CIP)
max { B,0) + AZVxH-AZy}
X

13



Therefore, the virtual program is a distortion of the one which he would soive if the

information was complete. Under SU-, the term

F(6)
AANVIZ2T 5 v(x, 6
E[ f;(ﬁ,) B,.vr(xt 1)}

is added. For see that this term represents the social cost of revelation of the hidden information,
assume that both the disutility and the marginal disutifity of each agent increase with his type.
As it is better for the principal that the most efficient agents being asked for a performance
grater than the one for other less efficient agents, each agent has a natural incentive for overstate
his type. Therefore, in order that an agent 1 of type 6,-d6; does not report 6, he has to be

compensated with 8,v(x,,0)d6,. The principal weighs the previous compensation with F(6)

which is the "amount" of the agent i’s types that can claim to be of type 8,.
Let I'(P) denote the optimal value of the program P. In this section we assume the
existence of solutions of every program.

Firstly, we prove that if a mechanism solves BP, it has to verify, as in the basic
one-agent adverse selection model, self-selection local incentive constraints and this implies that
the principal’s optimal expected utility is lower than the optimal value of VP, which takes in
account the social cost of the hidden information.

Proposition 1 Under SU we have I'(BP) < I'(VP).

Proof: Suppose SU-. The line of argument is similar to the one of the case n=1. Let {t(-),x(+)]
a solution of the program BP. The functions

w0, 0;,7): = 6(0,,7) + Vix(0,,7),7) &)
are continuously differentiable almost everywhere. From (1) we have:
Ei[ui(a-isei)]: = Ei[ui(g-iaaiaei)] = Ei[ui(a-iaeia'r)] Vais v7, vi

and, under assumption SU-, we get:

3,Euf6_,0)1 = ~E18,y(x(6..8)] a.e. on 6, vi

14



Therefore, integrating we have that

7

Efu0 00 =E] 1 3,V (x 6 _,1d7] +4, @

i

where 6, = E[u,(0,,0)] = u; vi. By (3) and (4) the following equality holds:

2 7,

Eft6_,0)1 = ‘( E{-V{x(0,6),0) + ‘( 3,50 ), TAT I (B)db, +4, 5

i

Integrating by parts the second term in (5), and substituting it into (5) we obtain:

o LE®) .
Eft(0)] =E{- V(x(8),8) mé‘,,iv,.(xi(()),ai)] 2,

Then, if [t(+),x(+)] is a solution of BP we have that
I'(BP) = E{B(x(8),0) - \ T t(#)} < E[ O (x(9),0) ] < T'(VP-).

Under assumption SU+, the equality

noo 1-F(6)
'[m j 04V 5 0T DT O)d0, =Bl —

i ]

9, vx(0_,9),0)]

leads us to I'(BP) < I'(VP+). U

Secondly, we will prove that every solution of VP is dominant strategy implementable,
under some conditions that we specify below:

Monotone hazard rate (MHR)
- F (+)/f (-} is increasing Vi. (MHR-)
[1-F (-))/f (+) is decreasing Vi. (MHR+)

15



Constant sign (CS)
Bxl_ﬂivi(- ,*)>0 and a%vi( *,*) is increasing in 8,, Vi (CS~)

Bxfﬁv,.( *,*)>0 and 8,,v(-,*) is decreasing in 8, vi (CS+)

Monotone agents’ welfare (MAW)

3,v(*,)=0 Vi

Let us comment the above assumptions which are standard in the basic one-agent adverse
selection model.

Assumption MHR- is satisfied by most usual distributions and it implies the existence of
a sort of decreasing returns for the probability that there are "improvements” on the basic
technology (measured by -9 when the parameter & represents the productivity) [see the
interpretation of assumption in chapter 1 of Laffont & Tirole (1993)]. Note that assumptions
MHR- and MHR+ are equivalent when density functions are symmetrical.

Assumptions MHR and CS, for only one agent, guarantee that the principal’s program
can be relaxed removing seif-selection constraints. {see, for instance, Fudenberg & Tirole
(1991)]. On the one hand, assumption CS implies the equivalence between constraints and the
monotonicity of the performance function and, on the other hand, adding assumption MHR we
get that every solution of the "relaxed program" is monotone. If MHR fails, the solution of
relaxed program may be not monotone appearing bunching: the optimal performance is constant
on an interval of positive measure. This makes the analysis difficult. For our model, with several
agents, assumptions MHR and CS imply (assuming a last condition bellow) that each optimal
individual performance of the program VP is monotone in the respective agent’s type. Therefore
every solution of VP is dominant strategy implementable. Knowing if the equivalence holds
when MHR fails, is an open problem.

Assumption MAW [implicitly supposed in Mookherjee & Reichelstein (1992)] facilitates
greatly the analysis. It implies that each agent’s expected utility is monotone in his type and
thus, the set of individual rationality constraints can be substituted, without loss of generality,
for only one constraint. When there is only one agent, if MAW fails, he can have an incentive
to understate his type for some of its realizations, and overstate it for others [see Lewis &
Sappington (1989)]. This leads to bunching despite assumption MHR. In Section 3 we show that
assumption MAW may be leave out, for some cases, holding up the equivalence between BP and
DP.

The last assumption which we consider is:

16



Independent-on-types virtual income (ITVT)

The function W(x,#) does not depend on 6

where, under SU-, we define W{-,-) as
W0 = B8 + T [ AR + (1N vi(x,0) 1.

and under SU+, we define it as
W*x,0) = B(x,0) + Z{ A R(x) + (A-1) vi{x;,0) 1.

With regard to assumption ITVI, the utility function of program VP- can be rewritten

e, = Wx,0) - I yi(x,0) - N Xy
where the function

F(6)

Y{x,0):=vx,0) + N\ Q)

39;v,.(x,6) x =20, § €6,

is, following the terminology of Myerson (1981), the agent i’s virtual cost. According to this
terminology, W(+, +) represents the principal’s "virtual income”. Note that with A=1, the value
W(-, ) is the principal’s income when he retains the agents’ externalities that will be sent back
through transfers.

Assumption ITVI suffices to apply a revealed preference argument showing that each
component of any solution x(+) of program VP is monotone in the respective type.

Note that for the examples of the producer of a variable quality good and the firm
purchasing input, we have R;=0, A=1 and therefore ITVI holds. For the example of regulation
it is also satisfied because W = S,

Proposition 2 Under SU, MHR, CS, ITVI, every solution of program VP is dominant strategy
implementable. If moreover MAW holds, we have T'(VP) < I'(DP).

Proof: Consider firstly assumption SU-. Let x(+) be a solution of program VP. Then it has to
solve the pointwise maximization of the function '(x,0). Let see that this implies x,(6,,6)
decreasing in 6., for each i. Consider i and 6; < 8, . Adding up inequalities:

Q-(X(e-i aai)’&-i $0L) = Q-(X(B—Isai)sai sgi)’ Q”(x(B_,-,@i),H_i,ai) = Q‘(X(e-iaei),g-bai)

and under ITVI-, we get

17



Ti(xi(ﬁ—iaei)’ai) - Yixd0, ,6),0) = Ti(xi(ﬂ-bai)sai) - yi(xi(0; sai):ei) ©)

where

F(0)
VA

V0 =v(x, 0 +\ 0,v{x,0) x =0, 6 €6,

Under assumptions MHR- and CS- the function d,y,(+,) is strictly increasing in #€O,, and
therefore, we have 8. v,(+,8) - v(+,8) ] > 0. The inequality (6) implies, then, x(0,,8) < x,6.
0.

Because the Spence-Mirrlees’ condition holds (it is the first condition in CS-) and the
function x,(#,,6,) is decreasing in 6, for each 8, we can apply the habitual line of argument for
the one-agent adverse selection models to prove that x;(8,,+) is implementable by a transfer
function t,(6,, - ). Define

T

£00) = - V/(x(8),6) + ‘[ 8,900 _,Ny)dT + 4,

i

where §; is arbitrary. From CS- we deduce

8

10 ,0) + V,(x(0_.0) - [16_.0) + V(x(6_,8)1= J [8,v,x6_,7),7) - 8,vx,(6_,8),D)1dr = Q.

[3

So, the mechanism [t(-),x(-)] satisfies the constraints (2) and therefore, x(+) is dominant
strategy implementable.

If moreover MAW holds, choosing §; = u; Vi, the previous mechanism [t(-),x(+)]
verifies the individual rationality constraints (it is feasible for DP} and further we have

I'(VP) = E[ 2(x(6),8) 1 = E{B(x(6),0) - N Zt(0) } < T'(DP).
If we assume SU-+, making use of a similar argument, we obtain that x(+) must satisfy:
Yi%i(0.4,69,8) - 1(xi(0: ,6),0) < vi(x(0:,8),8) - vi(x(0, ,6),0)

where now

1-F(6)

¥, 0 =v(x,6) -\ 7

aﬂivi(x,ﬂ) x 20, 6 €96,

18



verifies ax{%(-,eg-%(-,ag] < 0 by MHR+ and CS+. Therefore, in this case, x(0,,8) is
increasing in 6, for each 6, and x(-) is dominant strategy impiementable using
al

t(0) = -V (x(0),0) + J 3 vx 0 mrdr+d, O

Because the dominant strategy implementation implies the Bayesian one, previous
propositions prove immediately that all the three programs BP, DP and VP are equivalent.

Proposition 3 Under assumptions SU, MHR, CS, ITVI, MAW, we have I'(BP} = I'(DP) =
T'(VP), that is, every solution [t(-),x(+)] of program BP is dominant strategy 1mplementabie
- with transfer functions £(-) satisfying

E (0,,9) - t(6,,6) 1 = 0 v, vi.
Let us conclude this section with the following remark. When A=0 programs VP and CIP
coincide and the complete information solution is the solution of incompiete information, under

assumptions of Proposition 3. This is a property of the basic one-agent adverse selection model
[see Guesnerie & Laffont (1984) and Caillaud, Guesnerie, Rey & Tirole (1988)].
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3.- RELAXATION OF MONOTONE AGENTS’ WELFARE ASSUMPTION
IN THE FIRST SETTING

We have indicated previously that, in the basic one-agent adverse selection model, if
MAW fails, the agent can prefer to understate or overstate his type [see Lewis & Sappington
(1989)]. This implies, in spite of assumption MHR, that the optimal performance has

"bunching"”.
In this section we will see that it is possible to relax assumption MAW, in some cases,

maintaining the equivalence between BP and DP. Unlike Lewis & Sappington’s (1989) analysis,
we consider several agents with more general disutility functions. We will assume:

T'ype-separable disutility (TSD)

For every i, vi(x,6) = 0 ¢;(x) + ¥,(0), x = 0, § € ©,, where ¢,(-), ¥,(-) are
continuously differentiable.

Assumption TSD, which generalizes a constant marginal disutility, implies a necessary
and sufficient condition for Bayesian implementation. But such condition does not involve that
each individual performance is monotone in the respective type.

Proposition 4 Under SU- and TSD, the transfer functions t(-) Bayesian implement x(+) if and
only if the following conditions are satisfied:
(@) There are values §;, i=1,...,n, such that, for each i, the following equality holds

almost everywhere in O;

]

E't(6_,6)+V(x(8_,6),0)]= [E ‘ol @, Dldr + ¥ 0 ) -T (6} + 8,

(b) The function Elg[x(0,, -)] is decreasing (in 8)) Vi.

Proof: Given t(+) implementing x(+), applying the argument in the proof of Proposition 1, we
obtain the equalities in (a). On the other hand, with a revealed preference argument as in the
proof of Proposition 2, we get: (Br-0)Biox(6.,0)1=(0-8)Ex[x(0.,6)], ¥0., v8,, Vi, and then,
the function Elp[x,(8,, +)] is decreasing for each i.
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Finally, if t(+), x(+), satisfy conditions (a) and (b) we have v, v, vi,

ar'
E[£(0_,6) + V(x(6_,0)1-E[16_,0) + V,(x(8_,8)1 = ‘[ [E'p[x(0 1)1 -E'00_,0)1dr =2 0

i

and therefore, ¢(+) implements x(»). [l

Proposition 4 characterizes, in a special case (TSD), the class of Bayesian implementable
performance functions, which contains the one of dominant strategy implementable performance
functions. Note that, under the conditions of Proposition 3, every solution of PB belongs to the

latest class. Under SU- and TSD, Proposition 4 implies that the program BP is equivalent to the
following one:

Equivalent Bayesian problem (EBP)
max T[x(+)] - A Z ¥, (0) - A (i

x(+),0 s.t.

Elgfx(0,, +)] decreasing Vi
Fi

j E'o[x(0_Dldr+ V@)~V (8)+0, = 0 V0, vi

where the functional T[ -] is defined by
7, 7

I )1 =E{ B(x(6),6) + AY R(x(0)] -2 J 6. [x (6 ,0)] + ! E'o[x(0_,m)ldr § £6)d0,

Note that if for all i the inequalities ¢; = 0 and ¥;”= 0 hold, assumption TSD implies
MAW and the analysis of Section 2 is valid. In order to examine the problem when assumption
MAW fails, we will assume, like in Lewis & Sappington (1989), that each "fixed cost" ¥; is
decreasing and concave in the "marginal cost” §,. Thus, we can warrant that, for the optimal
performance, each individual rationality constraint is binding at only one value of the respective

type.

Lemma 1 Assume SU-, TSD, with ¥, € C?, ¥’< 0, ¥’ < 0, §; > 0, vi. Then, for every
BP-optimal performance function, each individual rationality function is binding at only one
type. If such types are r; € 6,, i=1,...,n, the principal’s expected utility is equal to

B{ W(x(9),0) - £ 8i(0;7) @lx(0] } - I-M) T By - NI ¥i(m) - A Dy
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where 3;(-;+) is defined by:

B,.(G;Fi):-~6+)\f"(—62 8 €0,; B(6:8):=0-N

1-F(6)
g eo
0N

0NN i

and for 7, € int(8), B.(B;r):=B0:0)if0 < 0 < 7, B(O;7):=BL6;8) if 7, < 0 < 0,

Proof: Let x(-) be an optimal performance of program EBP. The individual rationality
constraints can be rewritten U(f) = u,, V6, Vi, where

7,

U():= [ E'p[x0_,7dr +¥,B)~¥,0) +4, 6, €0,

Each function Uy(+) is continuous and differentiable, with a derivative equal to:
U’ () = - E'ulx(0.,6)] - ')

which is of class C! almost everywhere [U;’(+) may be discontinuous because each x,(+) is C!
almost everywhere]. Since E'p[x(8,+)] is decreasing and ¥;’(-) is strictly decreasing, the
function U(+) will be strictly increasing and C' almost everywhere. Therefore, Uy(-) is
continuous, C! almost everywhere and strictly convex. As x(+) is optimal, we obtain that there
is only one 7; € O, such that U(6) = Ufr) = v;, vV §, € O, Thus, we have that

[/

f,=u,- I E'px(8 ,Dldr-¥ @) +¥(6), Vi

i

%

Replacing these values into the expression of the principal’s expected utility for the
program EBP, and after integrating by parts, we get the expression we are looking for. (]

To understand Lemma 1 suppose TSD. As under MAW, an agent has incentives to
overstate his type, but now a second class of incentives appears: a few efficient agent may prefer
understate his type, if in that manner the principal believes that this agent has a higher fixed cost
(note that ¥;’ <0). Therefore, each agent’s rent decreases with his type, when type is low, and
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it increases when type is high. The principal will distort in two fashions his complete
information expected utility: he will add (see Lemma 1), for the agent i, the terms

F(6) . 1-F(5)

-\ 76 O, v(x,0) if 6, <7, A 76

8,v,x,8) if 6, >,

Note that if Ti=Ei Vi holds, only the first class of incentives prevails and the principal’s
expected utility in Lemma 1 coincides with the virtual function @(-,+), under TSD, in the
previous section.

In the rest of this section we will see that, under the considered assumptions, when
virtual income is additively separable, concave and increasing in performances and independent
of types, the programs BP and DP are equivalents. We show also that each optimal individual
performance depends only on the respective type decreasingly.

We consider, then, the following assumption, which is natural if the principal is the
owner of a firm with several divisions (agents), each one with the cost function in TSD or if the
principal is a regulator of the industrial pollution of several firms (here x would be an verifiable
indicator of contamination with x =+ oo representing null contamination).

Independent-on-types and separable virtual income (ITSVI)

W(x,0) = L Wi(x), where W, € C2,, W, > 0, W, < 0, W,(0) > -o0, vi,

Under ITSVI, we can easily verify that the program EBP is equivalent (o the independent
programs EBP,, i=1,...,n, bellow.

Equivalent Bayesian program for agent i (EBP)

maxT[xl( ] - (1)\)E\Ir )\‘I'(ﬂ) A G
X5

Mg -)] decreasing

v

\l E'olx 0 .nldr+¥ @) -¥,0) +4, 2u, v,

where

7 A
Thx ()= [ TEW[x(6_,0)1-N6.E'p[x(6_,001 -\ ‘[ E'elx(0_,n)dr 1f8)ds,

-

23



The arguments in the proof of Lemma 1 can be applied for each program EBP;: at the
optimum of EBP;, the agent i’s rent is zero only for a certain type 7. We will see later
(Proposition 5) that, under some conditions, every solution of EBP; is also a solution of some

of the programs [P(7)], » € O, bellow (precisely the correspondent one of the unique type
with null rent).

max E{ W [x(] - 8,(6;;7: ) elx(0)] }
x(+) s.t
Eiqpi[xi(e-iaai)] = - \[/i,(fi)y v 0i € [_Qi: Ti[

E'olx0,,0)] < - ¥(7), ¥ 6, € 17, Ei]

Note that, if 7, = Ei, we consider only the first constraint and if 7, = 6, only the second
one.

Previously, we establish hypotheses for which any one of the problems [P(r;)] has only
a solution. Moreover, this solution will be independent on 8; and decreasing. In Appendix 1,
we prove the foilowing lemma.

Lemma 2 Suppose

) ¢ E€C =20, ¢0 =20, ¢ >0ifx >0 ¢’=0

i) ¥,€C, ¥’'<0, ¥,’<0

i) W, € C?3, W/>0, W)’<0, W) > [6; + VE(0)] ¢’ (0)

W) ax; >0 / WD - [ + NG ex) > Wi () - 8 ¢0)

Px) < -(0)

v) W)Y e(x) for x € 10, +oo] is strictly decreasing and it goes to a real number
strictly lesser than 8; - Af(0;) when x goes to +oo.

vi) 8 f(8) > A
and moreover MHR+ and MHR-.

Then, each program [P(r;)] has only one solution:

x(0;7) = max[ gi(oi);pi('ri y1if 6, € [0, =, x(0;7) = min[ ¢,(0),p:(7;) 1if 6, € ], Ei]

i

where pi(+):= ¢;'[-¥;(+)], and the functions <_i>i(') and ¢,(+) are the only ones satisfying

W [6L0)] = Bi0:0) #’[6(B)], ¥ 6 € ©, and W, [5(0)] = Bi(6;8) ¢ [6:)], ¥V 8 € O,
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Therefore, <,_bi(-) and ¢,(+) are C! and strictly decreasing functions and they verify 5,»( )
< ¢{(+). This implies that the solution of [P(%)] depends only on 8;, is continuous except at most
at 7;, is decreasing and it may be constant only on a subinterval around r; and on the rest it is
continuously differentiable.

In Lemma 2, conditions i) and ii) imply that, under SU- and TSD, the disutilities v (-, +
vi satisfy SC- but they do not verify MAW. Condition iv) allows to assure that each solution
of [P(#))] is strictly positive. The existence and uniqueness are obtained from iii) and v}.

By means of Lemmas 1 and 2 we can prove that, in some cases, the assumption MAW
may be relaxed preserving T'(BP)=T(DP).

Proposition 5 Under SU-, TSD, ITSVI and the assumptions of Lemma 2, every optimal
performance of program BP is dominant strategy implementable and I'(BP) =T'(DP).

Proof: Let x(+) be an optimal performance of EBP. From ITSVI each x,(+) is a solution of EBP,;
and, by Lemma 1, there are r; € 0,, i=1,...,n, such that each x,(+) is feasible for the program
[P(r)] with an objective value equal to

E{ Wi[x{®] - B8:(0;;7) @lxi(®] } - 1-N) E¥, - N ¥, (7) - ;.

Suppose that x,(+) is not a solution of {P(7)]. From Lemma 2, the only solution x,(-;7)
of [P(7)] has to satisfy:

E{W{Ix(0)1-6:6; m)elxi()]} < E{Wx(0;7))-8:(0;; 1) eilxi(0;7)]}

We know that x;(«;7;) is a function independent of types 6, decreasing and continuous,
and piecewise continuously differentiable. Therefore, the function

8,

UL8): = j E'pix(0_,1;m)ldr+ ¥ @)V 0)

T

is continuous, piecewise continuous differentiable, and strictly convex. Moreover, we have:
U(r) = - imax[ ¢i(r), pi(7) 1) - ¥’ (1) = - @iloi(m)) - ¥i'(7) = 0

U(rit) = - gi(minf ¢(7), oi(m) 1) - ¥ () = - @iloi(m)) - ¥(m) = 0.
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Then, we get U,(6) = U;(r), v6,€0,. Considering {; = u; - Ui(r) we obtain [x,(+;7),0;] which
is feasible for the program EBP;, with an objective function value equal to

T ;7] - I-NEY; - N¥(6) - NG, =

E{ Wilx(6;7)] - Bi0;melx{0;7)] § - I-MEY, - A7) -

which is strictly greater than the one of x{+), contradicting that we have supposed x(+) being
a solution of EBP;.

Necessarily, the function x{ - ) is a solution of [P(7)]} and it is, then, independent on types
8, decreasing and dominant strategy implementable. [

The intuition of the above results is the following. Hypotheses of separability and
type-independence allow to separate the agents’ incentives: at the optimum, each agent is asked
for a performance depending only on the type reported by him-self. The principal trades-off the
socially optimal performance [&;,-( +)] when an agent has only the first class of incentives (he
overstates his type), with the socially optimal one [¢,(+)] when he has only the second class (he
understate his type). As the Spence-Mirrlees condition still hoids (an inefficient agent has to be
more compensated than an efficient one, for an unitary increase in performance), that trade-off
always finishes with a decreasing performance function, which is, therefore, dominant strategy
implementable (it may have a flat piece where none of the two class of incentives prevails).

For example, in the frame of regulation of industrial pollution, where x; would be a
verifiable indicator of the firm i’s environmen!{ cleanness (x;=0 indicates the maximal
contamination and x;=+ oo denotes the minimal one), the hypothesis YTSVI is justifiable. In this
context, under TSD, and if each fixed cost of the technology to reduce pollution is decreasing
in the marginal cost, the above results imply that there is not loss of generality if the policy of
pollution regulation considers only the dominant strategy implementation. Moreover, the socially
optimal pollution of each firm will depend only of his individual report and it will be constant
in a subinterval of types.
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Note that, under the conditions of Proposition 5, the optimal performance of programs
BP or DP is obtained solving each EBP;, whose solution can be calculated maximizing on 7; €
O, the function:

7 7,

j I WIS 057)) - 5,08 ), B5m)) 100+ [ LWE 6:7)] - B6:0)e [ 05701 100 -\, (r)

T

where  X(+;7):= max[,(-),o ()], X(+37):= min(g(+),0(r)].

It can be proved that, at the optimal value 7;, the correspondent individual performance

function is confinuous.
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4.- THE PROPERTIES OF OPTIMAL PERFORMANCES IN THE FIRST SETTING

In this section we will apply Proposition 3 in order to analyze the properties of optimal
performances. We will examine three cases. In the first two cases, we will assume that the
principal’s virtual income depends on performances only by means of the aggregate total
performance. We will suppose:

Virtual income depending on total performance (VIDTP)
W(x,0) = W(T x;) where W(-) is C? and satisfies W’(+) = 0, W’(+) < 0.}

This assumption is verified, for example, in the frame of the regulation of a private good,
because, in that case, it is easy to show that the virtual income is equal to S(¥ x,;), where S(+)
denotes the consumers’ gross surplus.

The third case that we will examine corresponds to the regulation of a monopolist with
several independent divisions {or the one of a group of firms), each one producing a different
private good. In this case, we have W(x,#) = S(x), where S(x) represents the consumers’ gross
surplus of the vector of productions x. Therefore, condition ITVI holds.

4.1.- HOMOGENEOUS PERFORMANCES AND LINEAR DEPENDENCE

In this subsection we assume VIDTP and

Linear dependence (LD)
vix) =60x + ¥,@),x =20, ¥(:) =0, ¥'(+) = 0,0 € @, vi.

We can think of regulation of a private good produced by an oligopoly in which every
firm has a hidden constant marginal cost and a fixed cost increasing in his marginal cost.

Under VIDTP, LD and complete information, it is optimal for the principal that only the
agents with the lowest marginal cost have a positive performance. The following proposition
prove that this conclusion can be extended to the case of incomplete information. If previous
conditions hold, the principal may prefer to require a performance which is only positive for the
most virtually efficient agents (generically only one).

*Note that W{(-+,+) may depend on A. We have suppresed the variable simplifying the
notation.
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Proposition 6 Given assumptions SU-, MHR-, LD, VIDTP, suppose that moreover the
condition W’ {+ o) < of+) < W’(0+) holds, with

(f):=min{ $,8,) /k=1,...,n], ¢>,.(6t.):=6,.+}\%%)., vi
Then, the optimal performance function x’(+) exists, is unique and satisfies:
@ x(0) = 0if $,8) > «(B),
(b) if x"y() > 0 then ¢(0) = o(f),
() T x"(+) = D(a(+)) where D := (W')!
(d) The principal’s optimal expected utility is:

W(D@) - aD(@) + fp(a)qa)da ~YEL-ATu,

where §i(-)s(l-}\)‘1fi(-)+}\\lfi(§i) vi, G(-)—is the distribution function of «(+) induced by
distributions {Fy(-) / i=1,...,n} and [a,x] is its support.

Proof: According to definition of a(+), we have W(Z x,) - L ¢,(8)x; < W(Z x) - a(®) ¥ x;, and
the function z = W(z)-a{0)z has an absofute maximum at z=D{(«(#}) by VIDTP. Therefore,
there is X (#) € R", maximizing (x,#) on R, for each value of 8 (and N). Moreover we have:

3,0(x,0) = W/(Ex,) - 4,6). ¢

Consider I(#): ={i / x"{0) > 0}. From (7), there is £() such that Vi€ I(#) ¢,(0) =E(6).
In addition, the function £( ) must verify the equality W’ (Ex"(+))=£(-) because i € I(0) implies

8,9(x* (6),0)=0.

If there was k such that ¢,.(6) < £(8), we should have k& I(6). But then, the relations

X(®)=0 and 3 Q(x*(@®),0)=£@)-¢,06) >0 would hold contradicting that x'(+) is optimal.

Therefore, we have £(f)=a(6) and the properties (a), (b), (c) hold.
Denoting the distribution function of a(-) as G(+), the principal’s expected utility is:

E[WD(o:(8))) - 0)D(c(@)) ] - LEG-A L, = | [WD(e))-aD() [dGlo) - L - A Ky,

L]
| RS 2|

and if we integrate it by parts, we obtain (d). [
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Proposition 6 has a straightforward interpretation. Under the above assumptions, from
Proposition 3, there is not loss of generality if the principal only considers mechanisms for
which each agent reports his true type as a dominant strategy. Therefore, the principal has to
take into account essentially the agents’ efficiencies corrected with the social cost of hidden
information, i.e. the agents’ virtual marginal costs ¢,(+) Vi defined in Proposition 6. So, a(-)
represents the smallest virtual marginal cost and the principal will elicit a positive performance
only from the agents with such a virtual marginal cost «(-). '

In the context of regulation of a private good, the conclusion (c) of Proposition 6
indicates that, the socially optimal price is equal to the smallest virtual marginal cost. The
condition W’(+ ) < af+) < W'(0+) makes sure that the equality between the principal’s
virtual marginal income and the least virtual marginal cost is feasible.

Remark 1. Note that, under the conditions of Proposition 6, the optimal performance x",(#) of
an agent i with a virtual marginal cost equal to a(f) may be defined of several ways if there are
several agents with such a minimal virtual marginal cost. In this case, for any selection of values
x'(0); k € N(0): = argmin[¢;(6) / j=1,...,n] satisfying the equality (c) of Proposition 6, the
agent i’s optimal performance x';(f,,8) is decreasing in §; because we have;

x(6,0) = D(¢;(0)) if 0, < ¢ [ay(0D], x0,,0) =0 if 0 > ¢ [ay(0)]
with a(0.):=min ¢,(6) / j=1,...,n,j¥i ], and D’(-) = 1/ W’ @D(+)) < 0.

In the linear case examined in Proposition 6 the optimal performance function x'(-),
although it is discontinuous, satisfies some of the properties correspondent to the basic one-agent
adverse selection model [which appears, for instance, in Baron (1989)]. The aggregate total
performance is decreasing (in any type) and each agent is asked for an optimal performance
decreasing in his type.

In order to compare the optimal performance of incomplete information with the one of
complete information, note that the complete information solution, which will be called x°'(+),
verifies the properties (a), (b), (¢) of Proposition 6 for the functions ¢,(+) and «(-) obtained
with A =0 (recall that, then, programs VP and CIP coincide). Thus, we have:

x(0,8) = D(@) if 6, < o8, x(0.,0) =0 if 6, > a(6)

where o™ (0.): =min[6, / j=1,...,n, j«i], and also £ x“(f) = D(a“(#)) with o“'(¢): =min{6, /
j=1,...,n].
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Like in the one-agent basic adverse selection model, the aggregate total performance of
complete information is grater than the one of incomplete information. Nevertheless, at the
individual level, this inequality may be reversed. We can show easily that the only case in which
it is reversed corresponds to a vector @ such that, for some agent i, we have

a®{0) < 6 < $(0) < (0
because, in this case, x“(#) = 0 < D(¢,(8)) = x"|(0).

Note that the above inequalities cannot hold if the distributions of types are equal.
Therefore, we can conclude that, under the assumptions of Proposition 6 and if types are
identically distributed, each agent is required to perform under the level of complete information
(in order to reduce the informational rent of the most efficient agent’s type, like in the basic
one-agent adverse selection model). ,

Nevertheless, when the distributions of types are different, it may happen that an agent,
which does not perform under complete information, is asked for a positive performance under
incomplete information. The explanation is simple. The supposed assumptions imply that only
the agents with the smallest marginal cost or the smallest virtual marginal cost can be required
to perform under, respectively, complete information and incomplete information. But the
"orders" over agents induced by marginal costs and virtual marginal costs may be different if
the distributions of types are distinct.

To analyze the relationship between the principal’s ex ante optimal expected utility and
the agents’ number, under VIDTP and LD, we consider the symmetrical case in which the
distributions of types, the agents’ fixed costs and reservation utilities coincide:

Symmetrical agents (SA)

fi(+) = £(+), F(:) = F(:), ¥(+) = ¥(+), v, =u, vi, ‘

In this symmetrical case, an augmentation of the agents’ number yields an improvement
{decrease) of o according to the first order stochastic dominance. Under the assumptions of
Proposition 6, the principal may prefer ex ante to hire several agents.

Corollary 1 Under the assumptions SU-, LD, MHR-, VIDTP, SA and supposing W’(+ o) <
a(f) = W’(0+) v, we have that:
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(a) The principal’s expected utility hiring n agents is:

Uy = WD(@) -aD(@) + | D[ 1 -11-F(¢" ()} Jda-n(EL+Nu)

| Rt ———

®) If Ef+hu == D(e)[1-F(¢~' ()] logl{1-F(é(e))] ']dee >0 the principal prefers to

| R e, O]

hire only one agent. But if E{+Au < u, he prefers ex ante to hire more than one agent, i. e.
u’(l) > 0.

Proof: From AS, MHR-, the values of «(): = min{ ¢,(8,) / k=1,...,n ], as a random variable,
are placed between o:=8+NF(8)/f(®) and o: =5+)\F(§)ff(§) with a distribution function equal
to

Gu(0): =I-[I-F($"(@)I", where ¢(y):= y+AEGVEY); 0 <y < .

From Proposition 6, the optimal expected utility of a principal hiring n agents is the one
in (a). Then, we have that 3,U(n) = V(n) - (E{+Au), where

V(n): = j D() [1-F({a)) logl [1-F(¢ ™ e))] ' 1de >0,

and we can verify that 3,W < 0, V(1) = u, V(+ =) = 0. Therefore, (b) holds. [J

Let us interpret the above result in the frame of regulation of a private good produced
by an oligopoly. If production technologies have a constant marginal cost and a fixed cost, which
are increasing functions of a hidden parameter, and if such a parameter is independent and
identically distributed between the regulated firms, despite the adverse selection problem, an ex
ante limit in the regulated firms’ number, of an optimal regulatory policy, will be decreasing in
the firm’s expected fixed cost.

Remark 2. Changing SU-, MHR- by SU+, MHR+, we should obtain similar results to
Proposition 6 and Corollary 1., In that case, we should have o(0): =max[ ¢{0,) / k=1,...,n ]
where
6.(0):=0 A
[ANE A _J_C,W
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we should demand a positive performance to the agents with ¢8) = o), and X x7(+) =
D(-a(+)) would hold. The condition for the existence of the optimal performance would be
W (+) < -a*) < W(0+).

Specifying the model, we can study the behavior of the optimal size of agency (optimal
agents’ number). As an iflustration, consider a firm purchasing input to several suppliers, with
a finear demand function, constant returns to scale and a uniform distribution of types. Then we
have the following properties (proved in Appendix 2).

Example.- Under the assumptions of Corollary 1, suppose the symmetrical case corresponding
to:
f(n=1/8; 0<7<f, Ri=0, Bx,=PE x; )] X X;
A=1, ¢ >0, PX) =ax, a>c>283,

Then, we have that:

(a) The firm’s expected profit hiring n suppliers is:

(@< B (268 _ _
U= 4 +n+1[n+2 arcl-a(@)+u)

(b) The profit critical value is u=p[%(a-c)-108}/36.

(c) The optimal number of suppliers n” is increasing in the profitability a and decreasing
in the constant production cost ¢ and in the suppliers’ reservation utility u. If n” > 2, 0
increases with the uncertainty @, but nevertheless, the firm’s optimal expected profit decreases
with 3.

4.2.- HOMOGENEOUS PERFORMANCE AND CONVEX DEPENDENCE

In the linear case in Subsection 4.1 (Proposition 6), when agents are symmetrical, the
optimal performance function x'(+), although it is discontinuous, satisfies the properties
corresponding to the basic one-agent adverse selection model. This conclusion changes when the
disutility of each agent is strictly convex in his performance. Although the aggregate total
performance is lesser than the one of complete information, the inequality may be individually
reversed for the most efficient agents when the set of contractual types is heterogeneous enough.
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Propaesition 7.- Suppose SU-, MHR-, AS, CS-, VIDTP, MAW, A>0 and
Vi(+,*) = v(+,+) € Cvi, d.v(*,*) > 0, 95 v(+,*) = 0.

Let x"(+) and x“(+) be respectively the optimal performance functions of incomplete and
complete information and assume that they are strictly positive.’
Then the following assertions hold:

(a) };0; each i, x*(+), x%(+) are C', strictly decreasing in 6, and strictly increasing in
 for k=i,

(b) 6, < 8 implies X", (#) > x"y(B), xZ O > x“0).

() Zx"(-)and X x“(-)are strictly decreasing in each 60, vk.

@ T x%(+) = I x(+), with strict inequality at §
such that 6, > @ for some k, and E x°(8) = ¥ x"(#) where 0=(0,....0).

(€) x9(0) < x'|(0), if @ verifies §, = 8, . > 8 for some k # 1.
Proof: From Proposition 3, [t(-),x(+)] is an optimal mechanism of program BP if and only if
the function x(+)is a solution of program VP and then, by VIDTP, x'(+) has to pointwise
maximize the function Q(x,#):= W(L x) - L v(x,,8,), where

08,8): =v(x,0) +A .Fﬁ% 8,9(x,6) + M.
Because x (-) is interior, we have:
W/(E x(0) = dy(x(0),0) vé, vi. ®
Let £°(+) be such that £°(0) = W’(T x"(6)) v# and denote D = (W)
The function dy(+,8) is C' for each # and moreover d,y(+,+)>0 from the assumptions on
v(-,-). Applying the inverse function theorem, there is p(+, ) of class C' such that p(-,6) =
[3,v(+,)1" and it satisfies 8,0(z,8) >0, d,0(z,0) <0. Because, by (8), we have:

X'{(0) = p(€'(0),8), vo, vi, ©)

the value £7(6) is necessarily a solution of 0 = H(z,8) for each 8, where

5 They exist and are continuous if, for instance, v(x,0) =0p(x), e € C?, ¢’ >0, ¢’ (0)=0, ¢’ (-+ )=+ 0o,
6>0, W’(0)>0.
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H(z,0): = T o(z,6) - D(2) (10)

is a C! function and verifies 3, H(+,+)> 0. From the implicit function theorem, £'(+) is of class
c.

The optimal performance function x (+) of complete information has to be a solution of
program CIP and using a similar argument, it must verify:

xCIi(o) = pCI(ECI(o)sHi): Vaa Via (11)

letting p“( - ,6) be the inverse function of ,v(-,0) for each 0, and letting £°(6) be a solution of
0=Hz,0), where
H%z,0):= X p“(z,0) - D(2). (12)

The function p®(-,+) is also of class C! and satisfies 3,0(z,6) >0, 3,0(z,0)<0.
Therefore £°1(+) is continuously differentiable.

The performances x"(+) and x'(-) are decreasing in 6; accordingly to Proposition 2
[x*(-) and x“(+) are dominant strategy implementable]. We will show later that the relations

9,£°(0) >0, 3,£7(0) >0

hold and then, will have, from (9) and (11), the inequalities 3,x.*(#) >0, 9,x7(@) >0 for ki

because 4, p < 0 holds. Therefore we will obtain part (a}.

As the relations d,p(+,+) < 0 and 9,0°(+,+) < 0 hold, for § such that 6; < 6, we have
() =p(£7(0),8) > p(£7(6),6) = x'(0) and, similarly, we get x(6) > x“(#). Then, we have
part (b).

From the properties of p, p©, D, and differentiating the expressions H(£(8),6)=0,

HYEC(6),0)=0, we obtain 3,%,"(® >0, 3,x(8) >0. This implies that part (c) holds because

D’ <0.

- By the definition of «(-,+) and assumption CS-, the inequality d,y(+,8) = d.v(+,9)
holds, and moreover strictly if § > . Therefore, we have p(-,6) < p“(+,6) with strict
inequality if # > #. Then, form (10) and (12) we get H(z,0) = H(z,0) vz v0 and besides
strictly if 8, > @ for some k. This implies £7(§) < £7(@) [strictly if there is k such that &, >
0], because H(-,0) and H(+,6) are strictly increasing, and (d) holds. 1t is clear that £ x“(#)
= ¥ x'i(#), because y(+,8) = v(+,0).
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Finally, let # be such that 6, = 8, 6, > 6 for some k # i. Then we have
xUO) = p“EN0),0) = o(£9®),8) < 0(£°(0),8) = x'(8),
because £°%(0) < £7(#), and the part (e) holds. (1

Under the conditions of Proposition 7, if the set of contractual types is completely
homogeneous, i. e., # is such that §, = 6 € 10, 6] vi, we will have x°L(f) = DE@)/n >
D((0))/n = x"(f) vi. By continuity, if the set of types was not heterogeneous enough, we
should have x“.(0) = x",(6) vi. However, Proposition 7(¢) indicates that the optimal mechanism
may ask very efficient agents for an individual performance greater than the one of complete
information, if the set of contractual types is heterogeneous enough.

The intuition, under SU-, is the following. Similarly to the basic one-agent adverse
selection model, each agent in our model prefers to overstate his type when the principal offers
the optimal mechanism of complete information. In order to see this, note that the agent i’s
utility of type 6;, announcing r; > 6, is:

(05,7 + Vi&(05,7),0) = vxT(05,7),7) - vxT(0,5,7),0) + u
which is grater than u when 7, > §,, because condition MAW holds.

Therefore, in order to decrease the agent i’s informational rent:

7

Ri(a’x( ' )) = J agV(xi(G_,.,T),T)dT,

the principal has to reduce the required performance, because we suppose the Spence-Mirtlees’
condition d v > 0.

But, on the other hand, we have aeixf’(ﬂ) >0 (if the agent k’s type increases, the agent
1’s efficiency rises relating to the one of the agent k and the mechanism asks the agent i for more
performance). This implies that the agent i’s informational rent Ry(6.,,7,x?(+)) decreases when
the agent k is prevented from announcing the type 7, > 0, Then, the principal "saves”

informational rent of an agent inducing the truthful revelation of types of others agents.
As this diminution in rent increases with the agent i’s efficiency, i.e.,

33,.[[ R0, 7.7+ )-RO .0, x“(- D] <0, 7, >0,
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the principal may prefer to increase the required performance, in relation to the one of complete
information, for very efficient agents if the set of contractual types is heterogeneous enough.

Remark 3. Changing SU-, MHR- by SU+, MHR+ in Proposition 7, we obtain an analogous
result. For this we should suppose v(-, +) satisfying

1-F(+)

A+, +) <0, 3,0+, )=\
M) <O B, )N s

3, V(*, ) <0.°

The functions x';(+) and x“(+) would be s, increasing in 6, and s. decreasing in 8, with k#1i.

Now 6, <6; would imply x"() < x',(#), x“(#) < x“(#) and the aggregate total performance

would be s. increasing in each type. We should have also X x“4(+) = I x"i(-), but now strictly

at & such that & < 9 for some k, and xCI,(B) = X x"(0) if 0 (B ,B) Moreover, given i,
x°(0) < x",(8) would hold if # satisfies 6, 9 0k<6 for some k#i.

In this Convex Case the principal may also prefer ex ante to hire several agents.

Corollary 2 Under the assumptions of Proposition 7, suppose the case:
v(x,0) = X2 + ¥, 6§ >0, ¥(-) =0, ¥(-) =0 WO > 0.

Then, the optimal performance functions x'(+) and x“(+), of incomplete and complete
information respectively, exist and are interior.
If the the value (1-N)E¥+A¥(6)+Au is low enough, the principal prefers ex ante to hire

more than one agent.

Proof: From Proposition 3 and assuming the considered case, if the optimal performance
function of incomplete information x"(+) exists, it will pointwise maximize the function:

((x,0) = W(E x)) - £ $(0)xY2 - n(E{+Au) (13)

where ¢(H) = 6+)\;?((;;) S0 )i=(1-MF( )+ A¥@). As ¢(+) > 0 and we assume W' (0) > 0,

® This holds if, for instance, v(x,0) = 8e(x), ¢ € C?, ¢’ < 0, & > 0, with ¢(0): =0-A(1-T()/1(6) >
0, vf. Note that v(x,0) =¢(0)w(x) in this case. For an uniform distribution of types, we have ¢(+) >0 if 6/0
> M(1+N).
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W’(+) < 0, every maximum of Q(-,0), on R®, , has to be interior. Therefore, if X'+ ) exists,
it will be interior.
Using a similar argument for 3(x,0) = W(L x;) - L 6, x,/2 - a(E¥ +Mu), we have that
if the optimal performance function of complete information x'( +) exists, it will be interior.
By Proposition 7, if x'(+) and x“(:) exist, the values £ (#)=W’(Zx"(#)) and
£°5(0) =W’ (Ex“(#)) will be solutions respectively of H(z,#) =0 and H(z,8)=0, for each 0, with
H(z,0)=zs(0)-D(z), H(z,0) =2z5“(0)-D(z) where

s@:= 3 5%65 §7(g): = E;—_- (14)

Since s(+) > 0, we have that HW’(0),0) = W’(0)s(#) > 0. On the other hand, if
W’(+0)=<0 the inequality H(0,0) = -D(0) < 0 holds; and if W’(+o) > 0 we get
H(W’(+0),8) = -oo. This implies that for any # there is a unique z > 0 such that
H(z,0) = 0.

Given £°(+) > 0 such that H(£"(6),0)=0 for each 0, the function x"(+) defined by x",(6)
= £"(0)/$(6) vi is the only pointwise maximum of Q(-,-) and it is, then, the optimal
performance function of incomplete information.

A similar argument shows that x“'(-) exists, is unique and interior.

Note that from the implicit function theorem, we have £7(8) =£(s(0)) V@, where £(+) >
0 is a function of class C' on s> 0 satisfying:

5 £(5) = D(s)) vs>0. (15)
Moreover, we obtain £°(s) = £(8)/[D’(£(5))-s] < 0 deriving (15).

Substituting x™(+) into (13) and by (14) and (15), the principal’s expected utlhty can be
rewritten as

E[Q(x"(0),0] = E[J(s(0))] - n(E{+Au) (16)
where J(s):= WID(E(GD] - £(s) DEE)/2.

If we derive J(-), we can use (15) to obtain: I’(s) = [£(5)]*/2 > 0.
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Let F(s;n) be the distribution function of s(+) induced by the random vector ¢
corresponding to n agents. Consider n’ > n. We have:

ﬂ’

o pr 1381 =1 e
F(s;n’) —Pﬂgm j:zn;l 3@ <s1<Pf 3 WS.S]I F(s;n)

since ¢(+) > 0. On the other hand, we have that 1/¢6(+) € [1/¢(-(5),1/Q] and, therefore, for each
s € In/$(0), n’/H(B) U In/8, n’/6] the inequality F(s;n’) < F(s;n) holds.

The latter points out that an increase of agents’ number n produces an improvement of
F(-+;+) according to the first order stochastic dominance.

AsT’(+) > 0, the function E{J(s(6))] has to be strictly increasing in the agents’ number.
Finally, from (16), we get that if E¢{+Mu is lower enough, the principal prefers ex ante to hire
more than one agent. [l

The intuition is similar to the one of linear case. Now, the principal’s expected utility
depends increasingly on s(f), a value which measures the total marginal utility that, for the
principal, represents contracting n agents of types f, because ¢(f) is the virtual marginal
disutility of an agent with type #. The distribution of s(+) increases with the agents’ number n,
according to the first order stochastic dominance, and therefore, the principal’s expected utility
increases with n if the reservation utility is low.

Let us interpret the above results in the frame of the firm which purchases an input to
several exclusive suppliers, each one of them possessing a strictly increasing marginal production
cost which depends on his hidden type according to Proposition 7. In this case, as A=1 and
R;=0 vi we have W=B=[P(Zx;)-c]Ix;, if we assume that the firm transforms an unity of input
to an unity of output with a constant marginal cost equal to ¢. On the one hand, if types are
independents, the firm may ex ante prefer to contract with several suppliers because the ex ante
distribution of the "total" virtual marginal costs of engaged suppliers improves with the number
of them. On the other hand, when the firm has several suppliers, unlike the case with only one,
the firm may require a very efficient supplier to produce a quantity of input greater than the one
of complete information. The reason is that a decrease in a supplier’s input quantity, to reduce
his informational rent, makes an increase of the others supplier’s quantities more desirable for
the firm and, therefore, the firm has to make a trade-off between the several possible reductions
of supplier’s quantities with regard to the ones of complete information. '
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4.3.- HETEROGENEOUS PERFORMANCE: THE CASE OF REGULATION

In this subsection we will apply the results of Section 2 in order to analyze the properties
of the optimal regulatory mechanism in the bellow setting of regnlation of several private goods.
Consider the regulation of a monopoly with several independent divisions (or the one of a group
of firms), each one producing a different good. Let x; be the quantity of good i produced by the
division (or firm) i=1,...,n. )

The production cost of the division i is Cy(x;,#) and we assume the hypotheses of
Proposition 3 implying the equivalence between the Bayesian implementation and the dominant
strategy implementation. Therefore, we will suppose that F,(-)/f(+) is increasing,

4,C, >0, 9.,C isincreasing in 6, and 8,C; =0, for any i.
Let S(x) denote the consumers’ gross surplus. It depends on the vector x=(x,...,x,) of

productions of goods. Therefore the (linear) price is P,(x) =9,5(x). The regulator’s objective

function is Sx) - EPx)x, - 5 + (I-A) Z [ 5 + Pi(x)x; - Cy(x;,60) 1
and we can verify that, according to our formulation, we have:
B(x,0) = S(x) - A & P(x)x; - (1-A) T Ci(x,8)

with a virtual income equal to W{x,8) = S(x).
In order to obtain intuitions about optimal productions, we assume the following quadratic

frame:

Sxy=ax,+ @

-1) .2 d 2,
2 Exr' E[Ex,} b

where d € 1-1/(n-1), 13, a>0, and
Cix,0) = 6,x, + (@), 6, €0, x,20, § >0, ¥() =20, ¥ () =0vi
Thus, the price of good i is
P(x) fa -X, —dﬁéﬁxj.

Note that, for d <0 goods are complements and for d>0 goods are substitutes.
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Now, conclusions change according to the class of goods. When goods are complements,
any optimal production is lower than the one of complete information. But when goods are
substitutes, this inequality may be reversed for the most efficient divisions (or firms) if there are
another ones which are not so efficient.

Proposition 8 If a>0 is high enough, in the above quadratic case of regulation, the optimal
prices and productions of incomplete information x'(+), P'(+) and the ones of complete
information x°(+), PY(+) verify the following properties:

a) 3x* <0, 8x< <0, vi
[P0 [

(b) If goods are substitutes (d > 0): al,in* >0, x>0, vj#i

If goods are complements (d<0): 9,x* <0, 8,x7 <0, Vvj#i.

(¢) When goods are substitutes (d>>0), given 8 such that 6, = 8, , 6, > 0, for some j #i,
we have that x“L(f) < x'y(0).
When goods are complements (d <0), we have x%,(0) = x",(f) vé, with strict
inequality if 0 (8,,6,,...,08,).
(@) PYYO) =06, P =6 + \NF()/f0,), vi

Proof: Hypotheses imply that, applying Proposition 3, the vector of optimal productions x'( )
of incomplete information is obtained by pointwise maximizing the function '

Q(x,0) l== Sx) - ¥ ¢(0)x; - & E;, where §(+):= (l—l)ﬁ'i(-)-i-?\\lq(a) vi

and the virtual marginal production cost of division (or firm) i is ¢,(6):= 6, + A F(0; )/fi(6).

As 9, 0=-1, 8 _0=-d, j#i, the matrix M of second-derivatives of { with respect the
variables (xy,...,x,) satisfies x M x = (d-1) [ £ x{? - {d/(d-1)]*1 = (-1} £ (x; - ax)* < 0, ¥x
where x:=Xx; and a=t ] 1+[1+T1”_‘%]”2}] >1 because nd/(1-d) > -1

n —_
when -1/(n-1) < d < 1.

Therefore, the matrix M is negative definite and any x verifying P(x)=¢,(#) Vi is a absolute
maximum of the function Q(-,6).
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Adding the expressions g-x,—d g x,=¢6) vi, we obtain

J]J’#l

eoay L - L OL0)
Ly =g
5 @=L a9 T 600)- {Mw(e)ﬁ vi.

1+(n—1)d i d}j

As the complete information solution verifies the above expressions if ¢,(6;) is changed
by 6, for all i, the assertions (a) and (b) hold.
The assertion (c) is satisfied also, because, for all i and all @,

x,* (6) -x.(6) = 1

1+(n-1)d Age £6) 1-d " f6)

L cn-nd. F0;
A 1.4]2 K0 1+ 2)d ,(,)]]‘

Finally, it is clear that the assertion (d) holds. [

The intuition of this proposition complements the one of Proposition 7. Like above, to
reduce the informational rent of a division (or firm) the regulator (principal), in principle, has
to ask it for a production lower than the one of complete information.

When goods are complements, if the quantity of a good goes down, the marginal social
value of another goods decreases also. Therefore, the regulator distorts productions away from
first-best allocations because informational rents and marginal social values go "in the same
direction".

When goods are substitutes, informational rents and marginal social values go in opposite
directions: if the production of a good decreases, the marginal social value of the other goods
increases. The optimal distortion, with regard to the complete information solution, has to make
a trade-off among the reductions in rent of divisions. Like in the former subsection, the regulator
may prefer to increase the elicited production, with regard to the one of complete information,

from a very efficient division.
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5.- SECOND SETTING: INDIVIDUAL PERFORMANCES BASED ON
INDIVIDUAL TYPES

This section analyzes our second setting, where feasible mechanisms have each individual
performance based only on the type reported by the respective agent. This class of mechanisms
is justifiable under two conditions: contracts depending on performances are the only feasible,
and every agent takes a hidden action, after privately observing his type, which determines
univocally his performance.

There are plenty of economic situations in which the first condition holds: the
remuneration of some agents (workers, employees, sellers) is based directly on performances
or anocther indicators [see the chapters 12 and 13 of Milgrom & Roberts (1992)] (not on
mechanisms). To give a more precise sense to the second condition, which is also assumed in
the model with correlated types of Demski & Sappington (1984}, suppose that the agent i’s
{verifiable) performance is x;=X(a;,0,), where a, denotes the hidden action (for instance, an
effort) which the agent takes after observing his type ; and accepting his contract. Assume that
the agent 1’s utility function is Ut;,x,a) = t; + Ri(x) - ¥;(a), where ¥,(+) denotes the disutility
of his action. Given a,=¢(X;,0,) where ¢,(+,8,) is the inverse function of X;(-,8,), we can rewrite
the agent’s utility function as t; + Ri(x) - ¥(¢,(x;,6)) and we obtain a similar expression to the
ones in Section 2.

Let us remark that if the feasible contracts depends only on performances X=(xy,...,X,),
every strategy x;(-) of agent i depends only on his type 6;. '

In spite of this constraint, supposing the above two conditions, we prove that the
principal can utilize, in an equivalent manner, mechanisms [t(-),x(+)} such that each individual
performance function x;( +) depends only on the agent i’s announced type 6. We will denote x (6.
J the performance vector:

(001, %y (00), X1 1 (G )+ Xa(00))

Proposition 9
(2) Let S/+), x(+), i=1,...,n, be satisfying

x{(0) € argmax{ ET S;(x,(6.,x) + Vi (x(0.0,%:,6) 1 / 20} v6;, vi 17
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Then, the functions t(+), i=1,...,n, which are defined t(0) = B[ S;(x(0),x,@)) 1,
i=1,...,n, verify

6, € argmax{t(r) + ET Vi(x;(6.),x(7),0) 1/ n,€0;} vo, vi (18)

(b) Given t(+), x(+), i=1,...,n, satisfying the expressions (18) there are contracts S;(+),
i= 1,...n, verifying (17) and such that:

ET Si(x,(00,x(62) 1 = t(6), vo,, vi.

Proof: (a) Let S;(+), x,(+), i=1,...,n, be verifying (17). Given functions t(+) defined above, as
each x,(+) depends only on 6, for each k and the mathematical expectation is a linear operator,
it is easy to show that if we apply (17) for x;=x;(f,), we obtain (18).

(b) Let t,(-), x(-), i=1,...,n, satisfying (18). From (18) we have that x,(6,)=x,(6;")
implies t(8)= t,(6,’). Therefore, the following contracts are well defined and they satisfy (17):

Six) = t(6) if 36,/ x=x;0), Si(x) = my if x;#x,(6)
where
m; < inf{ t(0) + B V,(x.(0.),x(8),8) - Vi{x(6.),x; ,6) / €06, x,=0}. O
5.1.- THE EQUIVALENCE OF IMPLEMENTATIONS IN THE SECOND SETTING
We have just shown that contract implementation is equivalent to the one realized by
mechanisms verifying (18). On the other hand, it is obvious that there is not loss of generality
if, in the Bayesian program BP’, we change self-selection constraints for the ones defined in

(18). The equivalence between programs BP’ and DP’ holds now, under the assumption

Spence-Mirrlees’ condition (SM)
3,V (*,*) >0 vi

Proposition 10 Under SU, SM, we have TI'(BP’) = TI'(DP”).

Proof: Given a feasible mechanism [t(+),x(+)] for the program DP’, [t(+),x(-)] is a feasible
mechanism for BP’, with T,(+):= Ei[t(8,, *)], i=1,...,n, because the functions () satisfy (18).
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Moreover, it is evident that the equalities E[t(-)]=E[t(+)] Vi hold. Then, we have
I'(DP’) <I'(BP’).

Given a feasible mechanism [t(+),x(+)] for the program BP’, using a similar argument
like the one in the proof of Proposition 2 (for the function ), applied to the constraints (1) [or
(18)], we obtain for each 7;, 6, and i:

B Vixi(6.),%0).8) - Vi(x;0.),%6),7) 1 = ET Vi(xi(8),x(r),8) - Vixi(0.),x(r),7) 1.

Because the function x,(+) depends only on 6, for all k, by SU- we have:

vi(%i(0),7) - vi(x(6),60) = vi(xi(m), ) - vi(xi(1),0).

Therefore, condition SM implies that x,(+) is decreasing vi.
On the other hand, using a similar argument to the one in Proposition 1,
we have V0, vi:

[}

t(8)=E{ -V x_(6_).x0).6)+ ‘[fa,,iv,.(x,.(r) 7] + 4,

But as x;( ) is decreasing and we assume SM, the transfer functions

Uf
F(O_,8) =~V (6_),%,6),8) + ‘! 8, v/ (), D7 +8,, i=1,...,n

i

dominant strategy implement x(-) and they satisfy Eft(-)] = Et(+)] for every i. We have,
then, I'(BP’") < I'(DP’).

Under SU+, a similar argument shows that each x;(-) is increasing and dominant
strategy implementable. [3

- 5.2.- PROPERTIES OF THE OPTIMAL PERFORMANCES IN THE SECOND SETTING

Consider, as in Section 2, the virtual program which will be called VP’. Such a program
is similar to VP except that feasible functions x( ) satisfy that every x(+) depends only on 6,.
Then, the program VP’ is not equivalent generally to the pointwise maximization of the function
Q(x,8). Nevertheless, under the assumptions of Proposition 3, the equivalence among the three
programs BP’, DP’ and VP’ holds.
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Propeosition 11 Under the assumptions SU, MHR, CS, MAW, ITVI, we have

(a) T'(BP) = I'(DP’) = I'(VP).
(b) Supposing that the function Q(-, -) is C* and concave in x, the performance function
x(+) is optimal if and only if the following conditions hold:

ET0,00_(0_).x( )0, )] <0, ace. vi

)

E"[ax'{l(x_l.(&,i),x,.( 1, Nxl+) =0, ae Vi

Proof: (a) A similar argument to the one in Proposition 1, shows that I'(BP’) =

I'(DP’) < I'(VP’).
Under SU-, given a solution x(+) of VP’, we have for all i and for all 8;

14

x(6) € argmax [E{W(x_(6).x)) - Y, 7/*.6).601-v(x,.0) / x,=0]
k=1,k i
where the functions +,(+,+) are defined in Proposition 2. Utilizing an argument similar to its
proof, we have that x;(+) is decreasing and, therefore, dominant strategy implementable. Since
we assume MAW, we get T(VP") <T'(DP’).
If we suppose SU+ the line of argument is analogous.

(b) By the part (a), x(+) is an optimal performance function if and only if it is a solution
of program VP’. Supposing the assumptions in the part (b), the functional T(-), defined by
T(x(+)): =E[Q(x(0),9)], is Fréchet differentiable and concave on the convex cone P of positive
functions in the normed space of piecewise continuously differentiable functions x(+), satisfying
that each x,(+) depends only on 8.

Therefore [see section 8.7 of Luenberger (1969)], x(+) maximizes T(+) on P if and only
if:
ST(x(+);h(-)) = 0, vh € P, 6T(x(-)x(-)) =0,

where §T(x(+); - ) represents the Fréchet differential of the functional T(-) at the vector x(-).
Because

STx( +);h( +)) =E[ 18, Q(x(8),0)2,(6) ]

and moreover the density functions of types are strictly positive and P is formed by positive
functions, we can deduce easily the conditions of part (b). [
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Under complete information, we assume also, in this second setting, that the feasible
“equivalent” mechanisms have each individual performance function depending only on the
respective type. Therefore, under complete information, the principal will solve the program:

(CIP’) max B[ B(x,0) + AL Vi(x,0) - A y; 1.
x(+)

Assuming that the principal’s virtual income depends on performances only through the
aggregate total performance, the optimal performance demanded to the most efficient agents may
be greater than the one of complete information.

Corollary 3 Given the assumptions SU-, MHR-, LD, VIDTP, AS, suppose the case:
W(z) = a(l-e), with a>0, b>0, ab > ¢ O)/(EH)™, >0
where ¢(@):= 8 + N F(@) / £f(0), A > 0. Then,

(a) The optimal performance functions of incomplete and complete information satisfy
respectively:

f(0y L E¢ gy | Ef .
x,‘ (9,) Elog[w], x,’ (Q)"T)‘log[wla l 17‘--,"’
where 0 < g, < B/ (@), 0 < u < E0/8,i=1,...,n,
verify I1 u; = B¢ / (ab), II u®, = Ef / (ab).

(b) There is i such that x(§) < xW(®) ifn = 2.

Proof: From Proposition 11, x’(+) is an interior optimal performance function if and only if:

n

abexp| -bx,* (8)1E[ exp[-b E x*@)11=00), v6, vi.
k=1, ki
As types are independent, denoting p;=E{exp[-b x"(6)1} Vi, the above equalitics are
equivalent to:

abexpl -bx* @) T1 1,=9(6), V6, Vi 19
AL

=1,k =i
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and utilizing the mathematical expectation, we obtain IIy;=E¢/(ab). Therefore, we have

H pk=....Ei, Vi,

=1,k i aby,

and substituting into (19) and calculating x",(f;), we sec that the conditions in part (a) are
necessary and sufficient for x"(+) being an interior optimal performance function. On the other
hand, the values y; defined above exist from assumptions.

For x“(+), we can use a similar argument because x“'(+) has to be a solution of program
CIP’ (which coincides with VP’ when A=0). The part (a) holds.

In order to prove the part (b), suppose x(8) = x"(8) vi. Then, by the part (a), we
obtain Ef/u = E¢/u; vi. This implies (EO)1Iu", = (E¢)"/IIyu; which is equivalent to
(B! = (E¢)™! contradicting n=2. []

The intuition is the following. In principle, the principal can decrease the informational
rent of an agent by reducing his performance. But given the supposed virtual income, if he
decreases the performance asked for an agent, preserving the income level, he has to increase
the performances asked for other agents and this implies a rise of their informational rents.

Corollary 3 shows that the principal prefers increase the solicited performance, in relation
to the one of complete information, for a very efficient agent in order to decrease informational
rents of others less efficient agents.
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6.~ CONCLUSIONS

In this paper we sfudy an adverse selection model, with a principal and several agents,
where contracting is under asymmetric information. The agents’ number is finite and t)fpes are
"continuous" and independent. We analyze two settings. In the first one, the performance
functions of mechanisms may depend on all the reported types. In the second one, each
performance function depends only on the respective announced type.

Our first setting represents situations where an economic agent (the principal) proposes
personalized take-it-or-leave-it "prices” and "quantities" to another agents, so that each
individual "menu" of contracts depends on every announced type. Think of a firm purchasing
an input, which is unfamiliar with the suppliers’ productivity. Another example is the regulation
of a good produced by an oligopoly with hidden efficiencies or the regulation of a monopolist
with several independent divisions (or of a group of firms), each one producing a different good.
Such a menu of contracts may represent also, for instance, several classes of managerial
compensations. _

Under the standard hypotheses in the basic one-agent adverse selection model and the
independence assumption, there is not loss of generality if the principal considers only
mechanisms for which every agent reports his true type as a dominant strategy. The former
"equivalence" between the Bayesian implementation and the dominant strategy one stands firm
in some cases, although the utility function of each agent is not monotone in his type.

Supposing that the principal’s "virtual income" depends on the agents’ performances only
through the aggregate total performance (which is natural in the context of regulation of the good
produced by an oligopoly), unlike the standard properties of the optimal mechanisms in the basic
one-agent adverse selection model, in our model the optimal mechanism may ask very efficient
agents for an individual performance higher than the one of complete information. The intuition
is that the principal "saves" informational rent of an agent inducing the truthful revelation of
others agent’s types. In the frame of regulation of a monopolist with several independent
divisions (or the one of a group of firms), each one producing a different good, when goods are
substitutes the optimal regulatory mechanism may ask the most efficient divisions (or firms) for
an individual production higher than the one of complete information. Nevertheless, when goods
are complements, all individual production is lower than the one of complete information. The
explanation is that, when goods are substitutes, informational rents and marginal social values
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of goods go in opposite directions: if the production of a good decreases, the marginal social
value of the other goods increases and the optimal distortion, with regard to the complete
information solution, has to make a trade-off between the reductions in rent of divisions.

Regarding the agents’ ex ante optimal number (which in the frame of regulation of the
private good produced by an oligopoly would represent an ex ante limit on the regulated firms’
number), when agents are symmetrical, the principal may prefer ex ante to hire more than one
agent because the distribution of the agents’ virtual costs improves with the agent’s number,
according to the first order stochastic dominance.

The second setting, where feasible mechanisms have each individual performance based
only on the type reported by the respective agent, is justifiable under two conditions which are
verified in plenty of economic situations: contracts depending on performances are the only
feasible, and every agent takes a hidden action, after privately observing his type, which
determines univocally his performance. Conclusions in this second setting are similar to the ones
of the first setting,
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Appendix 1: Proof of Lemma 2

By the integral operator properties, each program [P(7))] is equivalent to the foﬂowing
ones. Note that there is one for each value of 8 if 'ri=5i we consider only the first program,
whereas if r;=8,;, only the second one.

For each 8, € [4;, 7:

[PO;rp]  max  T[x(+,0);0,7)
x(+,0) s.t. GIx(-,0);0,7] = 0
for each &, € }r, 6.]:

[2(61;71)] max I[xi( * aai);eia‘ri]
xi( * ’91) s.t. g[xi( * aei);gi)'ri] = 0

The functionals 'f[- ;0,711 TI 36,731, (—}[- 10,71, G[+;0,7], are defined on the space Z;
of bounded and continuously differentiable aimost everywhere functions from ©, to R (extending
in a differentiable fashion functions W; and ¢; for x <0), in the following manner:

Tlz();0,7] = E{W{z(6. )] - B:(0:0) ¢dz(81}, Glz(+);0,71 = Eiglz(0)] + ¥.(n)
Tlz(-);0, 7] = B{W[z(0;)] - B(6:8) w261}, Glz(+);8,71 = - Blz(0)] - ¥ ().

It is easy to show that Gateaux differentials of the above functionals are linear in their
increments.
Differentiable extension of W; and ¢, can be chosen such that the following inequalities
hold:
W) - Bil0:0) 20 < Wix") - 60500 o(x) V& € B, vx <0
Wix) - 8058 oi(x) < Wilx") - 8i(0;8) oix’) V8 E B, vx <0

Any solution of program [13(0-1;7;)] must be strictly positive on some subset of positive
measure in Q. If a solution was negative almost everywhere, the objective function value would
be lower than Wi(x") - Bi(0,;0) @(x"). As ¢ix") > ¢,(0), the constant functional equal to x;
would be feasible for the program with an objective function value lower than the one of the
solution: a contradiction.

Thus, every solution of [E(ﬂi;fi)] has to be a regular point for the constraint
a‘{xi( +,8);6,7]=0 [according to definition in Luenberger (1969), page 248].
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An analogous argument, taking into account ¢,(x") <-¥.(8), ¥;"’ <0, may be applied
for [P(6;;7)], and therefore each one of its solutions is a regular point.

Using the generalized Kuhn-Tucker theorem [page 249 of Luenberger (1969)], we have
that given a solution x(-,0) of [1;(957;)] there is a(f,r) = 0 such that the associated
Lagrangian:

Tl2(+);0,7) + a(@,7) Glz();6,7]

is stationary at x;(+,8). This implies that the equality:
E{ [ W [z(0)] + [aB,7) - B(0:6)] (201 10(8) } = 0, vh € Z,
holds for each solution x,(-,8,) and then, we get
Wi x(-,00] + [o(8i7) - ﬁi(giggi)] @' [x(+,6)] = 0, a.e.on O,

for all solution. Since W;’(+) / ¢;’(+) is strictly decreasing, any solution of [13(&;1-;)] has to be
almost everywhere constant (independent on types 8 ).

With a similar line of argument, we can prove that any solution of program [P(0;;7)] is
a.e. constant with regard to types 8,.

We have just shown, then, that the above programs can be reduced, without loss of
generality, defining them on the real number space (with x; € R). Let ¢(+) and ¢(+) be the

continuously differentiable, strictly decreasing and positive functions which are unique solutions
respectively of

W’[&i(g)] = 5i(0§55) ﬁai’{gi(e)] viE O, W’[g(6)] = Bi0;0) ¢’ [eDl Vv 0 € O,
These functions exist by the properties of W; and ¢, because moreover we have 8;(<;+)>0. On
the other hand, we have B,(-;6) > B(+;0,) and this implies ¢; (+) < ¢; (+}.

Therefore, the unique solutions of programs [P(0;7)] and [P(#;7)] are, respectively:

x,(0;7): = max{ ;i(ai)s pim) 1, X0 = min[ ¢; (8 ), oi(7) ]

and, thus, the only solution of program [P(7)] is:
x(0;m) = x0;7) if 6, € [0, 7[, x@Om) = x@;7) if 6 € I, 6]

We can prove easily that the properties of Lemma 2 hold. [l
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Appendix 2: Proof of the properties of the Example

When f(7)=1/8; 0<7<8, we have ¢(r)=2r, G (a)=1-(1-0/28)" for « € [0,28]. The
principal’s expected utility hiring n agents will be:

Qﬁ
[(a C— oz(ﬂ))] n(‘I’(@)‘Fu)" l(a c— a) (1 _?)n lde — n(‘I’(@)H,l)_.

1

G T: ! 21 -2y-'dz~(a~c) ‘[ (1 -2y7dz ] -n(¥ () +u) =

4

_{a-c)? 2(n-1)! (n-1)! R
=T B I @0 o 1m0 ) -

= V(a,c,B,n) - I’l(‘I’(B)"‘U)

h . (a—c) B 28 +
where Wia,c,B,n): 7 n I[n+2 —a+cl.

We prove easily that 9,V > 0, 0,V < 0,9,V|,-; =u, ,V},.. = 0, and then, the properties
(a) and (b) of the example hold.
Let n* denote the function satisfying ¢(a,c,8,u,n")=0, where
w(a,c,B,u,n) = anV(a,C,B,n) - (\If(g)—f-u)
From the implicit function theorem, we get that n" is continuously differentiable.
As 0o < 0,00 = -0 > 0, 3¢ < 0, and dge > O (if n=2) relations 3,n" =
0,000 > 0, 90" = -0,0/0,p < 0, dn" =-0,0/0,p < 0, 90" = -dg0/dp > 0 (if n* =2)

hold.

Finally, given B(a,c,8,u):= V(a,c,8,n) - (¥(§)+u)n" we have 3;B=3,V(a,c,8,n") < 0. (J
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