STABILITY OF MIXED EQUILIBRIA IN INTERACTIONS
BETWEEN TWO POPULATIONS*

Alexander Vasin**

WP-AD 94-08

* This paper was prepared within period of my visit to Alicante in October of 93. I am grateful to
the University of Alicante for the hospitality. I wish to express my thanks to K. Sigmund and F. Vega-
Redondo for very helpful comments. This research has been supported by RFFI under project 93-012-539.

*#* Moscow State University, Faculty of Computational Mathematics and Cybernetics.



Editor: Instituto Valenciano de
Investigaciones Econémicas, S.A.
Primera Edicién Mayo 1994.

ISBN: 84-482-0546-4

Depdsito Legal: V-1478-1994
Impreso por Copisteria Sanchis, S.L.,
Quart, 121-bajo, 46008-Valencia.
Printed in Spain.




STABILITY OF MIXED FQUILIBRIA
IN INTERACTIONS BETWEEN TWO POPULATIONS

Alexander Vasin

ABSTRACT

This paper constders Nash equtlibria of a game played by tTwo
populations. Stabllily of the mixed equilibria (s dlscussed for a
wide class of dlfferenttal systems describing the evolutionary
dynamtcs of behavior. The matn property of the systems under
constderation is that every Nash equtlibrium of the gome (s @
ftxed point. The paper shows that no mixed equiltbrium is linearly
asymptottcally stable for the autonomous systems of this class. It
also establishes that ltnear (nstabtlity of the sald Nash
equtlibrium for an autonomous system leads to 1{1ts Liapunov

Instabtlity for any corresponding non-aulonomous system.
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1 . INTRODUCTTON

This paper discusses the limiting behavior in a wide class of
dynamical systems that can be used to describe the evolution of
animal or social behavior. The best-known particular instanse of

such systems is that of replicator dynamics.

The relationship between stable points or path ‘1imits of
evolutionary models and solutions of static Zame theory has been
widely discussed (see Bomze, 1888, van Damme, 1987, Hofbauer and
Sigmund, 1888, Nachbar 1880, for the surveys of the corregponding
regsults). Under general assumptions, both path limits and stable
points correspond to MNash eguilibria. The notion of ES8S together
with strict egquilibrium give the sufficient conditions of
asymptotic stability for some classes of dynamical models (=ee
Maynard-Smith, 1982, Vasin, 1988). However, these conditions are
inapplicable to non-trivial mixed equilibria of agymmetric
interactions, in particular, interactions between two populations,

since such equilibria are never ESS (Selten, 19805,

As far as the replicator dynamics are concerned, Schuster et
al (1981) have shown that for randon palr contests of two
populations a non-trivial mixed equilibrium is never linearly
asymptotically stable, i.e., Re A*0 for some eigenvalue A of‘ the
Jacobian at this point. The present paper shows that this
proposition ig valid for a wide class of continuous evolutionary

dynamics. The main property of the systems under consideration ig



that every Nash equilibrium of any interaction model is a Fixed
point of the systems. I call these systens coordinated with
equilibrium, or briefly E€-coordinated systems. Every monotone
system onsidered by Samuelson (1888) or Nachbar (1980) is

E-coordinated if its differentiasl operator is smooth. Furthermore,

I will show that linear instability (Re “>O) of an egquilibrium for

an autonomous E-coordinated system inplies its Lyapunov

ingtability for all corresponding non-autonomous systems.

Let us note that Ritzberger and Vogelsberger (1880), and
Yamuelson and Zhang (1992) establish the more strong proposition
for the replicator dynamics and for aggregate monotonic selection
dynamics (AMSDs) respectively. They show that only strict
equilibria are asymptotically stable in these evolutionary games

as applied to f-player normal-form games.

However the present paper considers the essentially wider
class of evolutionary dynamics. While any AMSD way be obtained
from the replicator dynamics by player-specific reparametrization
of time, the class of 6E-coordinated models includes also any

smooth player-and-strategy-specific reparametrization of time in

the replicator dynamics (see Section 3).

The remainder of the paper is arranged as follows. The next
section defines & general model of interaction between two
populations. Section 3 introduces the class of E-coordinated

dynamical systems and treats some examples. Section 4 establishes



the theorem on instability of mixed equilibria. Section 5]

discusses the stability of equilibria of center-type.

2., THE MODEL OF INTERACTION

Let Xﬁ{X;g.;ang} and Yi{Y;,...,Y%}be the sets of gtrategies
of two populations. The two populations may be groups either of
the same species or of two different species. We assume that in
the considered interaction individuals of the first populations
come into contact only with the second population and vice versa.
At any given time each individual carries out a particular
strategy. Let

pCty = (P(ty,...,p () e A" = {p e R]| Zp=1}

and Q1) = (Q(1),...,q (t)) € A" be frequency distributions of
strategies, M(f) and N(t) - the population sizes. The payoff
functions  4(q(l)), i=1,...,m, and BJ.(p(t)), J=1,....,1,
characterize the results of the interaction for all strategies. 5o
we consider the game I' with the sets of strategies X and Y and the
payoff functions Ai(Q), l%(p) as a general model of the

interaction between two population.

The reader will recall that a point (P,QeA"xA” is Nash
equilibrium of I' iff for any {,J

(P>0) » 1 e Argmax 4 (@),

(13

(4>0) » J e Argmax B (D);

the equilibrium is mixed iff for every i,J P (¥)«<i, qj(t><1.



It is easy to see that every game with continuous payoff
functions has an equilibrium and, wmoreover, under mild assumptions
on the payoff functions’ independence the number of positive

coordinates for P and (¢ is the same.

The best-studied interaction is randon pair contests
(Schuster et al., 1881 Bomze, 1988). In this interaction
contestants are drawn at random in pairs From the population Q. .

AR}

and bu are the payoffs to individuals of populations 1 and 2 when

the first plays according to strategy X; and the second according

to strategy Y}. The average payoffs A&(g):Z&qu l%(p):Zbuﬁ% are
i i

treated ag the payoff functions. In this case, a point (P,

aatisfies (1) if (P,q) is Nash equilibrium of the bimatrix ¢game

with matrices 4,B. For some other types of interaction, the payoff

functions are not linear (see for instance Maynard-Smith, 1882).

We assume further that the functions AKQ) (resp. Bﬁfb) are

continiously-differentiable on the set A" (resp. Am).

3. THE EVOLUTIONARY MODEL

Let p(T) and Q(t) change according to the systenm
i>;0<t,p<o>,q<o>> G(P, Ay, t=1,...,M
(2)
Ezfd(t,pm),qco)) Heq,Bcpy), J=1,....7.

I term thisg dynamical system E-coordinated if it satisfies the



following conditions:
1y The functions GU l=1,...,m; Hﬁ J=1,...,1 s=atisfy the
egquations

G(p,A=0, l=1,...,M
H#Q,B):O, J=1,...,1,

for any distributions peAm, quﬁ and payoff vectors A:(Ai,...,Am),
B=(B,,...,B ) such that

Vi (p>0)s | e Argmax 4; ¥ (4002 J € Argmax B, .

2) The functions C,d are measurable as functiong of t  and
continiously-differentiable with resp. to [D(0), {(0) and the
derivatives are bounded uniformly by . There exist such positive
£,, &, that for every 120, peh", qeh” g<cct,p, @y, dA(T,p, =g, .

3) The set A"xA" is the invariant of the system (2). The functions

G and H are continiously-differentiable.

Let us note that any system of the form

Pi:Pigi<P><At<q>—§pLAl<q>>, i=1,...,m,
qj:qjhj<q><Bj<p>—§q,,BL<p>>, J=1,...,1,

with smooth positive functions & N meets conditions 1), 3).

Concrete examples of €-coordinated systems are as follows.

Exampe 1. MNon-autonomous replicator dynamics. Let M:(MQ:Mp“

{=1,...,m) and N:(NfNT%, J=1,...,N) be a numerical distribution



of astrategies. Let the functiong ﬁi(M(t),N(t),t), Iﬁ(M(i),N{t},f),
I=1,...,M; (resp. Eﬁ, Eﬁ, J=1,...,1) determine the rates of
fertility and mortality for the strategies of the population 1

(resp. the population 2).

Children play the same strategies as their parents. For
two-sexual species such inheritance may be caused either by
learning or by genesg linked with sex. Then

Anﬂ't:Mt(Ft(M,N, ty-DIM,N, £y, 1=1,...,%

(3)

W= (F LN, ©-DFMN, ©)), J=1,...,7.

Aszume that the Functions ff, Eﬁ may be expressed in the form

PN, Ty=c(lL N, HF gty + o (LN, 1)
DECMN, ty=c(M, W, 5D0cqetyy + BUCL N, ).

Let the initial sizes of the populations be fixed and let us
denote by (M,N)(p(0),q(0),%) the solution of the system (3) with
initial distributions P(0), Q(0). Let

Ao = g - Do,

]

Bp) = F(py - D’(Dy,

C(P(0y,qoy,ty = (M, NY(P(o),qcoy, Ty, ),

dc (M, Ny(pCoy,qcoy, £y, t).

i

d(pCoy,qeoy, b

10



Then the system (3) implies that the distributions pP(L)y, q(l)

satisfy the eguations

p,= c<p<0>,q<0>,'t>pL<Ai<q>—§pkAk<q>>, l=1,...,m;

(4)
g= AP0y, 40y, 1yq,(BADy-3q,B(P)), J=1,...,7;

This system satisfies the conditions 1) and 35 and is

€-coordinated under general agsumptions.

Example 2. The random imitation. Unlike the previous exanple,
every new individual chooses some participant of the same
populatuin at random and imitates his strategy. Then the

population dynamics are

M=M M SHF - WD, t=1,...,m;
> .
N-N/N 3N F° - NI?, J=1,...,n.

Let the functions EL, DL be of the same kind as in Example 1. Then
mty, @ty satisfy system (1), if we define A@(Q):nzﬁ(Q),
B(py=-Di(p>.

Example 3. The adaptive imitation. Consider interaction between
two populations with the constant sizes and the payoff functions
A, B(py. Let MY, (pty, Aqcty) (resp. NV, (qcly, Bpctr)))

be the rate of trangition from the strategy Xk to the strategy XL

(resp. from Yito Yl) at the time . We assume that the funections

11



Pﬂ, Ym are continiouslyadifferentiable. 1f strategdy AL ig better
than strategy 4, then the rate of transition from 4 to 4, is
lower than the rate of reverse transition: for every p, A (£&>Ak) =
pL,YLk(p’ A) ut pk'Ykiﬁp: A): for every q,B (BJ>BL) = quJL(q’B> it

(Lvu(q,B>. Then P(T), Q(Ty change sccording to the system

ph:ki(pkrykx(p(t)’A(Q(t)))“ erYik(p(t), Acgcty)y»y, I=1,...,M;
%:2(%ﬂ§%thﬂpd)n-quQW>,mpd)nx J=1, ...
L

Let us note that the aystem (2) may be reduced to the
autonomous one:
f’-ﬁGﬁp,A(qn, i=1,...,m,
(5

q=H(Q,B(pY), J=1,..0Th

if for any b, P(O), Q)
c(p(oy, 0y, t)/d(p0), (o), 1) = aCpoy,qeod).
This case takes place in the interaction between populations
of constant sizes, OF between individuals of the same species in
two different roles; for instance, between "owners' of some

resources and “intruders"” (see Maynard—Smith, 18823,

4.9tability of mixed equilibria

Congider arbitrary game I, e-coordinated system (2) and the

corresponding sutonomous system (5). Let us remind that a fixed

12



point of the aystem (5) is called a degenerate point if sone
gigenvalue A of the Jacobian is equal to 0; the point iz a center
if for every eigenvalue Re A=0, |tm Al>0; the point is a saddle if

for some eigenvalue Re A>Q.

Theorem. Every mized equtlibrium (P*,Q*) is eilther a degenerate
point, or a center, or a saddle of the system (5). In the latier
case (P*,Q*) is the unstable point of the syslem (2) Jfor any

permissible functions C, d.

The following lemmas will be used to prove the second part of

the theorem.

Lemma 1. Let (,y)(t)=(x,ylexp(rt) be a solution of the llnear
system &rKy, Qsz, z,y e A", and ReisO; let a(t) be a measurable
functton, such that for some €, g for any t Ocsca(t)<gco. Then the
asystem

2=Ky, y=a(t)Px (8)
nas the solution (X,V)(t)=(c(t)z,d(t)y) where |c(t)|zeap(Rere™ 1)

Proof. By substitution of X, Y to the system (B) one obtains c=Ad,
NG, Hemos, & = G(HAC. Let Asuriv,  CCE)-exp(U(EI+18CT).
Then J, & satiafy the systen

Fe=acty,

}°:~ujﬂ+a(t>u ¥ v?a<t)/u<a(t)/}g—1>.
Let F(0)=0, F(0)=&"%. For every ¥, if Fty=e"®, then 7 ¢tyz0  and

if f(t)ngq, then J =0. Hence, £for every t quif(t)ﬁgbq,

13



FthHzte?, Ject) |zexpcue .

Lemma 2., Let the llnear sysiem fV::A(‘t,)W have such a solution W(t),
that for some usO for any t |W(t)|zexp(ut)|W(0)|. ILet A(t) be
bounded uniformly by t. Then the point 0O {8 unstable for the
system V'V:A(t)Wskgi(t,W)+g2(‘t,W(O),W) for any vector-functtons g,
g, such that |g, (t,W)|/|W|+0 as [W|-0, |&,(t.W(0),W)|=CIW(oI| |W|*
untformly by .

This proposition is analogous to the well-known theorem of

Lyapunov (=see, for instance, Rouche et al., theorem 5.8).

Proof of the Theorem. Let {i|p *>03={1,...,7}, {jlqj*m}:{j_,_,,,S}
We denote R={2,...,7r}, U={2,...,8}, S={r+1,...,my, V={8+1,...,N};
for any vector WeR™ and each ordered subset Qe{l=1,...,m Wé:(W“

lely, ﬁZ(F%,PS), 6:(qu,q§). By the exclusion of the dependent
variables KQZI_ﬁE—...um, q1:1«qz~...~qh the system (5) is

transposed to the form

p=G(p, A, g=H(q,B(q)).

Let us compute the Jacobian at the point <p*,q*). For every
leS, ReR, JeV for any small enough Ap%
Fo, oK K-
G(p +ejApk,A(q )20,

T ok pov. 4

H(q", B(p +6,Ap, )20,
according to the condition 3); here ek is the corresponding unit
——z\k
q

vector. Hence, 6§wﬂﬂ%(i%, '):&E/dﬁk(ﬁ*,a*)tﬂ. Similarly, for

14



every lel, aﬁyuma<pﬁ,q*):aGUuﬂa<p*,q*>:o. Now let us show, that
for every (,RU, J,leV aﬁ,@ﬁ%(p*,q*):aﬁfoh(p*,q*):o. Indeed,
for any small enough AP, the point (ﬁW+A$%9k,@*) corresponds  to
Nash equilibrium of the game I'' with +the payoff functions
A'(q)=A(Q) and B'(ﬁ):B(ﬁ~Aﬁk9k), which are extended in a proper
way. Hence, by the condition 1), Ca(§*+ekﬂﬁ&,A(§*)):0. Proof of

the second equality is analogous.

Thus, the Jacobian at the point (ﬁw,a*) takes the following

bloeck form:

ap, 5 6qu aqv
aps 6qv
J = P, T
aHU aHU aHﬁ
e J— 0 R
aP, ap, aq,,
i D, aq,, |

The two blocks of O0's on the diagonal are (I-1)%("-1) and
(8-1)Y%(8-1) matrices. If #S8, then detd=0, i.e. (p*,Q*) is a
degenerate point. Otherwise the characteristic polinomial f(%) of

the matrix

15



aq,,
J =
o,
E— 0
Py |

is even, and either all its eigenvalues are on the imaginari axes

or for one of them Re A>0.

Now let us consgider the latter case and prove the second part
of the theorem. We denote Iiﬁ~ﬁ*, y:a“q*, W=¢z,y>, Wﬁ(ﬁ,a) and
expend the functiong C, d, G, H in variable W:

S, ¢

o(t,p,=c(t,pr,q ) + h(t, ) |W],

dct,p, O=dct,p*, g% + hct, W,

G(q, ACQ) >=(aG/aWy (P*, W + Ry,

H(q, B(qyy=callyaly(p*, d W + h Wy,
where the functions Th(t,W), 121,2 are bounded uniformly by T, W,
h(Wy/|W+0 as [W|+0, 1=3,4. By the time change d't:c<t,p*,q*>c1t
the system (2)ig transposed to the form

z=CaGs Wy (p*, ¢ yWeg, (T, Wr+8,, L, W), W);

7
y=a¢ Ty (alyaly (P, Mg, (T, W)+&,, L, W0y, Wy;

16



where a(T=dct(y,p*, g ectcny, Pt "), e/Esamyse/e, and  the
functions gu,gw satisfy the conditions of Lemma 2, 1=1,2. By
the assunmption the system d(lk,yu)/dT:3 (lk,yu) has a solution
(Eg,gu)exp(hf), Re A>0. By Lemma 1 the linearised system

2= a6y aly (0, W,
y=a Ty Caly aly (p*, g W

has such solution (X(T),Y(t)) +that satisfies
~ - 472 ~
12,( Ty [Zexp(Re A(E/E) T |T,(0)].
Hence, by Lemma 2 the point 0 is unstable for the system (7) as is

the point (p*,g*) for the initial system (2).

5. DISCUSSION

Schuster et al. (1981) have shown that non-trivial mixed
equilibria of pair contests are never linearly asymptotically
stable points of the replicator dynamics. The theorem of section 4
establighes the analogous result for arbitrary interaction between
two populations for the wide class of autonomous €-coordinated
evolutionary systems. The theorem also shows that for any
non-autonomous 6E-coordinated system the investigation of the
corresponding linearized autonomous system allows us to determine
the saddle points which are unstable for the initial system. As
for the points of center-type, Schuster et al. have put forward
the conjecture: while these points are stable, they are not

asymptotically so for the replicator dynamics. This has been

17



proven for some classes of bimatrix games. This proposition fails
in some other autonomous E-coordinated systems (see Hofbauer and
Sigmund, 1988), as well as in the non-autonomous replicator
dynamics (see Vagin, 1989). But even if a point of center-type is
asymptotically stable, the rate of convergence to this point is
low. For natural systems, the fluctuation around the point is to

be expected in this case.

18
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